| | 1. SOLICITATION NUMBER | 2. TYPE OF SOLI | CITATION | 3. DATE ISSUED | PAGE OF PAGES | | | | | |--|---|------------------------|-------------------------|------------------------|----------------------|--|--|--|--| | SOLICITATION, OFFER, | DACA67 00 B 0222 | \ <u>\</u> | | May 9, 2000 | | | | | | | AND AWARD
(Construction, Alteration, or Repair) | DACA67-00-R-0222 | SEALED B | IID <i>(IFB)</i> | Wiley >, 2000 | 1 11 | | | | | | (Coistraction, Alcaliton, or Hopan) | | NEGOTIA1 | TED (RFP) | | | | | | | | IMPORTANT - The "offer" section on the reverse must be full | y completed by the offeror. | | | | | | | | | | 4. CONTRACT NUMBER | 5. REQUISITION/PURCHASE REQUEST NUMBER | | 6. PROJECT NUMB | ER | | | | | | | DACA67-00-C-0230 | W68MD9-0062-8004 | | | | | | | | | | 7. ISSUED BY CODE | W68MD9 8. ADD | RESS OFFER TO | | | | | | | | | Seattle District, Corps of Engineers | | | | | | | | | | | ATTN: CENWS-CT-CB | l s | eattle District | t, Corps of Eng | ineers | | | | | | | PO Box 3755 | | O Box 3755 | • | | | | | | | | Seattle, WA 98124-3755 | A | ATTN: CENWS-CT | | | | | | | | | 200000 , | S | eattle, WA 9 | 8124-3755 | A. NAME | | B TELEPHONE | NUMBER //nchade area co | de) (NO COLLECT CALLS) | | | | | | | 9. FOR INFORMATION CALL See Information | ation Page inside Front Cover | . (222) | See Informati | on Page inside Fro | ont Cover | | | | | | | SOLICITATIO | | - | | | | | | | | | | | | | | | | | | | NOTE: In sealed bid solicitations "offer" and "offeror" mea | | | | | | | | | | | 10. THE GOVERNMENT REQUIRES PERFORMANCE OF THE WORK DESCR | BED IN THESE DOCUMENTS (Title, identifying num | er, date):
! - E1 C | Mai mtomo | es Dools Foischi | ild Air Force Rose | | | | | | Furnish all labor, materials and equipmen | it and perform all work for Re | pair Fuel Sys | stems Maintena | nce Dock, Fairch | III All Foice Dasc | | | | | | Washington, in accordance with the attack | ched Contract Clauses, Special | Clauses, 1ec | ennical Specific | ations and Drawii | igs. | | | | | | | | | | | | | | | | | 1. Solicitation No. DACA67- | 00-R-0222 dated 9 May | 00 with 8 | amendment | s thereto. | | | | | | | | · · | | | | | | | | | | 2. Wage Determination No. W. | A00007 with 4 modific | ations. | 3. Drawings as listed in Se | ction 00800. | • | . = | | | | | | | | NOTE: Award will be made pursuant to | the Small Business Competitiv | e Developme | nt Program. | 10 | | | de 1.1. | | | | | | | 11. The Contractor shall begin performance within | 10 calendar days and | complete it within | 4 | * calendar | days after receiving | | | | | | | 1571 | | | * D | 1 00000 | | | | | | award, inotice to proceed. This performance | period is mandatory, | nego | otiable. <i>(See</i> | * Paragraph SC- | 1,00000 | | | | | | 12A. THE CONTRACTOR MUST FURNISH ANY REQUIRED PERFORMANCE | F PAYMENT RONDS? | | | 12B. CALENDAR DAYS | | | | | | | (If "YES," indicate within how many calendar days after award in its | | | | | 10 | | | | | | YES NO | | | | | 10 | | | | | | | | | | | | | | | | | 13. ADDITIONAL SOLICITATION REQUIREMENTS: | | | | | | | | | | | A. Sealed offers in original and . | copies to perform the work required are | due at the nlare en | secified in Item A by | | 2:00 p.m. (hour) | | | | | | 1/4/ W T 0 2000 | | | | Oraled amusicans | | | | | | | local time 6//6/00 June 9, 2000 | (date). If this is a sealed bid solicitation, | | | . очини вичнорез | | | | | | | containing offers shall be marked to show the offeror's nar | ne and address, the solicitation number, and t | ne date and time off | iers are due. | | | | | | | | D 4 | لمشمم | | | | | | | | | | B. An offer guarantee is not i | equired. | | | | | | | | | | | | | haut au br-usfa | | | | | | | | C. All offers are subject to the (1) work requirements, and (2) o | ther provisions and clauses incorporated in the | soucitation in full t | text or by reference. | | | | | | | | | | | | | | | | | | | D. Offers providing less than 90 | calendar days for Government acceptance | after the date offe | ers are due will not be | considered and will | | | | | | | be rejected. | STANDARD FORM 1442 BACK (REV. 4-85) | | | | | OFF | ER (Must be fully | completed by offe | aror) | | | <u> </u> | | | | |---|---|---|--|---|--|---|--|------------------------|---|--|--|--|--| | 14. NAME AND ADDRESS | OF OFFEROR | (Include ZIP Code) | | | | 15. TELEPHONE NUMBER (Include area code) (EOO) | | | | | | | | | Garco Construction, Inc. | | | | | (509) 535-4688 FAX: (509) 535-1384 16. REMITTA NCE ADDRESS (Include only if different then Item 14) | | | | | | | | | | 4114 E. B | | - | | | | | | uny ir uni orani. Cien | ream 1-47 | | | | | | Spokane, | | | | | | Same as | 5 14 | | | | | | | | Tax ID No:_
eMail: <u>ho1</u> | | | _DUNSNo: _ | 09-368- | -4694 | | | | | | | | | | CODE | | FACILI | TY CODE | | | | | | | ···· | | | | | 17. The offeror agrees | to perform | the work required | l at the prices speci | ified below in st | trict accordance w | ith the terms of t | his solicitation, if | this offer is | | | | | | | accepted by the | Government | t in writing within | | | _ calendar days af | ter the date offer | s are due. <i>(Insert</i> | any number equal | or greater than the | • | | | | | minimum require | ment stated | t in 13D. Failure (| to insert any numbe | r means the off | feror accepts the n | ninimum in Item 1 | <i>3D.)</i> | AMOUNTS | Se | e page 2b | | | | | | | | | | | | | 18. The offeror agrees | s to furnish | any required perfo | rmance and payme | nt bonds. | | | | | | | | | | | | | | (The offeror ack | | ACKNOWLEDGEMI
hipt of amendments | | | nd date of each) | · · · · · · · · · · · · · · · · · · · | | | | | | - ASSEMBLACHT | <u> </u> | | | | | | | | | | | | | | AMENDMENT (| MU. | 1 | 2 | 3 | 4 | 5 | - 6 | 7 | 8 | | | | | | DATE | | 5/8/00 | 5/11/00 | 5/10/00 | 5/30/00 | | | 6/9/00 | 6/12/00 | | | | | | 20A. NAME AND TITLE O | OF PERSON A | UTHORIZED TO SIG | N OFFER <i>(Type or prin</i> | t) | | 20B SIGNATURE | | | | 20C. OFFER DATE | | | | | James T. | Welsh | ı, Presid | lent | | | Alm | res VI | MUM | Iss. | 6/9/00 | | | | | | | | | A\ | NARO (To be com | plejod by Governa | nent) | | | | | | | | 22. AMOUNT | ·
 | \$2,218,00 | | | 21NA 20 | | 0.0000 G3 | 3 2000 08 | 8 8082 700 | 000000000 | | | | | | <u> </u> | | | | | 200 KGC7 | · | · · · | | | | | | | 24.SUBMIT INVOICES
(4 copies unles | - | | | ITE | 2 6 | r | N FULL AND OPEN C
. 2304(c) () | OMPETITION PURS | 41 U.S.C. 253 | i(c) () | | | | | 26. ADMINISTERED BY | | | CODE | | | | ILL BE MADE BY | | | | | | | | United States Army Corps of Engineers Seattle District Fairchild Area Office PO Box 1929 Airway Heights WA 99001-1929 | | | | US Army Corps of Engineers Finance Center
CEFC-AO-P
5722 Integrity Drive
Millington, TN 38054-5005 | | | | | | | | | | | | | | | NTRACTING OF | FICER WILL COMI | L
PLETE ITEM 28 0 | R 29 AS APPLICA | 4 <i>BLE</i> | | | | | | | 28. NEGOTIATI document and return all items or perform consideration stated be governed by (a) certifications, and sp | 7
all work rec
I in this con
this contra | copies to the issu
quirements identifi
tract. The rights
ct award, (b) the | and obligations of solicitation, and (| ctor agrees to f
d any continuati
the parties to t
c) the clauses, | ion sheets for the
his contract shall
representations, | offer on this
contract, whi | solicitation is he ich consists of (| reby accepted as | t solicitation and | / Your
d. This award consummates th
your offer, and (b) this contrac | | | | | 30A. NAME AND TITLE
(Type or print) | OF CONTRAC | CTOR OR PERSON A | UTHORIZED TO SIGN | | | | CONTRACTING OFFI | | | | | | | | 300 SIGNATURE | | | | 30C. DATE | | | ATES OF AMERICA | | , | 31C. AWARD DATE | | | | | 30B. SIGNATURE 30C. DAT | | | | | | DV CHILD ST | | 1.16 | | 39 Dine 3000 | | | | # ALTERATIONS IN CONTRACT (FAR 52.252-4) (APR 1984) DACA67-00-C-0230 # PORTIONS OF CONTRACT ARE ALTERED AS FOLLOWS: - 1. Modification No 6 to Wage Deterination No. WA000007 is hereby incorporated into this contract. - 2. The approved Subcontracting Plan dated 28 June 2000 is hereby incorporated into this contract. CONTRACT NUMBER: DACA67-00-C-0222 IF THE CONTRACTOR IS A CORPORATION OR PARTNERSHIP, THE APPLICABLE PORTION OF THE FORM LISTED BELOW MUST BE COMPLETED. IN THE ALTERNATIVE, OTHER EVIDENCE MUST BE SUBMITTED TO SUBSTANTIATE THE AUTHORITY OF THE PERSON SIGNING THE CONTRACT. IF A CORPORATION, THE SAME OFFICER SHALL NOT EXECUTE BOTH THE CONTRACT AND THE CERTIFICATE. | | CORPORATE C | CERTIFICATE | | |--
--|---|------------------| | Secretary of the Corporati
who signed this contract of
corporation; that said contract | on named as Contractor here
n behalf of the Contractor wa | on behalf of said corporation by authority of | said
its | | | Wank / (Secretary | (CORPORATE SEAL) | | | | AUTHORITY TO BIN | ND PARTNERSHIP | | | below and that the person
partnership agreements.
contractual instruments or | signing the contract has auth
Each of the partners individua | nd Social Security Numbers of all partners are
thority actually to bind the partnership pursual
ually has full authority to enter into and execu-
with the United States of America, except as | ınt to it
ite | | (state none or describe) | | | _ | | This authority sha | | ect until such time as the revocation of authon, and acknowledged by, the Contracting Offi | | | This authority sha any cause whatsoever ha | s been furnished in writing to, | | | | This authority sha any cause whatsoever ha | s been furnished in writing to, | o, and acknowledged by, the Contracting Offi | | | This authority sha
any cause whatsoever ha
(Nan | s been furnished in writing to,
nes, Signatures and Social Se | o, and acknowledged by, the Contracting Offi
Security Numbers of all Partners) | | | This authority sha
any cause whatsoever ha
(Nan | s been furnished in writing to,
nes, Signatures and Social Se | o, and acknowledged by, the Contracting Offi
Security Numbers of all Partners) | | DACA67-00-C-0222 ## **SCHEDULE** | Item | Description | Quantity | <u>Unit</u> | <u>Unit Price</u> | Amount | |------|--|----------|-------------|-------------------|---------------------| | | Base Items | | | | | | 0001 | All Work for Repair Fuel Systems
Maintenance Dock, Except for
Items 0002, 0003, 0004 and
0005 | 1 | JOB | LS | \$ <u>1,936,600</u> | | 0002 | All Work for As-Built Drawings As
Specified in Section 01702 From
Preparation to Final Approval | 1 | JOB | LS | \$ 25,000 | | 0003 | All Work for O&M Manuals As
Specified in Section 01701 From
Preparation to Final Approval | 1 | JOB | LS | \$ 60,000 | | 0004 | All Work for Form 1354 Checklist
and Equipment in Place List As
Specified in Sections 01704 and
01705 From Preparation to Final
Approval | 1 | JOB | LS | \$ 12,000 | | | | тот | TAL BAS | E ITEMS | \$ 2,033,600 | | | Optional Item | | | | | | 0005 | Install AFFF Tank with Related Piping and Foundation | | | | \$ <u>184,4</u> 00 | | | TOTAL | BASE AND | OPTION | AL ITEMS | \$ 2,218,000 | NOTE: The dollar amounts established in Items 0002, 0003, and 0004, shall not be revised by offerors. # SMALL, SMALL DISADVANTAGED AND WOMEN-OWNED SMALL BUSINESS SUBCONTRACTING PLAN DATE: June 13, 2000 CONTRACTOR: Garco Construction, Inc. ADDRESS: 4114 E. Broadway, Spokane, WA 99202 PHONE NO: (509) 535-4688 PROJECT TITLE: Repair Fuel Systems Maintenance Dock **SOLICITATION NO:** DACA67-00-R-0222 - 1. In accordance with the contract clauses at 52.219-8 and 52.219-9, Garco Construction, Inc. submits the following Subcontracting Plan for Small, Small Disadvantaged, and Women-Owned Business Concerns. - 2. Corresponding dollar values for percentages cited in para. 3: - a) Total contract amount is: \$2,033,600.00 - b) Total dollars planned to be subcontracted: \$1,625,697.00 - c) Total dollars planned to be subcontracted to small business concerns: \$1,137,988.00 - d) Total dollars planned to be subcontracted to HUBZone small business: \$24,386.00 - e) Total dollars planned to be subcontracted to small disadvantaged business concerns: \$400,000.00 - f) Total dollars planned to be subcontracted to small woman-owned business concerns: \$81.285.00 - 3. The following percentage goals are applicable to the contract awarded under the solicitation cited above. - a) The total estimated percentage of all planned subcontracting to all types of business concerns under this contract is; 79.9% - b) Small Business Concerns: 70.0% of total planned subcontracting dollars under this contract will go to subcontractors who are small business concerns including 3c.and 3d. - c) Small HUBZone Business Concerns: 1.5% of total planned subcontracting dollars under this contract will go to subcontractors who are HUBZone small business contractors. - d) Small Disadvantaged Business Concerns: 24.6% of total planned subcontracting dollars under this contract will go to subcontractors who are small disadvantaged individuals. - e) Small Women-Owned Business Concerns: 5% of total planned subcontracting dollars under this contract will go to subcontractors who are small woman-owned businesses. - 4. The principal items or areas we will subcontract under this contract are: #### **DIVISION 2 - SITEWORK** - 02090 Lead-Based Paint (LBP) Abatement and Disposal - 02120 Transportation and Disposal of Hazardous Materials - 02200 Demolition and Removal Debris - 02234 Subbase Courses - 02300 Earthwork - 02315 Excavation, Filling and Backfilling for Buildings - 02316 Excavation, Trenching and Backfilling for Utilities Systems - 02510 Water Distribution System - 02531 Sanitary Sewers - 02580 Pavement Markings - 02630 Storm-Drainage System - 02722 Graded-Crushed Aggregate Base Course - 02741 Bituminuous Paving for Roads, Streets and Open Storage Areas - 02748 Bituminuous Tack and Prime Coats - 02935 Turf #### <u>DIVISION 3 – CONCRETE</u> 03200 - Concrete Reinforcement #### <u>DIVISION 4 – MASONRY</u> 04200 - Masonry #### **DIVISION 5 - METALS** - 05120 Structural Steel - 05300 Steel Decking - 05500 Miscellaneous Metal #### **DIVISION 6 - WOOD & PLASTICS** 06200 - Finish Carpentry # **DIVISION 7 - THERMAL AND MOISTURE PROTECTION** 07600 - Sheet Metalwork, General 07811 - Sprayed On Fireproofing 07900 - Joint Scaling # **DIVISON 8 - DOORS AND WINDOWS** 08110 - Steel Doors and Frames 08700 - Builders' Hardware #### **DIVISION 9 – FINISHES** 09250 - Gypsum Wallboard 09310 - Ceramic Tile 09510 - Acoustical Ceilings 09650 - Resilient Flooring, Base and Transition Strips 09680 - Carpet 09900 - Painting, General 09986 - Fiberglass Reinforced Polyester Panels #### **DIVISION 10 - SPECIALTIES** 10100 - Visual Communication Specialties 10160 - Toilet Partitions 10210 - Metal Wall Louvers 10440 - Interior Signage 10505 - Metal Lockers 10522 - Fire Extinguishers, Cabinets and Accessories 10800 - Toilet Accessories ## **DIVISON 11 - EQUIPMENT** 11452 - Residential Appliances #### **DIVISION 12 - FURNISHINGS** 12490 - Window Treatment # <u>DIVISION 13 – SPECIAL CONSTRUCTION</u> 13112 - Cathodic Protection System (Impressed Current) for Fire Pump Suction Tank (-S) 13206 - Steel Standpipes and Ground Storage Reservoirs 13280 - Asbestos Abatement 13850 - Fire Detection and Alarm System, Direct Current Loop 13920 – Fire Pumps 13935 - Dry Pipe Sprinkler System, Fire Protection 13945 - Preaction and Deluge Sprinkler Systems, Fire Protection 13955 - Aqueous Film-Forming Foam (AFFF) Fire Protection System # **DIVISION 15 – MECHANICAL COMPLETE** - 15052 Welding Pressure Piping - 15070 Seismic Protection for Mechanical Equipment - 15080 Thermal Insulation for Mechanical Systems - 15400 Plumbing, General Purpose - 15550 Gas Fired Boilers and Infra Red Radiant Heaters, Flue Stacks and Gas Piping - 15556 Forced Hot Water Systems - 15653 Air-Conditioning System (Unitary Type) - 15895 Air Supply, Distribution, Ventilation, and Exhaust System - 15951 Direct Digital Control for HVAC - 15990 Testing, Adjusting and Balancing of HVAC Systems - 15995 Commissioning of HVAC Systems #### **DIVISON 16 – ELECTRICAL** - 16415 Electrical Work, Interior - 16070 Seismic Protection for Electrical Equipment - 16375 Electrical Distribution System, Underground - 16415 Electrical Work, Interior - 4.a) Of the items or areas stated in 4; the following are planned to be subcontracted to Small Businesses: Strata - Testing Grady's - Earthwork Pride Painting - Painting A & B Painting - Painting Summit Environmental - Asbestos/Lead Abatement Tunnel Systems, Inc. - Boring Shamrock Paving - Paving Sharp-Line Industries, Inc. - Striping Summit Landscaping - Hydroseeding Western Rebar - Rebar Great Northern Masonry - Masonry Star Steel - Steel Fabrication Denemrac - Steel Deck Supplier Inland Fixture - Cabinets Advanced Insulation - Fireproofing Insul Pro - Insulation Carlson Sheetmetal - Flashing A.M. Hardware - Door & Hardware River City Glass - Glass Floormart - Flooring/Tile Contractors Supply - Specialtics/Electrical/Mechanical Supplies MTM Mechanical - Mechanical Short Hop Construction - Masonry & Rebar Norton Corrosion – Cathodic Protection #### **DIVISION 2 - SITEWORK** - 02090 Lead-Based Paint (LBP) Abatement and Disposal - 02120 Transportation and Disposal of Hazardous Materials - 02200 Demolition and Removal Debris - 02234 Subbase Courses - 02300 Earthwork - 02315 Excavation, Filling and Backfilling for Buildings - 02316 Excavation, Trenching and Backfilling for Utilities Systems - 02510 Water Distribution System - 02531 Sanitary Sewers - 02580 Pavement Markings - 02630 Storm-Drainage System - 02722 Graded-Crushed Aggregate Base Course - 02741 Bituminuous Paving for Roads, Streets and Open Storage Areas - 02748 Bituminuous Tack and Prime Coats - 02935 Turf # **DIVISION 3 – CONCRETE** 03200 - Concrete Reinforcement #### **DIVISION 4 – MASONRY** 04200 - Masonry ## **DIVISION 5 - METALS** - 05120 Structural Steel - 05300 Steel Dccking - 05500 Miscellaneous Metal #### **DIVISION 6 – WOOD & PLASTICS** 06200 – Finish Carpentry # **DIVISION 7 – THERMAL AND MOISTURE PROTECTION** - 07600 Sheet Metalwork, General
- 07811 Sprayed On Fireproofing - 07900 Joint Sealing #### <u>DIVISON 8 – DOORS AND WINDOWS</u> - 08110 Steel Doors and Frames - 08700 Builders' Hardware #### <u>DIVISION 9 – FINISHES</u> - 09250 Gypsum Wallboard - 09310 Ceramic Tile - 09510 Acoustical Ceilings - 09650 Resilient Flooring, Base and Transition Strips - 09680 Carpet - 09900 Painting, General - 09986 Fiberglass Reinforced Polyester Panels # **DIVISION 10 - SPECIALTIES** - 10100 Visual Communication Specialties - 10160 Toilet Partitions - 10210 Metal Wall Louvers - 10440 Interior Signage - 10505 Metal Lockers - 10522 Fire Extinguishers, Cabinets and Accessories - 10800 Toilet Accessories # **DIVISON 11 - EOUIPMENT** 11452 - Residential Appliances # **DIVISION 12 - FURNISHINGS** 12490 - Window Treatment #### <u>DIVISION 13 – SPECIAL CONSTRUCTION</u> - 13112 Cathodic Protection System (Impressed Current) for Fire Pump Suction Tank (-S) - 13206 Steel Standpipes and Ground Storage Reservoirs - 13280 Asbestos Abatement - 13920 Fire Pumps # **DIVISION 15 - MECHANICAL COMPLETE** - 15052 Welding Pressure Piping - 15070 Seismic Protection for Mechanical Equipment - 15080 Thermal Insulation for Mechanical Systems - 15400 Plumbing, General Purpose - 15550 Gas Fired Boilers and Infra Red Radiant Heaters, Flue Stacks and Gas Piping - 15556 Forced Hot Water Systems - 15653 Air-Conditioning System (Unitary Type) - 15895 Air Supply, Distribution, Ventilation, and Exhaust System - 15951 Direct Digital Control for HVAC - 15990 Testing, Adjusting and Balancing of HVAC Systems - 15995 Commissioning of HVAC Systems #### <u>DIVISON 16 – ELECTRICAL</u> 16415 - Electrical Work, Interior 4.b) Of the items or areas stated in 4.a; the following are planned to be subcontracted to HUBZone Small Business concerns: #### Business: Short Hop Construction - Masonry & Rebar #### **DIVISION 3 – CONCRETE** 03200 - Concrete Reinforcement # <u>DIVISION 4 – MASONRY</u> 04200 - Masonry 4.c) Of the items or areas stated in 4.a; the following are planned to be subcontracted to Small Disadvantaged Businesses: #### Businesses: MTM Mechanical – Mechanical # **DIVISION 15 – MECHANICAL** - 15052 Welding Pressure Pipe - 15070 Seismic Protection for Mechanical Equipment - 15080 Thermal Insulation for Mechanical Systems - 15400 Plumbing, General Purpose - 15550 Gas Fired Boilers and Infra Red Radiant Heaters, Flue Stacks and Gas Piping - 15556 Forced Hot Water Heating Systems - 15653 Air-Conditioning System (Unitary Type) - 15895 Air Supply, Distribution, Ventilation and Exhaust System - 15951 Direct Digital Control for IIVAC - 15990 Testing, Adjusting and Balancing of HVAC Systems - 15995 Commissioning of HVAC Systems - 4.d) Of the items or areas stated in 4.a; the following are planned to be subcontracted to Small Women-Owned Businesses: #### Buisnesses: Contractor Supply - Specialties and Electrical/Mechanical Supplies # **DIVISION 10 - SPECIALTIES** - 10160 Toilet Partitions - 10440 Interior Signage - 10505 Metal Lockers - 10522 Fire Extinguishers, Cabinets and Accessories - 10800 Toilet Accessories - 13920 Fire Pumps - 16415 Electrical Work, Interior - The method used to develop the above subcontracting goals is described as follows: Garco Construction, Inc. solicited bids from Large Businesses, Small Businesses, HUBZone Small Businesses, Small Disadvantaged Businesses, and Small Women-Owned Businesses. We intend to subcontract the work that we do not normally perform with our own forces. The above listing reflects our estimate for the various categories of work to the subcontracted. Thus the resulting 79.9% goal. On a project of this nature, we believe that 70.0% of the subcontractors qualified to perform this work are small businesses. Along the same lines, we believe 1.5% are HUBZone small businesses, 24.6% are small disadvantaged businesses and 5% are small women owned businesses. Our goal is to exceed the percentages as indicated in item 3 above. - 6. Indirect costs were not used in establishing subcontracting goals. 7. The following individual will administer Garco Construction, Inc.'s Subcontracting Program: Name: Linda Adams Job Title: Address: SB Administrator/Administrative Assistant 4114 E. Broadway, Spokane, WA 99202 Phone: (509) 535-4688 This individual's specific duties with regard to the conduct of our firm's Subcontracting Plan will include, but will not be limited to, the following: - a) Developing and maintaining bidders lists of small business, HUBZone small business, small disadvantaged business and women-owned small business concerns using sources such as the Small Business Administration's ProNet (http://pro-net.sba.gov/) Washington State Office of Minority and Women-owned Business Enterprises (http://www.wsdot.wa.gov/omwbe/) Minority Business Development Agency, US Department of Commerce, Local Minority Business Development Centers, Economic Development Centers, and National Center for American Indian Enterprise Development. - Assuring the inclusion of small business, HUBZone small business, small disadvantaged, and women-owned small business concerns in all solicitations for products or services which they are capable of providing; and ensuring that all solicitations are structured to permit the maximum possible participation by small, small disadvantaged and women-owned small business concerns. - e) Establishing and maintaining records of all solicitations and subcontract awards to ensure that the members of the firm who review bidders proposals documents their reasons for selecting or not selecting a bid submitted by a small business, HUBZone small business, small disadvantaged, or women-owned small business concern, and monitoring the firm's progress towards achievement of its percentage goals. - d) Preparing and submitting the Subcontracting Report for Individual Contracts (SF 294) and the Summary Subcontract Report (SF 295) in accordance with instructions provided, and coordinating and preparing for all compliance reviews by Federal agencies. - e) Attendance at DOD sponsored training programs in order to develop guidance and training to firm personnel on the policy of the federal government to aid, assist, and counsel small business under this and other government contracts. - f) Conducting or arranging for all other activities necessary to further the intent and attainment of the goals in the Plan to include motivational training of the firm's purchasing personnel, attendance at workshops, seminars and trade fairs conducted by or on behalf of small business, HUBZone small business and/or small disadvantaged and/or women-owned small business concerns; and general cooperation with members of the small, small disadvantaged and women-owned small business concerns or their representatives. - 8. The following steps will be taken to ensure that small business, HUBZone small business, small disadvantaged, and women-owned small business concerns receive notice of and have a equitable opportunity to compete for intended awards of the subcontracts and/or purchase orders for the products and/or services described in paragraph 4 above: - a) Sources will be requested through SBA's ProNet system, business development organizations, minority and small business trade associations and at small, minority and women-owned small business procurement conferences; sources will be contacted; and bidding materials will be provided to all responding parties expressing an interest. - Internally, motivational training will be conducted to guide and encourage purchasing personnel; source lists and guides to small business, HUBZone small business, small disadvantaged and women-owned small business concerns will be maintained and utilized by purchasing personnel while soliciting subcontracts and purchase orders; activities will be monitored to ensure sufficient time is allowed for interested bidders to prepare their proposals and to evaluate continuing compliance with the Subcontracting Plan. - 9. Garco Construction, Inc. agrees that the clause entitled "Utilization of Small Business Concerns" (Jan 1999) will be included in all subcontracts that offer further subcontracting opportunities. All subcontractors, except small business concerns, who receive subcontracts in excess of \$500,000 (\$1,000,000 in the case of construction), will be required to adopt a plan similar to this one. Such plans will be reviewed to assure that all minimum requirements of an acceptable subcontracting plan have been satisfied. The acceptability of percentage goals shall be determined on a case by case basis depending on the supplies/services involved, the availability of potential small business, HUBZone small business, small disadvantaged, and women-owned subcontractors, and prior experience. Once approved and implemented, plans will be monitored through the submission of periodic reports or, as time and availability of funds permit, periodic visits to subcontractors facilities to review applicable records and subcontracting program progress. - 10. Garco Construction, Inc. agrees to submit such periodic reports and cooperate in any studies or surveys as may be required by the Contracting agency or Small Business Administration in order to determine the extent of compliance by the offeror with the subcontracting plan and with the clause entitled "Utilization of Small Business Concerns" contained in the contract. - 11. Garco Construction, Inc. agrees to maintain at least the following types of records to document compliance with the Subcontracting Plan: - a) The names of all organizations, agencies, and associations contacted for small business, HUBZone small business, small disadvantaged, and women-owned small business sources, along with records of attendance at conference, seminars and trade fairs where additional sources were developed. - b) Source lists, guides, and other data identifying small business, HUBZone small business,
small disadvantaged, and women-owned small business subcontractors and vendors. - c) Records on all subcontractor solicitations resulting in an award of more that \$100,000 on a contract by contract basis, indicating (1) whether small business concerns were solicited, and if not, why not; (2) whether HUBZone small business concerns were solicited, and if not, why not; (3) whether small disadvantaged business concerns were solicited, and if not, why not; (4) whether small women-owned business concerns were solicited, and if not, why not; and (5) reasons for the failure of solicited small, small disadvantaged or women-owned small business concerns to receive a subcontract award. - d) Records of all subcontract award data to include subcontractor's name and address, to be kept on a contract by contract basis. - e) Minutes of internal motivational and training meetings held for the guidance and encouragement of purchasing personnel, and records of all monitoring activities performed for compliance evaluation. - f) Copies of SF 294 and SF 295 showing date and place of filing and copies of all other reports or results of reviews conducted by the contracting agency or other interested agencies of the Federal government to monitor our compliance with this Subcontracting Plan. - Garco Construction, Inc. will submit a SF 295, Summary Subcontract Report, on Corps of Engineers projects only. The SF 295 shall be complete and distributed in accordance with the Corps of Engineers Supplemental Instructions. Garco Construction, Inc. will not report Corps of Engineers projects through any other Agency unless authorized by the Contracting Officer. - In closing, Garco Construction, Inc. states that it will be the policy of Garco Construction, Inc. to afford every practical opportunity for small business, HUBZone small business, small disadvantaged, and women-owned small business concerns to participate in contracts awarded to Garco Construction, Inc. by the Federal Government, to ensure that equitable opportunity is provided to small business, HUBZone small business, small disadvantaged, and women-owned small business concerns to compete for award of subcontracts and purchase orders, and to diligently pursue the achievement of our goals of participation by small business, HUBZone small business, small disadvantaged, and women-owned small business in the dollars available for subcontract/purchase order awards under this contract. BY: GARCO CONSTRUCTION, INC. Frank H. Etter, Vice President DATE: 0.00.00 LVI 10.14 - LV7 909 999 1994 GUVCO COVQIMECTION # Company Name: Garco Construction, Inc. Date: <u>June 13, 2000</u> | | | | <u>Dollars</u> | Percentage | |----|------------|---|------------------|------------| | 1. | Op | otion #1 Total: | \$184,400 | | | 2, | - | tal to be subcontracted to l types of businesses: | \$173.067 | 93.9% | | | a . | Subcontracted to Small Business (including b,c and d. below): | <u>\$121,147</u> | <u>70%</u> | | | b. | Subcontracted to HUBZone Small Businesses: | <u>\$2.596</u> | 1.5% | | | c. | Subcontracted to Small Disadvantaged Businesses: | \$19.037 | 11% | | | d. | Subcontracted to Women-
Owned Small Businesses: | \$8,653 | 5% | FROM: US ARMY ENGR DIST., SEATTLE PO BOX 3755 SEATTLE, WA. 98124-3755 Cheryl O'Neal, CENWS-CT-CB-MU, (206) 764-6805 - 1. Refer to Request for Proposal (RFP) No. DACA67-00-R-0222, entitled "Repair Fuel Systems Maintenance Dock, Fairchild AFB, WA." - 2. This is Amendment R0008, dated 12 June 2000, and provides for the following Specification change as a correction to previous Amendment R0007: Telegraphic Amendment R0007, items 4.b(1) and 4.b(2) incorrectly stated to revise Section 01005 paragraph 4.1 General and 4.2 Electrical Connections. It should have said to revise paragraphs 5.1 General and 5.2 Electrical. - 3. The proposal due time and date remain 2:00 PM, local time, 16 June 2000. - 4. Offerors must acknowledge receipt of this amendment by number and date on page 1442, Block 19, or by telegram. Please mark the outside of the envelope in which the proposal is enclosed to show amendment received. - 5. No conformation copy will be mailed. FROM: US ARMY ENGR DIST., SEATTLE PO BOX 3755 SEATTLE, WA. 98124-3755 Cheryl Oneal, CENPS-CT-MU, (206) 764-6805 - 1. Refer to Request for Proposal (RFP) No. DACA67-00-R-0222, entitled "Repair Fuel Systems Maintenance Dock, Fairchild AFB, WA." - 2. This is Amendment R0007, dated 9 June 2000, and provides for the following Due Date and Specification changes: #### 3. SPECIFICATIONS - a) SPECIAL CLAUSES (00800), Paragraph SC-1, sub-paragraph Phase 1: Add third sentence as, "The contractor shall assume that Hangar 1012 will not be available until 8 August 2000." - b) Section 01005-SITE SPECIFIC SUPPLEMENTARY REQUIREMENTS: - (1) Paragraph 4.1 General: Change "3.2.2" to "4.2.2" in the second sentence. - (2) Paragraph 4.2 Electrical Connections: Revise first sentence to read, "Electrical power to the trailer shall originate from the existing exterior transformer C684 shown on Sketch No. 1 attached at the end of this section. Add second sentence, "The contractor shall provide the temporary power from transformer C684 in a direct buried cable conduit. Power will be provided in accordance with the National Electric Code (NEC). Point of contact for access to the transformer cabinet is the Base Civil Engineer." Revise third sentence to read, "Contractor shall install six Class 1 Division 2 outlets shown in Sketch No. 2 to include conduit seals." NOTE: Telegraphic amendment R0004, paragraph 3a, incorrectly said to revise the second sentence in Section 01005, page 8, Paragraph 4.1. It should have said to revise the second sentence, page 10, Paragraph 5.1 - c) Section 013920-FIRE PUMPS, Paragraph 2.1 Fire Pumps: Change maximum rated pump speed from 2100 rpm to 1700 rpm. - d) Section 15550-GAS FIRED BOILERS AND INFRA RED RADIANT HEATERS, FLUE STACKS & GAS PIPING, Paragraph 2.1a: Remove "wetback" from the first sentence. Add last sentence, "The boiler NOx requirement is 30 PPM NOx, 100PPM CO, corrected to 3% for 02 based on best available control sequence. Refer to WAC 173-400-112 and 113. - e) Section 15895-AIR SUPPLY, DISTRIBUTION, VENTILATION, AND EXHAUST SYSTEM, Paragraph 2.10.1: General: Remove "welded tubular" from the first sentence. Remove "around the entire perimeter" from the second sentence. Unit Base/Framework, first paragraph: Delete first sentence. Remove "or section (if demounted)" from the second sentence. Remove "/aluminized and 16 gauge galvanized steel liner" from the third sentence. Unit Base/Framework, second paragraph: Delete the first sentence. - 4. The proposal due time and date are changed to $2:00~\mathrm{pm}$, local time, 16 June 2000. - 5. Bidders must acknowledge receipt of this amendment by number and date on page 1442, Block 19, or by telegram. Please mark the outside of the envelope in which the proposal is enclosed to show amendment received. - 6. No conformation copy will be mailed. FROM: US ARMY ENGR DIST, SEATTLE PO BOX 3755 SEATTLE, WA 98124-2255 (206) 764-6588, CENWS-CT-CB-MU, Paula Reinhard - 1. Refer to Invitation for Bids No. DACA67-00-R-0222, entitled "Repair Fuel Systems Maintenance Dock, Fairchild AFB, WA." - 2. This is **Amendment Six (0006)**, dated 5 June 2000, and provides for the following Due Date, Specification and Drawing changes: - 3. The proposal due time and date are changed to 2:00 pm, local time, 13 June 2000. - 4. SPECIFICATIONS - a) Section 01320 PROJECT SCHEDULE: Remove paragraph 1.1.2 Taxiway in its entirety. - b) Section 15895 AIR SUPPLY DISTRIBUTION, VENTILATION, AND EXHAUST SYSTEM: - (1) Paragraph 2.10: Remove the words "AHU-101". - (2) Paragraph 2.10.8: Replace with the following: "The fan shall be of the type scheduled on drawings. Fan blades shall be airfoil equipped with 100,000 hours pillow block bearings outside of the air stream. Fan shaft shall be turned, ground and polished solid steel rated at maximum RPM below critical speed. Aluminum rub ring shall be fitted between housing and shaft at all locations. Fan wheels and sheaves are keyed to the shaft. Fan wheels shall be fabricated of heavy gauge aluminum. Fan shall be IRD balanced at design RPM to a vibration velocity less than or equal to .08 inches per second measured at each bearing pad prior to shipment with motor, sheaves, and belts in place. Fan shall be rated in accordance with AMCA 210 for performance and AMCA 300 for sound." - 5. DRAWINGS (changed by notation in the specifications SPECIAL CLAUSES) - a) Sheet 42, Plate M6.1, Air Handling Unit Schedule, EAHU-101, EAHU-101A, EAHU-108, and AHU108: Add the words "Spark Resistant" to the Supply Fan, Type column and add the words "Motor Outside Air Stream" to the Remarks column. - b) Sheet 42, Plate M6.2, Cabinet Unit Heater Schedule: CUH-102 row shall read the same as CUH-103 except for the area served column. - 6. Bidders must acknowledge receipt of this amendment by number and date on SF 1442, Back, Block 19, or by telegram. Please mark the outside of the envelope in which the proposal is enclosed to show amendment received. - 7. No conformation copy will be mailed. FROM: US ARMY ENGR DISTRICT, SEATTLE PO BOX 3755 SEATTLE, WA 98124-3755 Susan Sherrell, CENWS-CT-MU, (206) 764-3203 - 1. Refer to Request for Proposals No. DACA67-00-R-0222, entitled "Repair Fuel Systems Maintenance Dock, Fairchild AFB, WA." - 2. This is amendment five (R0005), dated 31 May 2000, which provides for the following: - a. The solicitation stated that the due date for proposals was 9 June. However, amendment 1 through 4 all stated the corrected due date of 8 June 2000, and that is the due date. In addition, the time of 2:00 a.m. stated in amendment 4 was incorrect. - b. THE CORRECT DATE AND TIME FOR RECEIPT OF PROPOSALS ARE AS FOLLOWS: **2:00 P.M., local time, 8 June 2000.** - 3. Offerors must acknowledge receipt of
this amendment by number and date on page 1442, Block 19, or by telegram. Please mark the outside of the envelope in which the proposal is enclosed to show amendment received. - 4. No conformation copy will be mailed. FROM: US ARMY ENGR DISTRICT, SEATTLE PO BOX 3755 SEATTLE, WA 98124-3755 Susan Sherrell, CENWS-CT-MU, (206) 764-3203 - 1. Refer to Request for Proposals No. DACA67-00-R-0222, entitled "Repair Fuel Systems Maintenance Dock, Fairchild AFB, WA." - 2. The proposal time and date remain unchanged at 2:00 a.m, local time, 8 June 2000. - 3. This is amendment four (R0004), dated 30 May 2000, which provides for the following specification changes: - a) Section 01005, Page 8, Paragraph 4.1: The second sentence is revised to read "The trailer shall be heated and air-conditioned, have one interior office," - b) Section 13920: - (1) Page 4, Paragraph 1.2.2: First sentence is revised to read "New (FP No. 2 & 3) fire pumps, piping and associated" - (2) Page 7, Paragraph 1.3: Under Preliminary Test; GA., the first sentence is revised to read: "A signed and dated certificate that preliminary tests have been conducted, and that the fire pumps installation (FP No. 2 & 3) are complete and ready to be placed" - (3) Page 9, Paragraph 2.1 is revised to read: #### "2.1 FIRE PUMPS Fire Pumps shall be electric driven," - 4. Offerors must acknowledge receipt of this amendment by number and date on page 1442, 2 of 111, Block 19, or by telegram. Please mark the outside of the envelope in which the proposal is enclosed to show amendment received. - 5. No conformation copy will be mailed. FROM: US ARMY ENGR DIST, SEATTLE PO BOX 3755 SEATTLE, WA 98124-2255 (206) 764-6659, CENWS-CT-CB-MU, Paula Reinhard - 1. Refer to Request for Proposals, DACA67-00-R-0222, dated 09 May 2000, entitled: Repair Fuel Systems Maintenance Dock, Fairchild AFB, Washington. - 2. This Amendment No. three (0003), dated 10 May 2000, provides for the following: - a) Technical Amendment two (0002) will update drawings and specifications and will be available for download Thursday, 11 May 2000 at 12:00 PM Pacific Time on the Army Corps of Engineers website at http://www.nws.usace.army.mil/ct/. Disks will follow. - b) A one time site visit is scheduled for Thursday, 18 May 2000 at <u>09:00</u> AM PacificTime at the Fairchild AFB Corps of Engineers Resident Office, 1100 West Wainwight Blvd, Fairchild AFB, WA. - c) Proposals are due **08 June 2000** at 2:00 PM Pacific Time. - 3. NOTICE TO OFFERORS: Offerors are reminded there will not be an official "bid opening" as this is not a bid. Offerors must acknowledge all amendments, preferably in Block 19 of the SF 1442. | AMENDMENT OF SOLICITAT | ION/MODIFICAT | TION OF CONTRACT | | 1. CONTRA | ACT ID CODE | | PAGE OF | | | |--|--|--|------------------------------|--|------------------------|---------|--|-------|--| | | | | DF | 0. NO | J
S PROJECT | T NO | (If applie | 2 | | | 2. AMENDMENT/MODIFICATION NO. 0002 | 3. EFFECTIVE DATE | 4. REQUISITION/PURCHASE | Q. NO. | . NO. 5. PROJECT NO.(If applical | | | zabie) | | | | | 11-May-2000
DACA67 | W68MD9-0062-8004 | han itam 6) | COD | F I | | | | | | USA ENGINEER DISTRICT, SEATTLE ATTN: CENWS-CT P.O. BOX 3755 | 7. ADMINISTERED BY (If other than item 6) CODE See Item 6 | | | | | | | | | | SEATTLE, WA 98124-3755 | | | | | | | | | | | 8. NAME AND ADDRESS OF CONTRACTOR (No. | , Street, County, State and | Zip Code) | Х | 9A. AMENI
DACA67-0 | DMENT OF S
0-R-0222 | SOLIC | CITATIC | N NO. | | | | | | Х | 9B. DATED
09-May-20 | (SEE ITEM
00 | 11) | | | | | | | | | 10A. MOD. | OF CONTRA | ACT/0 | ORDER 1 | NO. | | | CODE | E L CH VIIV CODE | | | 10B. DATE | D (SEE ITE) | M 13) | | | | | CODE 11 TH | FACILITY CODE |
S TO AMENDMENTS OF SOLIC | 'IT A | TIONS | | | | | | | The above numbered solicitation is amended as set forth in Iter | | | 117 | is extended, | X is not e | xtended | ······································ | | | | Offers must acknowledge receipt of this amendment prior to t (a) By completing Items 8 and 15, and returning c or (c) By separate letter or telegram which includes a reference RECEIVED AT THE PLACE DESIGNATED FOR THE RECEIVED AT THE PLACE DESIGNATED FOR THE RECEIVED OF YOUR OFFER. If by virtue of this amendment provided each telegram or letter makes reference to the solicit. 12. ACCOUNTING AND APPROPRIATION DATA | opies of the document; (b) By and the to the solicitation and amendment of the solicitation and amendment of the solicitation and this amendment, and in the solicitation and this amendment, and in the solicitation and t | cknowledging receipt of this amendment o
nent numbers. FAILURE OF YOUR ACK
THE HOUR AND DATE SPECIFIED M
er already submitted, such change may be r | n ead
NOV
AY l
made | th copy of the or
VLEDGMENT
RESULT IN TH
by telegram or | TO BE
IE | | | | | | 12. ACCOUNTING AND ALTROI MATION DATA | in required) | | | | | | | | | | | | DIFICATIONS OF CONTRACTS/
DER NO. AS DESCRIBED IN ITE | | | | | | | | | A.THIS CHANGE ORDER IS ISSUED PURSUAN
CONTRACT ORDER NO. IN ITEM 10A. | T TO: (Specify authority) |) THE CHANGES SET FORTH IN | N IT | EM 14 ARE | MADE IN T | HE | | | | | B.THE ABOVE NUMBERED CONTRACT/ORDE office, appropriation date, etc.) SET FORTH IN | ITEM 14, PURSUANT TO | O THE AUTHORITY OF FAR 43. | | | h as changes | in pay | ring | | | | C.THIS SUPPLEMENTAL AGREEMENT IS ENT | ERED INTO PURSUANT | Γ TO AUTHORITY OF: | | | | | | | | | D.OTHER (Specify type of modification and author | ity) | | | | | | | | | | E. IMPORTANT: Contractor is not, | is required to sign this d | ocument and return | cop | ies to the iss | uing office. | | | | | | DESCRIPTION OF AMENDMENT/MODIFICAT where feasible.) RFP No. DACA67-00-R-0222 PROJECT: Repair Fuel Systems Maintenance D | | | ation | /contract sub | oject matter | | | | | | SEE CONTINUATION SHEET | | | | | | | | | | | Except as provided herein, all terms and conditions of the documen 15A. NAME AND TITLE OF SIGNER (Type or print) | | as heretofore changed, remains unchanged 6A. NAME AND TITLE OF CON | | | | or pri | int) | | | | | P | PAULA REINHARD / CONTRAC | | | Γ | | | | | | 15B. CONTRACTOR/OFFEROR 15 | C. DATE SIGNED 1 | 6B. UNITED STATES OF AMER | ICA | | | 16C. l | DATE S | IGNED | | | | <u>E</u> | 3Y (C: + + + + + + + + + + + + + + + + + + + | | | | 11-1 | May-200 |)0 | | | (Signature of person authorized to sign) | | (Signature of Contracting Offi | (cer | | | | | | | #### SECTION SF 30 BLOCK 14 CONTINUATION PAGE 1. This amendment 0002 provides for the following changes: Revision to Specification Sections 00800, 01005, 01320, 13206, and drawings. The attached revised specifications and drawings replace the existing specifications and drawings in their entirety. - 2. THE PROPOSAL DUE DATE AND TIME REMAIN UNCHANGED AT 2:00 PM PACIFIC TIME, 08 JUNE 2000. - 3. NOTICE TO OFFERORS: Offerors are reminded there will not be an official "bid opening" as this is not a bid. Offerors MUST submit a technical proposal with their price proposal in accordance with SECTION 00100 INTRO in order to receive consideration for award. Large Businesses must submit Subcontracting Plans with their Offers. - 4.
Offerors must acknowledge all amendments, preferably in Block 19 of the SF 1442. Attachments: **Revised Sections:** 00800 01005 01320 13206 Drawings (9) FROM: US ARMY ENGR DIST, SEATTLE PO BOX 3755 SEATTLE, WA 98124-2255 (206) 764-6659, CENWS-CT-CB-MU, Paula Reinhard - 1. Refer to Request for Proposals, DACA67-00-R-0222, dated 09 May 2000, entitled: Repair Fuel Systems Maintenance Dock, Fairchild AFB, Washington. - 2. This Amendment No. one (0001), dated 08 May 2000, provides for the following: - a) This solicitation will be available for download Tuesday, 09 May 2000 on the Army Corps of Engineers website at http://www.nws.usace.army.mil/ct/. Electronic bid sets will follow. - b) A one time site visit is scheduled for Thursday, 18 May 2000 at 10:00 AM Local Time at the Fairchild AFB Corps of Engineers Resident Office, 1100 West Wainwight Blvd, Fairchild AFB, WA. NOTE: A letter, on Company letterhead must be received by the Fairchild AFB Corps of Engineers office at least **three** (3) working days prior the scheduled visit. The letter shall list the person's name, date of birth, social security number, and driver's license number (and state) of the person desiring access to the base for the purpose of the site visit. Persons not so identified will not be allowed access to the base. Letters sent by fax will be acceptable for this purpose (fax 509-244-5150). Mail to: Corps of Engineers, P.O. Box 1929, Airway Heights, WA 99001-1929. - c) Proposals are due **08 June 2000** at 2:00 PM Local Time. - 3. NOTICE TO BIDDERS: Offerors must acknowledge all amendments, preferably in Block 19 of the SF 1442. #### CLAUSES INCORPORATED BY FULL TEXT #### 52.252-2 CLAUSES INCORPORATED BY REFERENCE (FEB 1998) This contract incorporates one or more clauses by reference, with the same force and effect as if they were given in full text. Upon request, the Contracting Officer will make their full text available. Also, the full text of a clause may be accessed electronically at this/these address(es): http://www.arnet.gov/far http://farsite.hill.af.mil http://www.dtic.mil/dfars Successor Contracting Officers (52.201-4001) The Contracting Officer who signed this contract is the primary Contracting Officer for the contract. Neverthless, any Contracting Officer assigned to the Seattle District and acting within his/her authority may take formal action on this contract when a contract action needs to be taken and the primary Contracting Officer is unavailable. #### 252.201-7000 CONTRACTING OFFICER'S REPRESENTATIVE (DEC 1991) - (a) "Definition. Contracting officer's representative" means an individual designated in accordance with subsection 201.602-2 of the Defense Federal Acquisition Regulation Supplement and authorized in writing by the contracting officer to perform specific technical or administrative functions. - (b) If the Contracting Officer designates a contracting officer's representative (COR), the Contractor will receive a copy of the written designation. It will specify the extent of the COR's authority to act on behalf of the contracting officer. The COR is not authorized to make any commitments or changes that will affect price, quality, quantity, delivery, or any other term or condition of the contract. (End of clause) #### 52.202-1 DEFINITIONS (OCT 1995) -- ALTERNATE I (APR 1984) - (a) "Head of the agency" (also called "agency head") or "Secretary" means the Secretary (or Attorney General, Administrator, Governor, Chairperson, or other chief official, as appropriate) of the agency, including any deputy or assistant chief official of the agency; and the term "authorized representative" means any person, persons, or board (other than the Contracting Officer) authorized to act for the head of the agency or Secretary. - (b) "Commercial component" means any component that is a commercial item. - (c) "Component" means any item supplied to the Federal Government as part of an end item or of another component. - (d) "Nondevelopmental item" means-- - (1) Any previously developed item of supply used exclusively for governmental purposes by a Federal agency, a State or local government, or a foreign government with which the United States has a mutual defense cooperation agreement; - (2) Any item described in paragraph (e)(1) of this definition that requires only minor modification or modifications of a type customarily available in the commercial marketplace in order to meet the requirements of the procuring department or agency; or - (3) Any item of supply being produced that does not meet the requirements of paragraph (e)(1) or (e)(2) solely because the item is not yet in use. - (e) "Contracting Officer" means a person with the authority to enter into, administer, and/or terminate contracts and make related determinations and findings. The term includes certain authorized representatives of the Contracting Officer acting within the limits of their authority as delegated by the Contracting Officer. - (f) Except as otherwise provided in this contract, the term "subcontracts" includes, but is not limited to, purchase orders and changes and modifications to purchase orders under this contract. ### 52.203-3 GRATUITIES (APR 1984) - (a) The right of the Contractor to proceed may be terminated by written notice if, after notice and hearing, the agency head or a designee determines that the Contractor, its agent, or another representative-- - (1) Offered or gave a gratuity (e.g., an entertainment or gift) to an officer, official, or employee of the Government; and - (2) Intended, by the gratuity, to obtain a contract or favorable treatment under a contract. - (b) The facts supporting this determination may be reviewed by any court having lawful jurisdiction. - (c) If this contract is terminated under paragraph (a) of this clause, the Government is entitled- - (1) To pursue the same remedies as in a breach of the contract; and - (2) In addition to any other damages provided by law, to exemplary damages of not less than 3 nor more than 10 times the cost incurred by the Contractor in giving gratuities to the person concerned, as determined by the agency head or a designee. (This subparagraph (c)(2) is applicable only if this contract uses money appropriated to the Department of Defense.) - (d) The rights and remedies of the Government provided in this clause shall not be exclusive and are in addition to any other rights and remedies provided by law or under this contract. (End of clause) ### 52.203-5 COVENANT AGAINST CONTINGENT FEES (APR 1984) - (a) The Contractor warrants that no person or agency has been employed or retained to solicit or obtain this contract upon an agreement or understanding for a contingent fee, except a bona fide employee or agency. For breach or violation of this warranty, the Government shall have the right to annul this contract without liability or, in its discretion, to deduct from the contract price or consideration, or otherwise recover, the full amount of the contingent fee. - (b) "Bona fide agency," as used in this clause, means an established commercial or selling agency, maintained by a contractor for the purpose of securing business, that neither exerts nor proposes to exert improper influence to solicit or obtain Government contracts nor holds itself out as being able to obtain any Government contract or contracts through improper influence. "Bona fide employee," as used in this clause, means a person, employed by a contractor and subject to the contractor's supervision and control as to time, place, and manner of performance, who neither exerts nor proposes to exert improper influence to solicit or obtain Government contracts nor holds out as being able to obtain any Government contract or contracts through improper influence. "Contingent fee," as used in this clause, means any commission, percentage, brokerage, or other fee that is contingent upon the success that a person or concern has in securing a Government contract. "Improper influence," as used in this clause, means any influence that induces or tends to induce a Government employee or officer to give consideration or to act regarding a Government contract on any basis other than the merits of the matter. (End of clause) ### 52.203-7 ANTI-KICKBACK PROCEDURES. (JUL 1995) ### (a) Definitions. "Kickback," as used in this clause, means any money, fee, commission, credit, gift, gratuity, thing of value, or compensation of any kind which is provided, directly or indirectly, to any prime Contractor, prime Contractor employee, subcontractor, or subcontractor employee for the purpose of improperly obtaining or rewarding favorable treatment in connection with a prime contract or in connection with a subcontract relating to a prime contract. "Person," as used in this clause, means a corporation, partnership, business association of any kind, trust, joint-stock company, or individual. "Prime contract," as used in this clause, means a contract or contractual action entered into by the United States for the purpose of obtaining supplies, materials, equipment, or services of any kind. "Prime Contractor," as used in this clause, means a person who has entered into a prime contract with the United States. "Prime Contractor employee," as used in this clause, means any officer, partner, employee, or agent of a prime Contractor. "Subcontract," as used in this clause, means a contract or contractual action entered into by a prime Contractor or subcontractor for the purpose of obtaining supplies, materials, equipment, or services of any kind under a prime contract. "Subcontractor," as used in this clause, (1) means any person, other than the prime Contractor, who offers to furnish or furnishes any supplies, materials, equipment, or services of any kind under a prime contract or a subcontract entered into in connection with such prime contract, and (2) includes any person who offers to furnish or furnishes general
supplies to the prime Contractor or a higher tier subcontractor. "Subcontractor employee," as used in this clause, means any officer, partner, employee, or agent of a subcontractor. - (b) The Anti-Kickback Act of 1986 (41 U.S.C. 51-58) (the Act), prohibits any person from - - (1) Providing or attempting to provide or offering to provide any kickback; - (2) Soliciting, accepting, or attempting to accept any kickback; or - (3) Including, directly or indirectly, the amount of any kickback in the contract price charged by a prime Contractor to the United States or in the contract price charged by a subcontractor to a prime Contractor or higher tier subcontractor. - (c)(1) The Contractor shall have in place and follow reasonable procedures designed to prevent and detect possible violations described in paragraph (b) of this clause in its own operations and direct business relationships. - (2) When the Contractor has reasonable grounds to believe that a violation described in paragraph (b) of this clause may have occurred, the Contractor shall promptly report in writing the possible violation. Such reports shall be made to the inspector general of the contracting agency, the head of the contracting agency if the agency does not have an inspector general, or the Department of Justice. - (3) The Contractor shall cooperate fully with any Federal agency investigating a possible violation described in paragraph (b) of this clause. - (4) The Contracting Officer may (i) offset the amount of the kickback against any monies owed by the United States under the prime contract and/or (ii) direct that the Prime Contractor withhold, from sums owed a subcontractor under the prime contract, the amount of any kickback. The Contracting Officer may order the monies withheld under subdivision (c)(4)(ii) of this clause be paid over to the Government unless the Government has already offset those monies under subdivision (c)(4)(i) of this clause. In either case, the Prime Contractor shall notify the Contracting Officer when the monies are withheld. - (5) The Contractor agrees to incorporate the substance of this clause, including this subparagraph (c)(5) but excepting subparagraph (c)(1), in all subcontracts under this contract which exceed \$100,000. ## 52.203-8 CANCELLATION, RESCISSION, AND RECOVERY OF FUNDS FOR ILLEGAL OR IMPROPER ACTIVITY (JAN 1997) - (a) If the Government receives information that a contractor or a person has engaged in conduct constituting a violation of subsection (a), (b), (c), or (d) of Section 27 of the Office of Federal Procurement Policy Act (41 U.S.C. 423) (the Act), as amended by section 4304 of the 1996 National Defense Authorization Act for Fiscal Year 1996 (Pub. L. 104-106), the Government may-- - (1) Cancel the solicitation, if the contract has not yet been awarded or issued; or - (2) Rescind the contract with respect to which-- - (i) The Contractor or someone acting for the Contractor has been convicted for an offense where the conduct constitutes a violation of subsection 27 (a) or (b) of the Act for the purpose of either-- - (A) Exchanging the information covered by such subsections for anything of value; or - (B) Obtaining or giving anyone a competitive advantage in the award of a Federal agency procurement contract; or - (ii) The head of the contracting activity has determined, based upon a preponderance of the evidence, that the Contractor or someone acting for the Contractor has engaged in conduct constituting an offense punishable under subsections 27(e)(1) of the Act. - (b) If the Government rescinds the contract under paragraph (a) of this clause, the Government is entitled to recover, in addition to any penalty prescribed by law, the amount expended under the contract. - (c) The rights and remedies of the Government specified herein are not exclusive, and are in addition to any other rights and remedies provided by law, regulation, or under this contract. ## 52.203-10 PRICE OR FEE ADJUSTMENT FOR ILLEGAL OR IMPROPER ACTIVITY (JAN 1997) - (a) The Government, at its election, may reduce the price of a fixed-price type contract and the total cost and fee under a cost-type contract by the amount of profit or fee determined as set forth in paragraph (b) of this clause if the head of the contracting activity or designee determines that there was a violation of subsection 27 (a), (b), or (c) of the Office of Federal Procurement Policy Act, as amended (41 U.S.C. 423), as implemented in section 3.104 of the Federal Acquisition Regulation. - (b) The price or fee reduction referred to in paragraph (a) of this clause shall be-- - (1) For cost-plus-fixed-fee contracts, the amount of the fee specified in the contract at the time of award; - (2) For cost-plus-incentive-fee contracts, the target fee specified in the contract at the time of award, notwithstanding any minimum fee or "fee floor" specified in the contract; - (3) For cost-plus-award-fee contracts-- - (i) The base fee established in the contract at the time of contract award; - (ii) If no base fee is specified in the contract, 30 percent of the amount of each award fee otherwise payable to the Contractor for each award fee evaluation period or at each award fee determination point. - (4) For fixed-price-incentive contracts, the Government may-- - (i) Reduce the contract target price and contract target profit both by an amount equal to the initial target profit specified in the contract at the time of contract award; or - (ii) If an immediate adjustment to the contract target price and contract target profit would have a significant adverse impact on the incentive price revision relationship under the contract, or adversely affect the contract financing provisions, the Contracting Officer may defer such adjustment until establishment of the total final price of the contract. The total final price established in accordance with the incentive price revision provisions of the contract shall be reduced by an amount equal to the initial target profit specified in the contract at the time of contract award and such reduced price shall be the total final contract price. - (5) For firm-fixed-price contracts, by 10 percent of the initial contract price or a profit amount determined by the Contracting Officer from records or documents in existence prior to the date of the contract award. - (c) The Government may, at its election, reduce a prime contractor's price or fee in accordance with the procedures of paragraph (b) of this clause for violations of the Act by its subcontractors by an amount not to exceed the amount of profit or fee reflected in the subcontract at the time the subcontract was first definitively priced. - (d) In addition to the remedies in paragraphs (a) and (c) of this clause, the Government may terminate this contract for default. The rights and remedies of the Government specified herein are not exclusive, and are in addition to any other rights and remedies provided by law or under this contract. (End of clause) ## 52.203-12 LIMITATION ON PAYMENTS TO INFLUENCE CERTAIN FEDERAL TRANSACTIONS (JUN 1997) (a) Definitions. [&]quot;Agency," as used in this clause, means executive agency as defined in 2.101. - "Covered Federal action," as used in this clause, means any of the following Federal actions: - (1) The awarding of any Federal contract. - (2) The making of any Federal grant. - (3) The making of any Federal loan. - (4) The entering into of any cooperative agreement. - (5) The extension, continuation, renewal, amendment, or modification of any Federal contract, grant, loan, or cooperative agreement. - "Indian tribe" and "tribal organization," as used in this clause, have the meaning provided in section 4 of the Indian Self-Determination and Education Assistance Act (25 U.S.C. 450B) and include Alaskan Natives. - "Influencing or attempting to influence," as used in this clause, means making, with the intent to influence, any communication to or appearance before an officer or employee of any agency, a Member of Congress, an officer or employee of Congress, or an employee of a Member of Congress in connection with any covered Federal action. - "Local government," as used in this clause, means a unit of government in a State and, if chartered, established, or otherwise recognized by a State for the performance of a governmental duty, including a local public authority, a special district, an intrastate district, a council of governments, a sponsor group representative organization, and any other instrumentality of a local government. - "Officer or employee of an agency," as used in this clause, includes the following individuals who are employed by an agency: - (1) An individual who is appointed to a position in the Government under title 5, United States Code, including a position under a temporary appointment. - (2) A member of the uniformed services, as defined in subsection 101(3), title 37, United States Code. - (3) A special Government employee, as defined in section 202, title 18, United States Code. - (4) An individual who is a member of a Federal advisory committee, as defined by the Federal Advisory Committee Act, title 5, United States Code, appendix 2. - "Person," as used in this clause, means an individual, corporation, company, association, authority, firm, partnership, society, State, and local government, regardless of whether such entity is operated for profit, or not for profit. This term excludes an Indian tribe, tribal organization, or any other Indian organization with respect to expenditures specifically permitted by other Federal law. - "Reasonable compensation," as used in this clause, means, with respect to a regularly employed officer or employee of any person, compensation that is consistent with the normal compensation for such officer or employee for work that is not furnished to, not funded by, or not furnished in cooperation with the Federal Government. - "Reasonable payment," as used in this clause, means,
with respect to professional and other technical services, a payment in an amount that is consistent with the amount normally paid for such services in the private sector. - "Recipient," as used in this clause, includes the Contractor and all subcontractors. This term excludes an Indian tribe, tribal organization, or any other Indian organization with respect to expenditures specifically permitted by other Federal law. "Regularly employed," as used in this clause, means, with respect to an officer or employee of a person requesting or receiving a Federal contract, an officer or employee who is employed by such person for at least 130 working days within 1 year immediately preceding the date of the submission that initiates agency consideration of such person for receipt of such contract. An officer or employee who is employed by such person for less than 130 working days within 1 year immediately preceding the date of the submission that initiates agency consideration of such person shall be considered to be regularly employed as soon as he or she is employed by such person for 130 working days. "State," as used in this clause, means a State of the United States, the District of Columbia, the Commonwealth of Puerto Rico, a territory or possession of the United States, an agency or instrumentality of a State, and multi-State, regional, or interstate entity having governmental duties and powers. ### (b) Prohibitions. - (1) Section 1352 of title 31, United States Code, among other things, prohibits a recipient of a Federal contract, grant, loan, or cooperative agreement from using appropriated funds to pay any person for influencing or attempting to influence an officer or employee of any agency, a Member of Congress, an officer or employee of Congress, or an employee of a Member of Congress in connection with any of the following covered Federal actions: the awarding of any Federal contract; the making of any Federal grant; the making of any Federal loan; the entering into of any cooperative agreement; or the modification of any Federal contract, grant, loan, or cooperative agreement. - (2) The Act also requires Contractors to furnish a disclosure if any funds other than Federal appropriated funds (including profit or fee received under a covered Federal transaction) have been paid, or will be paid, to any person for influencing or attempting to influence an officer or employee of any agency, a Member of Congress, an officer or employee of Congress, or an employee of a Member of Congress in connection with a Federal contract, grant, loan, or cooperative agreement. - (3) The prohibitions of the Act do not apply under the following conditions: - (i) Agency and legislative liaison by own employees. - (A) The prohibition on the use of appropriated funds, in subparagraph (b)(1) of this clause, does not apply in the case of a payment of reasonable compensation made to an officer or employee of a person requesting or receiving a covered Federal action if the payment is for agency and legislative liaison activities not directly related to a covered Federal action. - (B) For purposes of subdivision (b)(3)(i)(A) of this clause, providing any information specifically requested by an agency or Congress is permitted at any time. - (C) The following agency and legislative liaison activities are permitted at any time where they are not related to a specific solicitation for any covered Federal action: - (1) Discussing with an agency the qualities and characteristics (including individual demonstrations) of the person's products or services, conditions or terms of sale, and service capabilities. - (2) Technical discussions and other activities regarding the application or adaptation of theperson's products or services for an agency's use. - (D) The following agency and legislative liaison activities are permitted where they are prior to formal solicitation of any covered Federal action-- - (1) Providing any information not specifically requested but necessary for an agency to make an informed decision about initiation of a covered Federal action; - (2) Technical discussions regarding the preparation of an unsolicited proposal prior to its official submission; and - (3) Capability presentations by persons seeking awards from an agency pursuant to the provisions of the Small Business Act, as amended by Pub. L. 95-507, and subsequent amendments. - (E) Only those services expressly authorized by subdivision (b)(3)(i)(A) of this clause are permitted under this clause. - (ii) Professional and technical services. - (A) The prohibition on the use of appropriated funds, in subparagraph (b)(1) of this clause, does not apply in the case of-- - (1) A payment of reasonable compensation made to an officer or employee of a person requesting or receiving a covered Federal action or an extension, continuation, renewal, amendment, or modification of a covered Federal action, if payment is for professional or technical services rendered directly in the preparation, submission, or negotiation of any bid, proposal, or application for that Federal action or for meeting requirements imposed by or pursuant to law as a condition for receiving that Federal action. - (2) Any reasonable payment to a person, other than an officer or employee of a person requesting or receiving a covered Federal action or an extension, continuation, renewal, amendment, or modification of a covered Federal action if the payment is for professional or technical services rendered directly in the preparation, submission, or negotiation of any bid, proposal, or application for that Federal action or for meeting requirements imposed by or pursuant to law as a condition for receiving that Federal action. Persons other than officers or employees of a person requesting or receiving a covered Federal action include consultants and trade associations. - (B) For purposes of subdivision (b)(3)(ii)(A) of this clause, "professional and technical services" shall be limited to advice and analysis directly applying any professional or technical discipline. For example, drafting of a legal document accompanying a bid or proposal by a lawyer is allowable. Similarly, technical advice provided by an engineer on the performance or operational capability of a piece of equipment rendered directly in the negotiation of a contract is allowable. However, communications with the intent to influence made by a professional (such as a licensed lawyer) or a technical person (such as a licensed accountant) are not allowable under this section unless they provide advice and analysis directly applying their professional or technical expertise and unless the advice or analysis is rendered directly and solely in the preparation, submission or negotiation of a covered Federal action. Thus, for example, communications with the intent to influence made by a lawyer that do not provide legal advice or analysis directly and solely related to the legal aspects of his or her client's proposal, but generally advocate one proposal over another are not allowable under this section because the lawyer is not providing professional legal services. Similarly, communications with the intent to influence made by an engineer providing an engineering analysis prior to the preparation or submission of a bid or proposal are not allowable under this section since the engineer is providing technical services but not directly in the preparation, submission or negotiation of a covered Federal action. - (C) Requirements imposed by or pursuant to law as a condition for receiving a covered Federal award include those required by law or regulation and any other requirements in the actual award documents. - (D) Only those services expressly authorized by subdivisions (b)(3)(ii)(A)(1) and (2) of this clause are permitted under this clause. - (E) The reporting requirements of FAR 3.803(a) shall not apply with respect to payments of reasonable compensation made to regularly employed officers or employees of a person. - (c) Disclosure. - (1) The Contractor who requests or receives from an agency a Federal contract shall file with that agency a disclosure form, OMB standard form LLL, Disclosure of Lobbying Activities, if such person has made or has agreed to make any payment using nonappropriated funds (to include profits from any covered Federal action), which would be prohibited under subparagraph (b)(1) of this clause, if paid for with appropriated funds. - (2) The Contractor shall file a disclosure form at the end of each calendar quarter in which there occurs any event that materially affects the accuracy of the information contained in any disclosure form previously filed by such person under subparagraph (c)(1) of this clause. An event that materially affects the accuracy of the information reported includes-- - (i) A cumulative increase of \$25,000 or more in the amount paid or expected to be paid for influencing or attempting to influence a covered Federal action; or - (ii) A change in the person(s) or individual(s) influencing or attempting to influence a covered Federal action; or - (iii) A change in the officer(s), employee(s), or Member(s) contacted to influence or attempt to influence a covered Federal action. - (3) The Contractor shall require the submittal of a certification, and if required, a disclosure form by any person who requests or receives any subcontract exceeding \$100,000 under the Federal contract. - (4) All subcontractor disclosure forms (but not certifications) shall be forwarded from tier to tier until received by the prime Contractor. The prime Contractor shall submit all disclosures to the Contracting Officer at the end of the calendar quarter in which the disclosure form is submitted by the subcontractor. Each subcontractor certification shall be retained in the subcontract file of the awarding Contractor. - (d) Agreement. The Contractor agrees not to make any payment prohibited by this clause. - (e)
Penalties. - (1) Any person who makes an expenditure prohibited under paragraph (a) of this clause or who fails to file or amend the disclosure form to be filed or amended by paragraph (b) of this clause shall be subject to civil penalties as provided for by 31 U.S.C. 1352. An imposition of a civil penalty does not prevent the Government from seeking any other remedy that may be applicable. - (2) Contractors may rely without liability on the representation made by their subcontractors in the certification and disclosure form. - (f) Cost allowability. Nothing in this clause makes allowable or reasonable any costs which would otherwise be unallowable or unreasonable. Conversely, costs made specifically unallowable by the requirements in this clause will not be made allowable under any other provision. (End of clause) 252.203-7001 PROHIBITION ON PERSONS CONVICTED OF FRAUD OR OTHER DEFENSE-CONTRACT-RELATED FELONIES (MAR 1999) - (a) Definitions. As used in this clause— - (1) "Arising out of a contract with the DoD" means any act in connection with— - (i) Attempting to obtain; - (ii) Obtaining, or - (iii) Performing a contract or first-tier subcontract of any agency, department, or component of the Department of Defense (DoD). - (2) "Conviction of fraud or any other felony" means any conviction for fraud or a felony in violation of state or Federal criminal statutes, whether entered on a verdict or plea, including a plea of *nolo contendere*, for which sentence has been imposed. - (3) "Date of conviction" means the date judgment was entered against the individual. - (b) Any individual who is convicted after September 29, 1988, of fraud or any other felony arising out of a contract with the DoD is prohibited from serving-- - (1) In a management or supervisory capacity on any DoD contract or first-tier subcontract; - (2) On the board of directors of any DoD contractor or first-tier subcontractor; - (3) As a consultant, agent, or representative for any DoD contractor or first-tier subcontractor; or - (4) In any other capacity with the authority to influence, advise, or control the decisions of any DoD contractor or subcontractor with regard to any DoD contract or first-tier subcontract. - (c) Unless waived, the prohibition in paragraph (b) of this clause applies for not less than 5 years from the date of conviction. - (d) 10 U.S.C. 2408 provides that a defense contractor or first-tier subcontractor shall be subject to a criminal penalty of not more than \$500,000 if convicted of knowingly— - (1) Employing a person under a prohibition specified in paragraph (b) of this clause; or - (2) Allowing such a person to serve on the board of directors of the contractor or first-tier subcontractor. - (e) In addition to the criminal penalties contained in 10 U.S.C. 2408, the Government may consider other available remedies, such as— - (1) Suspension or debarment; - (2) Cancellation of the contract at no cost to the Government; or - (3) Termination of the contract for default. - (f) The Contractor may submit written requests for waiver of the prohibition in paragraph (b) of this clause to the Contracting Officer. Requests shall clearly identify— - (1) The person involved; - (2) The nature of the conviction and resultant sentence or punishment imposed; - (3) The reasons for the requested waiver; and - (4) An explanation of why a waiver is in the interest of national security. - (g) The Contractor agrees to include the substance of this clause, appropriately modified to reflect the identity and relationship of the parties, in all first-tier subcontracts exceeding the simplified acquisition threshold in Part 2 of the Federal Acquisition Regulation, except those for commercial items or components. (h) Pursuant to 10 U.S.C. 2408(c), defense contractors and subcontractors may obtain information as to whether a particular person has been convicted of fraud or any other felony arising out of a contract with the DoD by contacting The Office of Justice Programs, The Denial of Federal Benefits Office, U.S. Department of Justice, telephone (202) 616-3507. (End of clause) ### 52.204-4 PRINTING/COPYING DOUBLE-SIDED ON RECYCLED PAPER (JUN 1996) - (a) In accordance with Executive Order 12873, dated October 20, 1993, as amended by Executive Order 12995, dated March 25, 1996, the Offeror/Contractor is encouraged to submit paper documents, such as offers, letters, or reports, that are printed/copied double-sided on recycled paper that has at least 20 percent postconsumer material. - (b) The 20 percent standard applies to high-speed copier paper, offset paper, forms bond, computer printout paper, carbonless paper, file folders, white woven envelopes, and other uncoated printed and writing paper, such as writing and office paper, book paper, cotton fiber paper, and cover stock. An alternative to meeting the 20 percent postconsumer material standard is 50 percent recovered material content of certain industrial by-products. ### 252.204-7003 CONTROL OF GOVERNMENT PERSONNEL WORK PRODUCT (APR 1992) The Contractor's procedures for protecting against unauthorized disclosure of information shall not require Department of Defense employees or members of the Armed Forces to relinquish control of their work products, whether classified or not, to the contractor. (End of clause) 252.204-7004 REQUIRED CENTRAL CONTRACTOR REGISTRATION.(MAR 2000) (a) Definitions. As used in this clause-- - (1) Central Contractor Registration (CCR) database means the primary DoD repository for contractor information required for the conduct of business with DoD. - (2) Data Universal Numbering System (DUNS) number means the 9-digit number assigned by Dun and Bradstreet Information Services to identify unique business entities. - (3) Data Universal Numbering System +4 (DUNS+4) number means the DUNS number assigned by Dun and Bradstreet plus a 4-digit suffix that may be assigned by a parent (controlling) business concern. This 4-digit suffix may be assigned at the discretion of the parent business concern for such purposes as identifying subunits or affiliates of the parent business concern. - (4) Registered in the CCR database means that all mandatory information, including the DUNS number or the DUNS+4 number, if applicable, and the corresponding Commercial and Government Entity (CAGE) code, is in the CCR database; the DUNS number and the CAGE code have been validated; and all edits have been successfully completed. - (b)(1) By submission of an offer, the offeror acknowledges the requirement that a prospective awardee must be registered in the CCR database prior to award, during performance, and through final payment of any contract resulting from this solicitation, except for awards to foreign vendors for work to be performed outside the United States. - (2) The offeror shall provide its DUNS or, if applicable, its DUNS+4 number with its offer, which will be used by the Contracting Officer to verify that the offeror is registered in the CCR database. - (3) Lack of registration in the CCR database will make an offeror ineligible for award. - (4) DoD has established a goal of registering an applicant in the CCR database within 48 hours after receipt of a complete and accurate application via the Internet. However, registration of an applicant submitting an application through a method other than the Internet may take up to 30 days. Therefore, offerors that are not registered should consider applying for registration immediately upon receipt of this solicitation. - (c) The Contractor is responsible for the accuracy and completeness of the data within the CCR, and for any liability resulting from the Government's reliance on inaccurate or incomplete data. To remain registered in the CCR database after the initial registration, the Contractor is required to confirm on an annual basis that its information in the CCR database is accurate and complete. - (d) Offerors and contractors may obtain information on registration and annual confirmation requirements by calling 1-888-227-2423, or via the Internet at http://www.ccr2000.com. (End of clause) # 52.209-6 PROTECTING THE GOVERNMENT'S INTEREST WHEN SUBCONTRACTING WITH CONTRACTORS DEBARRED, SUSPENDED, OR PROPOSED FOR DEBARMENT (JUL 1995) - (a) The Government suspends or debars Contractors to protect the Government's interests. The Contractor shall not enter into any subcontract in excess of the \$25,000 with a Contractor that is debarred, suspended, or proposed for debarment unless there is a compelling reason to do so. - (b) The Contractor shall require each proposed first-tier subcontractor, whose subcontract will exceed \$25,000, to disclose to the Contractor, in writing, whether as of the time of award of the subcontract, the subcontractor, or its principles, is or is not debarred, suspended, or proposed for debarrent by the Federal Government. - (c) A corporate officer or a designee of the Contractor shall notify the Contracting Officer, in writing, before entering into a subcontract with a party that is debarred, suspended, or proposed for debarment (see FAR 9.404 for information on the List of Parties Excluded from Federal Procurement and Nonprocurement Programs). The notice must include the following: - (1) The name of the subcontractor. - (2) The Contractor's knowledge of the reasons for the subcontractor being on the List of Parties Excluded from Federal Procurement and Nonprocurement Programs. - (3) The compelling reason(s) for doing business with the subcontractor notwithstanding its inclusion on the List of Parties Excluded from Federal Procurement and Nonprocurement Programs. - (4) The systems and procedures the Contractor has established to ensure that it is fully protecting the Government's interests when dealing with such subcontractor in view of the specific basis for the party's debarment, suspension, or proposed debarment. (End of clause) 252.209-7004 SUBCONTRACTING WITH FIRMS THAT ARE OWNED OR CONTROLLED BY THE GOVERNMENT
OF A TERRORIST COUNTRY (MAR 1998) - (a) Unless the Government determines that there is a compelling reason to do so, the Contractor shall not enter into any subcontract in excess of \$25,000 with a firm, or subsidiary of a firm, that is identified, on the List of Parties Excluded from Federal Procurement and Nonprocurement Programs, as being ineligible for the award of Defense contracts or subcontracts because it is owned or controlled by the government of a terrorist country. - (b) A corporate officer or a designee of the Contractor shall notify the Contracting Officer, in writing, before entering into a subcontract with a party that is identified, on the List of Parties Excluded from Federal Procurement and Nonprocurement Programs, as being ineligible for the award of Defense contracts or subcontracts because it is owned or controlled by the government of a terrorist country. The notice must include the name of the proposed subcontractor notwithstanding its inclusion on the List of Parties Excluded From Federal Procurement and Nonprocurement Programs. ## 52.215-2 AUDIT AND RECORDS--NEGOTIATION (JUN 1999) - (a) As used in this clause, "records" includes books, documents, accounting procedures and practices, and other data, regardless of type and regardless of whether such items are in written form, in the form of computer data, or in any other form. - (b) Examination of costs. If this is a cost-reimbursement, incentive, time-and-materials, labor-hour, or price redeterminable contract, or any combination of these, the Contractor shall maintain and the Contracting Officer, or an authorized representative of the Contracting Officer, shall have the right to examine and audit all records and other evidence sufficient to reflect properly all costs claimed to have been incurred or anticipated to be incurred directly or indirectly in performance of this contract. This right of examination shall include inspection at all reasonable times of the Contractor's plants, or parts of them, engaged in performing the contract. - (c) Cost or pricing data. If the Contractor has been required to submit cost or pricing data in connection with any pricing action relating to this contract, the Contracting Officer, or an authorized representative of the Contracting Officer, in order to evaluate the accuracy, completeness, and currency of the cost or pricing data, shall have the right to examine and audit all of the Contractor's records, including computations and projections, related to-- - (1) The proposal for the contract, subcontract, or modification; - (2) The discussions conducted on the proposal(s), including those related to negotiating; - (3) Pricing of the contract, subcontract, or modification; or - (4) Performance of the contract, subcontract or modification. - (d) Comptroller General--(1) The Comptroller General of the United States, or an authorized representative, shall have access to and the right to examine any of the Contractor's directly pertinent records involving transactions related to this contract or a subcontract hereunder. - (2) This paragraph may not be construed to require the Contractor or subcontractor to create or maintain any record that the Contractor or subcontractor does not maintain in the ordinary course of business or pursuant to a provision of law. - (e) Reports. If the Contractor is required to furnish cost, funding, or performance reports, the Contracting Officer or an authorized representative of the Contracting Officer shall have the right to examine and audit the supporting records and materials, for the purpose of evaluating (1) the effectiveness of the Contractor's policies and procedures to produce data compatible with the objectives of these reports and (2) the data reported. - (f) Availability. The Contractor shall make available at its office at all reasonable times the records, materials, and other evidence described in paragraphs (a), (b), (c), (d), and (e) of this clause, for examination, audit, or reproduction, until 3 years after final payment under this contract or for any shorter period specified in Subpart 4.7, Contractor Records Retention, of the Federal Acquisition Regulation (FAR), or for any longer period required by statute or by other clauses of this contract. In addition-- - (1) If this contract is completely or partially terminated, the Contractor shall make available the records relating to the work terminated until 3 years after any resulting final termination settlement; and - (2) The Contractor shall make available records relating to appeals under the Disputes clause or to litigation or the settlement of claims arising under or relating to this contract until such appeals, litigation, or claims are finally resolved. - (g) The Contractor shall insert a clause containing all the terms of this clause, including this paragraph (g), in all subcontracts under this contract that exceed the simplified acquisition threshold, and-- - (1) That are cost-reimbursement, incentive, time-and-materials, labor-hour, or price-redeterminable type or any combination of these; - (2) For which cost or pricing data are required; or - (3) That require the subcontractor to furnish reports as discussed in paragraph (e) of this clause. The clause may be altered only as necessary to identify properly the contracting parties and the Contracting Officer under the Government prime contract. (End of clause) ### 52.215-10 PRICE REDUCTION FOR DEFECTIVE COST OR PRICING DATA (OCT 1997) - (a) If any price, including profit or fee, negotiated in connection with this contract, or any cost reimbursable under this contract, was increased by any significant amount because- - (1) The Contractor or a subcontractor furnished cost or pricing data that were not complete, accurate, and current as certified in its Certificate of Current Cost or Pricing Data; - (2) A subcontractor or prospective subcontractor furnished the Contractor cost or pricing data that were not complete, accurate, and current as certified in the Contractor's Certificate of Current Cost or Pricing Data; or - (3) Any of these parties furnished data of any description that were not accurate, the price or cost shall be reduced accordingly and the contract shall be modified to reflect the reduction. - (b) Any reduction in the contract price under paragraph (a) of this clause due to defective data from a prospective subcontractor that was not subsequently awarded the subcontract shall be limited to the amount, plus applicable overhead and profit markup, by which-- - (1) The actual subcontract; or - (2) The actual cost to the Contractor, if there was no subcontract, was less than the prospective subcontract cost estimate submitted by the Contractor; provided, that the actual subcontract price was not itself affected by defective cost or pricing data. - (c)(1) If the Contracting Officer determines under paragraph (a) of this clause that a price or cost reduction should be made, the Contractor agrees not to raise the following matters as a defense: - (i) The Contractor or subcontractor was a sole source supplier or otherwise was in a superior bargaining position and thus the price of the contract would not have been modified even if accurate, complete, and current cost or pricing data had been submitted. - (ii) The Contracting Officer should have known that the cost or pricing data in issue were defective even though the Contractor or subcontractor took no affirmative action to bring the character of the data to the attention of the Contracting Officer. - (iii) The contract was based on an agreement about the total cost of the contract and there was no agreement about the cost of each item procured under the contract. - (iv) The Contractor or subcontractor did not submit a Certificate of Current Cost or Pricing Data. - (2)(i) Except as prohibited by subdivision (c)(2)(ii) of this clause, an offset in an amount determined appropriate by the Contracting Officer based upon the facts shall be allowed against the amount of a contract price reduction if-- - (A) The Contractor certifies to the Contracting Officer that, to the best of the Contractor's knowledge and belief, the Contractor is entitled to the offset in the amount requested; and - (B) The Contractor proves that the cost or pricing data were available before the "as of" date specified on its Certificate of Current Cost or Pricing Data, and that the data were not submitted before such date. - (ii) An offset shall not be allowed if-- - (A) The understated data were known by the Contractor to be understated before the "as of" date specified on its Certificate of Current Cost or Pricing Data; or - (B) The Government proves that the facts demonstrate that the contract price would not have increased in the amount to be offset even if the available data had been submitted before the "as of" date specified on its Certificate of Current Cost or Pricing Data. - (d) If any reduction in the contract price under this clause reduces the price of items for which payment was made prior to the date of the modification reflecting the price reduction, the Contractor shall be liable to and shall pay the United States at the time such overpayment is repaid-- - (1) Simple interest on the amount of such overpayment to be computed from the date(s) of overpayment to the Contractor to the date the Government is repaid by the Contractor at the applicable underpayment rate effective for each quarter prescribed by the Secretary of the Treasury under 26 U.S.C. 6621(a)(2); and A penalty equal to the amount of the overpayment, if the Contractor or subcontractor knowingly submitted cost or pricing data that were incomplete, inaccurate, or noncurrent. ## 52.215-12 SUBCONTRACTOR COST OR PRICING DATA (OCT 1997) - (a) Before awarding any subcontract expected to exceed the threshold for submission of cost or pricing data at FAR 15.403-4, on the date of agreement on price or the date of award, whichever is later; or before pricing
any subcontract modification involving a pricing adjustment expected to exceed the threshold for submission of cost or pricing data at FAR 15.403-4, the Contractor shall require the subcontractor to submit cost or pricing data (actually or by specific identification in writing), unless an exception under FAR 15.403-1 applies. - (b) The Contractor shall require the subcontractor to certify in substantially the form prescribed in FAR 15.406-2 that, to the best of its knowledge and belief, the data submitted under paragraph (a) of this clause were accurate, complete, and current as of the date of agreement on the negotiated price of the subcontract or subcontract modification. - (c) In each subcontract that exceeds the threshold for submission of cost or pricing data at FAR 15.403-4, when entered into, the Contractor shall insert either-- - (1) The substance of this clause, including this paragraph (c), if paragraph (a) of this clause requires submission of cost or pricing data for the subcontract; or - (2) The substance of the clause at FAR 52.215-13, Subcontractor Cost or Pricing Data--Modifications. ### 52.219-8 UTILIZATION OF SMALL BUSINESS CONCERNS (OCT 1999) - (a) It is the policy of the United States that small business concerns, HUBZone small business concerns, small business concerns owned and controlled by socially and economically disadvantaged individuals, and small business concerns owned and controlled by women shall have the maximum practicable opportunity to participate in performing contracts let by any Federal agency, including contracts and subcontracts for subsystems, assemblies, components, and related services for major systems. It is further the policy of the United States that its prime contractors establish procedures to ensure the timely payment of amounts due pursuant to the terms of their subcontracts with small business concerns, HUBZone small business concerns, small business concerns owned and controlled by socially and economically disadvantaged individuals, and small business concerns owned and controlled by women. - (b) The Contractor hereby agrees to carry out this policy in the awarding of subcontracts to the fullest extent consistent with efficient contract performance. The Contractor further agrees to cooperate in any studies or surveys as may be conducted by the United States Small Business Administration or the awarding agency of the United States as may be necessary to determine the extent of the Contractor's compliance with this clause. - (c) Definitions. As used in this contract (1) Small business concern means a small business as defined pursuant to section 3 of the Small Business Act and relevant regulations promulgated pursuant thereto. - (2) HUBZone small business concern means a small business concern that appears on the List of Qualified HUBZone Small Business Concerns maintained by the Small Business Administration. - (3) Small business concern owned and controlled by socially and economically disadvantaged individuals and small disadvantaged business concern mean a small business concern that represents, as part of its offer that-- - (i) It has received certification as a small disadvantaged business concern consistent with 13 CFR 124, Subpart B; - (ii) No material change in disadvantaged ownership and control has occurred since its certification; - (iii) Where the concern is owned by one or more individuals, the net worth of each individual upon whom the certification is based does not exceed \$750,000 after taking into account the applicable exclusions set forth at 13 CFR 124.104(c)(2); and - (iv) It is identified, on the date of its representation, as a certified small disadvantaged business in the database maintained by the Small Business Administration (PRO-Net). - (4) Small business concern owned and controlled by women means a small business concern- - (i) Which is at least 51 percent owned by one or more women, or, in the case of any publicly owned business, at least 51 percent of the stock of which is owned by one or more women; and - (ii) Whose management and daily business operations are controlled by one or more women. (d) Contractors acting in good faith may rely on written representations by their subcontractors regarding their status as a small business concern, a HUBZone small business concern, a small business concern owned and controlled by socially and economically disadvantaged individuals, or a small business concern owned and controlled by women. (End of clause) ## 52.219-9 SMALL, SMALL DISADVANTAGED AND WOMEN-OWNED SMALL BUSINESS SUBCONTRACTING PLAN (OCT 1999)--ALTERNATE I (JAN 1999). - (a) This clause does not apply to small business concerns. - (b) "Commercial product," as used in this clause, means a product in regular production that is sold in substantial quantities to the general public and/or industry at established catalog or market prices. It also means a product which, in the opinion of the Contracting Officer, differs only insignificantly from the Contractor's commercial product. - "Subcontract," as used in this clause, means any agreement (other than one involving an employer-employee relationship) entered into by a Federal Government prime Contractor or subcontractor calling for supplies or services required for performance of the contract or subcontract. - (c) The apparent low bidder, upon request by the Contracting Officer, shall submit a subcontracting plan, where applicable, that separately addresses subcontracting with small business, HUBZone small business, small disadvantaged business, and women-owned small business concerns. If the bidder is submitting an individual contract plan, the plan must separately address subcontracting with small business, HUBZone small business, small disadvantaged business, and women-owned small business concerns, with a separate part for the basic contract and separate parts for each option (if any). The plan shall be included in and made a part of the resultant contract. The subcontracting plan shall be submitted within the time specified by the Contracting Officer. Failure to submit the subcontracting plan shall make the bidder ineligible for the award of a contract. - (d) The offeror's subcontracting plan shall include the following: - (1) Goals, expressed in terms of percentages of total planned subcontracting dollars, for the use of small business, HUBZone small business, small disadvantaged business, and women-owned small business concerns as subcontractors. The offeror shall include all subcontracts that contribute to contract performance, and may include a proportionate share of products and services that are normally allocated as indirect costs. - (2) A statement of-- - (i) Total dollars planned to be subcontracted; - (ii) Total dollars planned to be subcontracted to small business concerns; - (iii) Total dollars planned to be subcontracted to HUBZone small business concerns; - (iv) Total dollars planned to be subcontracted to small disadvantaged business concerns; and - (v) Total dollars planned to be subcontracted to women-owned small business concerns. - (3) A description of the principal types of supplies and services to be subcontracted, and an identification of the types planned for subcontracting to-- - (i) Small business concerns; - (ii) HUBZone small business concerns; - (iii) Small disadvantaged business concerns; and - (iv) Women-owned small business concerns. - (4) A description of the method used to develop the subcontracting goals in paragraph (d)(1) of this clause. - (5) A description of the method used to identify potential sources for solicitation purposes (e.g., existing company source lists, the Procurement Marketing and Access Network (PRO-Net) of the Small Business Administration (SBA), the National Minority Purchasing Council Vendor Information Service, the Research and Information Division of the Minority Business Development Agency in the Department of Commerce, or small, HUBZone, small disadvantaged, and women-owned small business trade associations). A firm may rely on the information contained in PRO-Net as an accurate representation of a concern's size and ownership characteristics for the purposes of maintaining a small, HUBZone, small disadvantaged and women-owned small business source list. Use of PRO-Net as its source list does not relieve a firm of its responsibilities (e.g., outreach, assistance, counseling, or publicizing subcontracting opportunities) in this clause. - (6) A statement as to whether or not the offeror in included indirect costs in establishing subcontracting goals, and a description of the method used to determine the proportionate share of indirect costs to be incurred with— - (i) Small business concerns; - (ii) HUBZone small business concerns; - (iii) Small disadvantaged business concerns; and - (iv) Women-owned small business concerns. - (7) The name of the individual employed by the offeror who will administer the offeror's subcontracting program, and a description of the duties of the individual. - (8) A description of the efforts the offeror will make to assure that small business, HUBZone small business, small disadvantaged and women-owned small business concerns have an equitable opportunity to compete for subcontracts. - (9) Assurances that the offeror will include the clause of this contract entitled "Utilization of Business Concerns" in all subcontracts that offer further subcontracting opportunities, and that the offeror will require all subcontractors (except small business concerns) who receive subcontracts in excess of \$500,000 (\$1,000,000 for construction of any public facility) to adopt a plan similar to the plan agreed to by the offeror. - (10) Assurances that the offeror will (i) cooperate in any studies or surveys as may be required, (ii) submit periodic reports in order to allow the Government to determine the extent of compliance by the offeror with the subcontracting plan, (iii) submit Standard Form (SF)
294, Subcontracting Report for Individual Contracts, and/or SF 295, Summary Subcontract Report, in accordance with the instructions on the forms or as provided in agency regulations and in paragraph (j) of this clause; and (iv) ensure that its subcontractors agree to submit Standard Forms 294 and 295. - (11) A description of the types of records that will be maintained concerning procedures that have been adopted to comply with the requirements and goals in the plan, including establishing source lists; and a description of the offeror's efforts to locate small business, HUBZone small business, small disadvantaged business, and womenowned small business concerns and award subcontracts to them. The records shall include at least the following (on a plant-wide or company-wide basis, unless otherwise indicated) - (i) Source lists (e.g., PRO-Net), guides, and other data that identify small business, HUBZone small business, small disadvantaged business, and women-owned small business concerns. - (ii) Organizations contacted in an attempt to locate sources that are small business, HUBZone small business, small disadvantaged business, or women-owned small business concerns. - (iii) Records on each subcontract solicitation resulting in an award of more than \$100,000, indicating-- - (A) Whether small business concerns were solicited and, if not, why not; - (B) Whether HUBZone small business concerns were solicited and, if not, why not; - (C) Whether small disadvantaged business concerns were solicited and, if not, why not; - (D) Whether women-owned small business concerns were solicited and, if not, why not; and - (E) If applicable, the reason award was not made to a small business concern. - (iv) Records of any outreach efforts to contact-- - (A) Trade associations; - (B) Business development organizations; and - (C) Conferences and trade fairs to locate small, HUBZone small, small disadvantaged, and women-owned small business sources. - (v) Records of internal guidance and encouragement provided to buyers through-- - (A) Workshops, seminars, training, etc.; and - (B) Monitoring performance to evaluate compliance with the program's requirements. - (vi) On a contract-by-contract basis, records to support award data submitted by the offeror to the Government, including the name, address, and business size of each subcontractor. Contractors having commercial plans need not comply with this requirement. - (e) In order to effectively implement this plan to the extent consistent with efficient contract performance, the Contractor shall perform the following functions: - (1) Assist small business, HUBZone small business, small disadvantaged business, and women-owned small business concerns by arranging solicitations, time for the preparation of bids, quantities, specifications, and delivery schedules so as to facilitate the participation by such concerns. Where the Contractor's lists of potential small business, HUBZone small business, small disadvantaged business, and women-owned small business subcontractors are excessively long, reasonable effort shall be made to give all such small business concerns an opportunity to compete over a period of time. - (2) Provide adequate and timely consideration of the potentialities of small business, HUBZone small business, small disadvantaged business, and women-owned small business concerns in all "make-or-buy" decisions. - (3) Counsel and discuss subcontracting opportunities with representatives of small business, HUBZone small business, small disadvantaged business, and women-owned small business firms. - (4) Provide notice to subcontractors concerning penalties and remedies for misrepresentations of business status as small, HUBZone small, small disadvantaged, or women-owned small business for the purpose of obtaining a subcontract that is to be included as part or all of a goal contained in the Contractor's subcontracting plan. - (f) A master subcontracting plan on a plant or division-wide basis which contains all the elements required by paragraph (d) of this clause, except goals, may be incorporated by reference as a part of the subcontracting plan required of the offeror by this clause; provided, (1) the master plan has been approved, (2) the offeror ensures that the master plan is updated as necessary and provides copies of the approved master plan, including evidence of its approval, to the Contracting Officer, and (3) goals and any deviations from the master plan deemed necessary by the Contracting Officer to satisfy the requirements of this contract are set forth in the individual subcontracting plan. - (g)(1) If a commercial product is offered, the subcontracting plan required by this clause may relate to the offeror's production generally, for both commercial and noncommercial products, rather than solely to the Government contract. In these cases, the offeror shall, with the concurrence of the Contracting Officer, submit one company-wide or division-wide annual plan. - (2) The annual plan shall be reviewed for approval by the agency awarding the offeror its first prime contract requiring a subcontracting plan during the fiscal year, or by an agency satisfactory to the Contracting Officer. - (3) The approved plan shall remain in effect during the offeror's fiscal year for all of the offeror's commercial products. - (h) Prior compliance of the offeror with other such subcontracting plans under previous contracts will be con-sidered by the Contracting Officer in determining the responsibility of the offeror for award of the contract. - (i) The failure of the Contractor or subcontractor to comply in good faith with (1) the clause of this contract entitled "Utilization Of Business Concerns," or (2) an approved plan required by this clause, shall be a material breach of the contract. - (j) The Contractor shall submit the following reports: - (1) Standard Form 294, Subcontracting Report for Individual Contracts. This report shall be submitted to the Contracting Officer semiannually and at contract completion. The report covers subcontract award data related to this contract. This report is not required for commercial plans. - (2) Standard Form 295, Summary Subcontract Report. This report encompasses all the contracts with the awarding agency. It must be submitted semi-annually for contracts with the Department of Defense and annually for contracts with civilian agencies. If the reporting activity is covered by a commercial plan, the reporting activity must report annually all subcontract awards under that plan. All reports submitted at the close of each fiscal year (both individual and commercial plans) shall include a breakout, in the Contractor's format, of subcontract awards, in whole dollars, to small disadvantaged business concerns by Standard Industrial Classification (SIC) Major Group. For a commercial plan, the Contractor may obtain from each of its subcontractors a predominant SIC Major Group and report all awards to that subcontractor under its predominant SIC Major Group. (End of clause) ## 52.219-16 LIQUIDATED DAMAGES-SUBCONTRACTING PLAN (JAN 1999) - (a) Failure to make a good faith effort to comply with the subcontracting plan, as used in this clause, means a willful or intentional failure to perform in accordance with the requirements of the subcontracting plan approved under the clause in this contract entitled "Small Business Subcontracting Plan," or willful or intentional action to frustrate the plan. - (b) Performance shall be measured by applying the percentage goals to the total actual subcontracting dollars or, if a commercial plan is involved, to the pro rata share of actual subcontracting dollars attributable to Government contracts covered by the commercial plan. If, at contract completion or, in the case of a commercial plan, at the close of the fiscal year for which the plan is applicable, the Contractor has failed to meet its subcontracting goals and the Contracting Officer decides in accordance with paragraph (c) of this clause that the Contractor failed to make a good faith effort to comply with its subcontracting plan, established in accordance with the clause in this contract entitled "Small Business Subcontracting Plan," the Contractor shall pay the Government liquidated damages in an amount stated. The amount of probable damages attributable to the Contractor's failure to comply shall be an amount equal to the actual dollar amount by which the Contractor failed to achieve each subcontract goal. - (c) Before the Contracting Officer makes a final decision that the Contractor has failed to make such good faith effort, the Contracting Officer shall give the Contractor written notice specifying the failure and permitting the Contractor to demonstrate what good faith efforts have been made and to discuss the matter. Failure to respond to the notice may be taken as an admission that no valid explanation exists. If, after consideration of all the pertinent data, the Contracting Officer finds that the Contractor failed to make a good faith effort to comply with the subcontracting plan, the Contracting Officer shall issue a final decision to that effect and require that the Contractor pay the Government liquidated damages as provided in paragraph (b) of this clause. - (d) With respect to commercial plans, the Contracting Officer who approved the plan will perform the functions of the Contracting Officer under this clause on behalf of all agencies with contracts covered by the commercial plan. - (e) The Contractor shall have the right of appeal, under the clause in this contract entitled Disputes, from any final decision of the Contracting Officer. - (f) Liquidated damages shall be in addition to any other remedies that the Government may have. (End of clause) # 252.219-7003 SMALL, SMALL DISADVANTAGED AND WOMEN-OWNED SMALL BUSINESS SUBCONTRACTING PLAN (DOD CONTRACTS) (APR. 1996) This clause supplements the Federal Acquisition Regulation 52.219-9, Small,
Small Disadvantaged and Women-Owned Small Business Subcontracting Plan, clause of this contract. (a) *Definitions. Historically black colleges and universities*, as used in this clause, means institutions determined by the Secretary of Education to meet the requirements of 34 CFR 608.2. The term also means any nonprofit research institution that was an integral part of such a college or university before November 14, 1986. *Minority institutions*, as used in this clause, means institutions meeting the requirements of section 1046(3) of the Higher Education Act of 1965 (20 U.S.C. 1135d-5(3)). The term also includes Hispanic-serving institutions as defined in section 316(b)(1) of such Act (20 U.S.C. 1059c(b)(1)). - (b) Except for company or division-wide commercial items subcontracting plans, the term *small disadvantaged business*, when used in the FAR 52.219-9 clause, includes historically black colleges and universities and minority institutions, in addition to small disadvantaged business concerns. - (c) Work under the contract or its subcontracts shall be credited toward meeting the small disadvantaged business concern goal required by paragraph (d) of the FAR 52.219-9 clause when: - (1) It is performed on Indian lands or in joint venture with an Indian tribe or a tribally-owned corporation, and - (2) It meets the requirements of 10 U.S.C. 2323a. - (d) Subcontracts awarded to workshops approved by the Committee for Purchase from People Who are Blind or Severely Disabled (41 U.S.C. 46-48), may be counted toward the Contractor's small business subcontracting goal. - (e) A mentor firm, under the Pilot Mentor-Protege Program established under Section 831 of Pub. L. 101-510, as amended, may count toward its small disadvantaged business goal, subcontracts awarded-- - (f) The master plan approval referred to in paragraph (f) of the FAR 52.219-9 clause is approval by the Contractor's cognizant contract administration activity. (g) In those subcontracting plans which specifically identify small, small disadvantaged, and women-owned small businesses, the Contractor shall notify the Administrative Contracting Officer of any substitutions of firms that are not small, small disadvantaged, or women-owned small businesses for the firms listed in the subcontracting plan. Notifications shall be in writing and shall occur within a reasonable period of time after award of the subcontract. Contractor-specified formats shall be acceptable. (End of clause) ### 52.222-1 NOTICE TO THE GOVERNMENT OF LABOR DISPUTES (FEB 1997) If the Contractor has knowledge that any actual or potential labor dispute is delaying or threatens to delay the timely performance of this contract, the Contractor shall immediately give notice, including all relevant information, to the Contracting Officer. ### 52.222-3 CONVICT LABOR (AUG 1996) The Contractor agrees not to employ in the performance of this contract any person undergoing a sentence of imprisonment which has been imposed by any court of a State, the District of Columbia, the Commonwealth of Puerto Rico, the Virgin Islands, Guam, American Samoa, the Commonwealth of the Northern Mariana Islands, or the Trust Territory of the Pacific Islands. This limitation, however, shall not prohibit the employment by the Contractor in the performance of this contract of persons on parole or probation to work at paid employment during the term of their sentence or persons who have been pardoned or who have served their terms. Nor shall it prohibit the employment by the Contractor in the performance of this contract of persons confined for violation of the laws of any of the States, the District of Columbia, the Commonwealth of Puerto Rico, the Virgin Islands, Guam, American Samoa, the Commonwealth of the Northern Mariana Islands, or the Trust Territory of the Pacific Islands who are authorized to work at paid employment in the community under the laws of such jurisdiction, if-- - (a)(1) The worker is paid or is in an approved work training program on a voluntary basis; - (2) Representatives of local union central bodies or similar labor union organizations have been consulted; - (3) Such paid employment will not result in the displacement of employed workers, or be applied in skills, crafts, or trades in which there is a surplus of available gainful labor in the locality, or impair existing contracts for services; and - (4) The rates of pay and other conditions of employment will not be less than those paid or provided for work of a similar nature in the locality in which the work is being performed; and - (b) The Attorney General of the United States has certified that the work-release laws or regulations of the jurisdiction involved are in conformity with the requirements of Executive Order 11755, as amended by Executive Orders 12608 and 12943. (End of clause) # 52.222-4 CONTRACT WORK HOURS AND SAFETY STANDARDS ACT - OVERTIME COMPENSATION. (JUL 1995) (a) Overtime requirements. No Contractor or subcontractor contracting for any part of the contract work which may require or involve the employment of laborers or mechanics (see Federal Acquisition Regulation (FAR) 22.300) shall require or permit any such laborers or mechanics in any workweek in which the individual is employed on such work to work in excess of 40 hours in such workweek unless such laborer or mechanic receives compensation at a rate not less than 1 1/2 times the basic rate of pay for all hours worked in excess of 40 hours in such workweek. - (b) Violation; liability for unpaid wages; liquidated damages. In the event of any violation of the provisions set forth in paragraph (a) of this clause, the Contractor and any subcontractor responsible therefor shall be liable for the unpaid wages. In addition, such Contractor and subcontractor shall be liable to the United States (in the case of work done under contract for the District of Columbia or a territory, to such District or to such territory), for liquidated damages. Such liquidated damages shall be computed with respect to each individual laborer or mechanics employed in violation of the provisions set forth in paragraph (a) of this clause in the sum of \$10 for each calendar day on which such individual was required or permitted to work in excess of the standard workweek of 40 hours without payment of the overtime wages required by provisions set forth in paragraph (a) of this clause. - (c) Withholding for unpaid wages and liquidated damages. The Contracting Officer shall upon his or her own action or upon written request of an authorized representative of the Department of Labor withhold or cause to be withheld, from any moneys payable on account of work performed by the Contractor or subcontractor under any such contract or any other Federal contract with the same Prime Contractor, or any other Federally-assisted contract subject to the Contract Work Hours and Safety Standards Act which is held by the same Prime Contractor, such sums as may be determined to be necessary to satisfy any liabilities of such Contractor or subcontractor for unpaid wages and liquidated damages as provided in the provisions set forth in paragraph (b) of this clause. - (d) Payrolls and basic records. (1) The Contractor or subcontractor shall maintain payrolls and basic payroll records during the course of contract work and shall preserve them for a period of 3 years from the completion of the contract for all laborers and mechanics working on the contract. Such records shall contain the name and address of each such employee, social security number, correct classifications, hourly rates of wages paid, daily and weekly number of hours worked, deductions made, and actual wages paid. Nothing in this paragraph shall require the duplication of records required to be maintained for construction work by Department of Labor regulations at 29 CFR 5.5(a)(3) implementing the Davis-Bacon Act. - (2) The records to be maintained under paragraph (d)(1) of this clause shall be made available by the Contractor or subcontractor for inspection, copying, or transcription by authorized representatives of the Contracting Officer or the Department of Labor. The Contractor or subcontractor shall permit such representatives to interview employees during working hours on the job. - (e) Subcontracts. The Contractor or subcontractor shall insert in any subcontracts exceeding \$100,000 the provisions set forth in paragraphs (a) through (e) of this clause and also a clause requiring the subcontractors to include these provisions in any lower tier subcontracts. The Prime Contractor shall be responsible for compliance by any subcontractor or lower tier subcontractor with the provisions set forth in paragraphs (a) through (e) of this clause. ### 52.222-6 DAVIS-BACON ACT (FEB 1995) (a) All laborers and mechanics employed or working upon the site of the work will be paid unconditionally and not less often than once a week, and without subsequent deduction or rebate on any account (except such payroll deductions as are permitted by regulations issued by the Secretary of Labor under the Copeland Act (29 CFR Part 3), the full amount of wages and bona fide fringe benefits (or cash equivalents thereof) due at time of payment computed at rates not less than those contained in the wage determination of the Secretary of Labor which is attached hereto and made a part hereof, regardless of any contractual relationship which may be alleged to exist between the Contractor and such laborers and mechanics. Contributions made or costs reasonably anticipated for bona fide fringe benefits under section 1(b)(2) of the Davis-Bacon Act on behalf of laborers or mechanics are considered wages paid to such laborers or mechanics, subject to the provisions of paragraph (d) of this clause; also, regular contributions made or costs incurred for more than a weekly period (but not less often than quarterly) under plans, funds, or programs which cover the particular weekly
period, are deemed to be constructively made or incurred during such period. Such laborers and mechanics shall be paid not less than the appropriate wage rate and fringe benefits in the wage determination for the classification of work actually performed, without regard to skill, except as provided in the clause entitled Apprentices and Trainees. Laborers or mechanics performing work in more than one classification may be compensated at the rate specified for each classification for the time actually worked therein; provided, That the employer's payroll records accurately set forth the time spent in each classification in which work is performed. The wage determination (including any additional classifications and wage rates conformed under paragraph (b) of this clause) and the Davis-Bacon poster (WH-1321) shall be posted at all times by the Contractor and its subcontractors at the site of the work in a prominent and accessible place where it can be easily seen by the workers. - (b)(1) The Contracting Officer shall require that any class of laborers or mechanics which is not listed in the wage determination and which is to be employed under the contract shall be classified in conformance with the wage determination. The Contracting Officer shall approve an additional classification and wage rate and fringe benefits therefor only when all the following criteria have been met: - (i) The work to be performed by the classification requested is not performed by a classification in the wage determination. - (ii) The classification is utilized in the area by the construction industry. - (iii) The proposed wage rate, including any bona fide fringe benefits, bears a reasonable relationship to the wage rates contained in the wage determination. - (2) If the Contractor and the laborers and mechanics to be employed in the classification (if known), or their representatives, and the Contracting Officer agree on the classification and wage rate (including the amount designated for fringe benefits, where appropriate), a report of the action taken shall be sent by the Contracting Officer to the Administrator of the Wage and Hour Division, Employment Standards Administration, U.S. Department of Labor, Washington, DC 20210. The Administrator or an authorized representative will approve, modify, or disapprove every additional classification action within 30 days of receipt and so advise the Contracting Officer or will notify the Contracting Officer within the 30-day period that additional time is necessary. - (3) In the event the Contractor, the laborers or mechanics to be employed in the classification, or their representatives, and the Contracting Officer do not agree on the proposed classification and wage rate (including the amount designated for fringe benefits, where appropriate), the Contracting Officer shall refer the questions, including the views of all interested parties and the recommendation of the Contracting Officer, to the Administrator of the Wage and Hour Division for determination. The Administrator, or an authorized representative, will issue a determination within 30 days of receipt and so advise the Contracting Officer or will notify the Contracting Officer within the 30-day period that additional time is necessary. - (4) The wage rate (including fringe benefits, where appropriate) determined pursuant to subparagraphs (b)(2) and (b)(3) of this clause shall be paid to all workers performing work in the classification under this contract from the first day on which work is performed in the classification. - (c) Whenever the minimum wage rate prescribed in the contract for a class of laborers or mechanics includes a fringe benefit which is not expressed as an hourly rate, the Contractor shall either pay the benefit as stated in the wage determination or shall pay another bona fide fringe benefit or an hourly cash equivalent thereof. - (d) If the Contractor does not make payments to a trustee or other third person, the Contractor may consider as part of the wages of any laborer or mechanic the amount of any costs reasonably anticipated in providing bona fide fringe benefits under a plan or program; provided, That the Secretary of Labor has found, upon the written request of the Contractor, that the applicable standards of the Davis-Bacon Act have been met. The Secretary of Labor may require the Contractor to set aside in a separate account assets for the meeting of obligations under the plan or program. ### 52.222-7 WITHHOLDING OF FUNDS (FEB 1988) The Contracting Officer shall, upon his or her own action or upon written request of an authorized representative of the Department of Labor, withhold or cause to be withheld from the Contractor under this contract or any other Federal contract with the same Prime Contractor, or any other Federally assisted contract subject to Davis-Bacon prevailing wage requirements, which is held by the same Prime Contractor, so much of the accrued payments or advances as may be considered necessary to pay laborers and mechanics, including apprentices, trainees, and helpers, employed by the Contractor or any subcontractor the full amount of wages required by the contract. In the event of failure to pay any laborer or mechanic, including any apprentice, trainee, or helper, employed or working on the site of the work, all or part of the wages required by the contract, the Contracting Officer may, after written notice to the Contractor, take such action as may be necessary to cause the suspension of any further payment, advance, or guarantee of funds until such violations have ceased. ### 52.222-8 PAYROLLS AND BASIC RECORDS (FEB 1988) - (a) Payrolls and basic records relating thereto shall be maintained by the Contractor during the course of the work and preserved for a period of 3 years thereafter for all laborers and mechanics working at the site of the work. Such records shall contain the name, address, and social security number of each such worker, his or her correct classification, hourly rates of wages paid (including rates of contributions or costs anticipated for bona fide fringe benefits or cash equivalents thereof of the types described in section 1(b)(2)(B) of the Davis-Bacon Act), daily and weekly number of hours worked, deductions made, and actual wages paid. Whenever the Secretary of Labor has found, under paragraph (d) of the clause entitled Davis-Bacon Act, that the wages of any laborer or mechanic include the amount of any costs reasonably anticipated in providing benefits under a plan or program described in section 1(b)(2)(B) of the Davis-Bacon Act, the Contractor shall maintain records which show that the commitment to provide such benefits is enforceable, that the plan or program is financially responsible, and that the plan or program has been communicated in writing to the laborers or mechanics affected, and records which show the costs anticipated or the actual cost incurred in providing such benefits. Contractors employing apprentices or trainees under approved programs shall maintain written evidence of the registration of apprenticeship programs and certification of trainee programs, the registration of the apprentices and trainees, and the ratios and wage rates prescribed in the applicable programs. - (b)(1) The Contractor shall submit weekly for each week in which any contract work is performed a copy of all payrolls to the Contracting Officer. The payrolls submitted shall set out accurately and completely all of the information required to be maintained under paragraph (a) of this clause. This information may be submitted in any form desired. Optional Form WH-347 (Federal Stock Number 029-005-00014-1) is available for this purpose and may be purchased from the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402. The Prime Contractor is responsible for the submission of copies of payrolls by all subcontractors. - (2) Each payroll submitted shall be accompanied by a "Statement of Compliance," signed by the Contractor or subcontractor or his or her agent who pays or supervises the payment of the persons employed under the contract and shall certify-- - (i) That the payroll for the payroll period contains the information required to be maintained under paragraph (a) of this clause and that such information is correct and complete; - (ii) That each laborer or mechanic (including each helper, apprentice, and trainee) employed on the contract during the payroll period has been paid the full weekly wages earned, without rebate, either directly or indirectly, and that no deductions have been made either directly or indirectly from the full wages earned, other than permissible deductions as set forth in the Regulations, 29 CFR Part 3; and - (iii) That each laborer or mechanic has been paid not less than the applicable wage rates and fringe benefits or cash equivalents for the classification of work performed, as specified in the applicable wage determination incorporated into the contract. - (3) The weekly submission of a properly executed certification set forth on the reverse side of Optional Form WH-347 shall satisfy the requirement for submission of the "Statement of Compliance" required by subparagraph (b)(2) of this clause. - (4) The falsification of any of the certifications in this clause may subject the Contractor or subcontractor to civil or criminal prosecution under Section 1001 of Title 18 and Section 3729 of Title 31 of the United States Code. (c) The Contractor or subcontractor shall make the records required under paragraph (a) of this clause available for inspection, copying, or transcription by the Contracting Officer or authorized representatives of the Contracting Officer or the Department of Labor. The Contractor or subcontractor shall permit the Contracting Officer or representatives of the Contracting Officer or the Department of Labor to interview employees during working hours on the job. If the Contractor
or subcontractor fails to submit required records or to make them available, the Contracting Officer may, after written notice to the Contractor, take such action as may be necessary to cause the suspension of any further payment. Furthermore, failure to submit the required records upon request or to make such records available may be grounds for debarment action pursuant to 29 CFR 5.12. ### 52.222-9 APPRENTICES AND TRAINEES (FEB 1988) - (a) Apprentices. Apprentices will be permitted to work at less than the predetermined rate for the work they performed when they are employed pursuant to and individually registered in a bona fide apprenticeship program registered with the U.S. Department of Labor, Employment and Training Administration, Bureau of Apprenticeship and Training, or with a State Apprenticeship Agency recognized by the Bureau, or if a person is employed in his or her first 90 days of probationary employment as an apprentice in such an apprenticeship program, who is not individually registered in the program, but who has been certified by the Bureau of Apprenticeship and Training or a State Apprenticeship Agency (where appropriate) to be eligible for probationary employment as an apprentice. The allowable ratio of apprentices to journeymen on the job site in any craft classification shall not be greater than the ratio permitted to the Contractor as to the entire work force under the registered program. Any worker listed on a payroll at an apprentice wage rate, who is not registered or otherwise employed as stated in this paragraph, shall be paid not less than the applicable wage determination for the classification of work actually performed. In addition, any apprentice performing work on the job site in excess of the ratio permitted under the registered program shall be paid not less than the applicable wage rate on the wage determination for the work actually performed. Where a contractor is performing construction on a project in a locality other than that in which its program is registered, the ratios and wage rates (expressed in percentages of the journeyman's hourly rate) specified in the Contractor's or subcontractor's registered program shall be observed. Every apprentice must be paid at not less than the rate specified in the registered program for the apprentice's level of progress, expressed as a percentage of the journeyman hourly rate specified in the applicable wage determination. Apprentices shall be paid fringe benefits in accordance with the provisions of the apprenticeship program. If the apprenticeship program does not specify fringe benefits, apprentices must be paid the full amount of fringe benefits listed on the wage determination for the applicable classification. If the Administrator determines that a different practice prevails for the applicable apprentice classification, fringes shall be paid in accordance with that determination. In the event the Bureau of Apprenticeship and Training, or a State Apprenticeship Agency recognized by the Bureau, withdraws approval of an apprenticeship program, the Contractor will no longer be permitted to utilize apprentices at less than the applicable predetermined rate for the work performed until an acceptable program is approved. - (b) Trainees. Except as provided in 29 CFR 5.16, trainees will not be permitted to work at less than the predetermined rate for the work performed unless they are employed pursuant to and individually registered in a program which has received prior approval, evidenced by formal certification by the U.S. Department of Labor, Employment and Training Administration. The ratio of trainees to journeymen on the job site shall not be greater than permitted under the plan approved by the Employment and Training Administration. Every trainee must be paid at not less than the rate specified in the approved program for the trainee's level of progress, expressed as a percentage of the journeyman hourly rate specified in the applicable wage determination. Trainees shall be paid fringe benefits in accordance with the provisions of the trainee program. If the trainee program does not mention fringe benefits, trainees shall be paid the full amount of fringe benefits listed in the wage determination unless the Administrator of the Wage and Hour Division determines that there is an apprenticeship program associated with the corresponding journeyman wage rate in the wage determination which provides for less than full fringe benefits for apprentices. Any employee listed on the payroll at a trainee rate who is not registered and participating in a training plan approved by the Employment and Training Administration shall be paid not less than the applicable wage rate in the wage determination for the classification of work actually performed. In addition, any trainee performing work on the job site in excess of the ratio permitted under the registered program shall be paid not less than the applicable wage rate in the wage determination for the work actually performed. In the event the Employment and Training Administration withdraws approval of a training program, the Contractor will no longer be permitted to utilize trainees at less than the applicable predetermined rate for the work performed until an acceptable program is approved. (c) Equal employment opportunity. The utilization of apprentices, trainees, and journeymen under this clause shall be in conformity with the equal employment opportunity requirements of Executive Order 11246, as amended, and 29 CFR Part 30. ### 52.222-10 COMPLIANCE WITH COPELAND ACT REQUIREMENTS (FEB 1988) The Contractor shall comply with the requirements of 29 CFR Part 3, which are hereby incorporated by reference in this contract. ### 52.222-11 SUBCONTRACTS (LABOR STANDARDS (FEB 1988) - (a) The Contractor or subcontractor shall insert in any subcontracts the clauses entitled Davis-Bacon Act, Contract Work Hours and Safety Standards Act-Overtime Compensation, Apprentices and Trainees, Payrolls and Basic Records, Compliance with Copeland Act Requirements, Withholding of Funds, Subcontracts (Labor Standards), Contract Termination-Debarment, Disputes Concerning Labor Standards, Compliance with Davis-Bacon and Related Act Regulations, and Certification of Eligibility, and such other clauses as the Contracting Officer may, by appropriate instructions, require, and also a clause requiring subcontractors to include these clauses in any lower tier subcontracts. The Prime Contractor shall be responsible for compliance by any subcontractor or lower tier subcontractor with all the contract clauses cited in this paragraph. - (b)(1) Within 14 days after award of the contract, the Contractor shall deliver to the Contracting Officer a completed Statement and Acknowledgment Form (SF 1413) for each subcontract, including the subcontractor's signed and dated acknowledgment that the clauses set forth in paragraph (a) of this clause have been included in the subcontract. - (2) Within 14 days after the award of any subsequently awarded subcontract the Contractor shall deliver to the Contracting Officer an updated completed SF 1413 for such additional subcontract. ### 52.222-12 CONTRACT TERMINATION--DEBARMENT (FEB 1988) A breach of the contract clauses entitled Davis-Bacon Act, Contract Work Hours and Safety Standards Act-Overtime Compensation, Apprentices and Trainees, Payrolls and Basic Records, Compliance with Copeland Act Requirements, Subcontracts (Labor Standards), Compliance with Davis-Bacon and Related Act Regulations, or Certification of Eligibility may be grounds for termination of the contract, and for debarment as a Contractor and subcontractor as provided in 29 CFR 5.12. ### 52.222-13 COMPLIANCE WITH DAVIS-BACON AND RELATED ACT REGULATIONS (FEB 1988) All rulings and interpretations of the Davis-Bacon and Related Acts contained in 29 CFR Parts 1, 3, and 5 are hereby incorporated by reference in this contract. ## 52.222-14 DISPUTES CONCERNING LABOR STANDARDS (FEB 1988) The United States Department of Labor has set forth in 29 CFR Parts 5, 6, and 7 procedures for resolving disputes concerning labor standards requirements. Such disputes shall be resolved in accordance with those procedures and not the Disputes clause of this contract. Disputes within the meaning of this clause include disputes between the Contractor (or any of its subcontractors) and the contracting agency, the U.S. Department of Labor, or the employees or their representatives. ### 52.222-15 CERTIFICATION OF ELIGIBILITY (FEB 1988) - (a) By entering into this contract, the Contractor certifies that neither it (nor he or she) nor any person or firm who has an interest in the Contractor's firm is a person or firm ineligible to be awarded Government contracts by virtue of section 3(a) of the Davis-Bacon Act or 29 CFR 5.12(a)(1). - (b) No part of this contract shall be subcontracted to any person or firm ineligible for award of a Government contract by virtue of section 3(a) of the Davis-Bacon Act or 29 CFR 5.12(a)(1). - (c) The penalty for making false statements is prescribed in the U.S. Criminal Code, 18 U.S.C. 1001. ## 52.222-23 NOTICE OF REQUIREMENT FOR AFFIRMATIVE ACTION TO ENSURE EQUAL EMPLOYMENT OPPORTUNITY FOR CONSTRUCTION (FEB 1999) - (a) The offeror's attention is called to the Equal Opportunity clause and the Affirmative Action Compliance Requirements for Construction clause of this solicitation. - (b) The goals for minority and female participation, expressed in percentage terms for the Contractor's aggregate workforce in each trade on all construction work in the covered area, are as follows: | Goals for minority participation for each trade | Goals for female participation for each trade | | |---|---|--| | 2.8% | 6.9% | | These goals are applicable to all the Contractor's construction work performed in the covered area. If the Contractor
performs construction work in a geographical area located outside of the covered area, the Contractor shall apply the goals established for the geographical area where the work is actually performed. Goals are published periodically in the Federal Register in notice form, and these notices may be obtained from any Office of Federal Contract Compliance Programs office. - (c) The Contractor's compliance with Executive Order 11246, as amended, and the regulations in 41 CFR 60-4 shall be based on (1) its implementation of the Equal Opportunity clause, (2) specific affirmative action obligations required by the clause entitled "Affirmative Action Compliance Requirements for Construction," and (3) its efforts to meet the goals. The hours of minority and female employment and training must be substantially uniform throughout the length of the contract, and in each trade. The Contractor shall make a good faith effort to employ minorities and women evenly on each of its projects. The transfer of minority or female employees or trainees from Contractor to Contractor, or from project to project, for the sole purpose of meeting the Contractor's goals shall be a violation of the contract, Executive Order 11246, as amended, and the regulations in 41 CFR 60-4. Compliance with the goals will be measured against the total work hours performed. - (d) The Contractor shall provide written notification to the Deputy Assistant Secretary for Federal Contract Compliance, U.S. Department of Labor, within 10 working days following award of any construction subcontract in excess of \$10,000 at any tier for construction work under the contract resulting from this solicitation. The notification shall list the -- - (1) Name, address, and telephone number of the subcontractor; - (2) Employer's identification number of the subcontractor; - (3) Estimated dollar amount of the subcontract; - (4) Estimated starting and completion dates of the subcontract; and - (5) Geographical area in which the subcontract is to be performed. - (e) As used in this Notice, and in any contract resulting from this solicitation, the "covered area" is Washington State, Fairchild AFB, Spokane County. ### 52.222-26 EQUAL OPPORTUNITY (FEB 1999) - (a) If, during any 12-month period (including the 12 months preceding the award of this contract), the Contractor has been or is awarded nonexempt Federal contracts and/or subcontracts that have an aggregate value in excess of \$10,000, the Contractor shall comply with subparagraphs (b)(1) through (11) of this clause. Upon request, the Contractor shall provide information necessary to determine the applicability of this clause. - (b) During performing this contract, the Contractor agrees as follows: - (1) The Contractor shall not discriminate against any employee or applicant for employment because of race, color, religion, sex, or national origin. However, it shall not be a violation of this clause for the Contractor to extend a publicly announced preference in employment to Indians living on or near an Indian reservation, in connection with employment opportunities on or near an Indian reservation, as permitted by 41 CFR 60-1.5. - (2) The Contractor shall take affirmative action to ensure that applicants are employed, and that employees are treated during employment, without regard to their race, color, religion, sex, or national origin. This shall include, but not be limited to, (i) employment, (ii) upgrading, (iii) demotion, (iv) transfer, (v) recruitment or recruitment advertising, (vi) layoff or termination, (vii) rates of pay or other forms of compensation, and (viii) selection for training, including apprenticeship. - (3) The Contractor shall post in conspicuous places available to employees and applicants for employment the notices to be provided by the Contracting Officer that explain this clause. - (4) The Contractor shall, in all solicitations or advertisements for employees placed by or on behalf of the Contractor, state that all qualified applicants will receive consideration for employment without regard to race, color, religion, sex, or national origin. - (5) The Contractor shall send, to each labor union or representative of workers with which it has a collective bargaining agreement or other contract or understanding, the notice to be provided by the Contracting Officer advising the labor union or workers' representative of the Contractor's commitments under this clause, and post copies of the notice in conspicuous places available to employees and applicants for employment. - (6) The Contractor shall comply with Executive Order 11246, as amended, and the rules, regulations, and orders of the Secretary of Labor. - (7) The Contractor shall furnish to the contracting agency all information required by Executive Order 11246, as amended, and by the rules, regulations, and orders of the Secretary of Labor. The Contractor shall also file Standard Form 100 (EEO-1), or any successor form, as prescribed in 41 CFR part 60-1. Unless the Contractor has filed within the 12 months preceding the date of contract award, the Contractor shall, within 30 days after contract award, apply to either the regional Office of Federal Contract Compliance Programs (OFCCP) or the local office of the Equal Employment Opportunity Commission for the necessary forms. - (8) The Contractor shall permit access to its premises, during normal business hours, by the contracting agency or the OFCCP for the purpose of conducting on-site compliance evaluations and complaint investigations. The Contractor shall permit the Government to inspect and copy any books, accounts, records (including computerized records), and other material that may be relevant to the matter under investigation and pertinent to compliance with Executive Order 11246, as amended, and rules and regulations that implement the Executive Order. - (9) If the OFCCP determines that the Contractor is not in compliance with this clause or any rule, regulation, or order of the Secretary of Labor, this contract may be canceled, terminated, or suspended in whole or in part and the Contractor may be declared ineligible for further Government contracts, under the procedures authorized in Executive Order 11246, as amended. In addition, sanctions may be imposed and remedies invoked against the Contractor as provided in Executive Order 11246, as amended; in the rules, regulations, and orders of the Secretary of Labor; or as otherwise provided by law. - (10) The Contractor shall include the terms and conditions of subparagraphs (b)(1) through (11) of this clause in every subcontract or purchase order that is not exempted by the rules, regulations, or orders of the Secretary of Labor issued under Executive Order 11246, as amended, so that these terms and conditions will be binding upon each subcontractor or vendor. - (11) The Contractor shall take such action with respect to any subcontract or purchase order as the contracting officer may direct as a means of enforcing these terms and conditions, including sanctions for noncompliance; provided, that if the Contractor becomes involved in, or is threatened with, litigation with a subcontractor or vendor as a result of any direction, the Contractor may request the United States to enter into the litigation to protect the interests of the United States. - (c) Notwithstanding any other clause in this contract, disputes relative to this clause will be governed by the procedures in 41 CFR 60-1.1. ### 52.222-27 AFFIRMATIVE ACTION COMPLIANCE REQUIREMENTS FOR CONSTRUCTION (FEB 1999) - (a) Definitions. "Covered area," as used in this clause, means the geographical area described in the solicitation for this contract. - "Deputy Assistant Secretary," as used in this clause, means Deputy Assistant Secretary for Federal Contract Compliance, U.S. Department of Labor, or a designee. - "Employer's identification number," as used in this clause, means the Federal Social Security number used on the employer's quarterly federal tax return, U.S. Treasury Department Form 941. - "Minority," as used in this clause, means-- - (1) American Indian or Alaskan Native (all persons having origins in any of the original peoples of North America and maintaining identifiable tribal affiliations through membership and participation or community identification). - (2) Asian and Pacific Islander (all persons having origins in any of the original peoples of the Far East, Southeast Asia, the Indian Subcontinent, or the Pacific Islands); - (3) Black (all persons having origins in any of the black African racial groups not of Hispanic origin); and - (4) Hispanic (all persons of Mexican, Puerto Rican, Cuban, Central or South American, or other Spanish culture or origin, regardless of race). - (b) If the Contractor, or a subcontractor at any tier, subcontracts a portion of the work involving any construction trade, each such subcontract in excess of \$10,000 shall include this clause and the Notice containing the goals for minority and female participation stated in the solicitation for this contract. - (c) If the Contractor is participating in a Hometown Plan (41 CFR 60-4) approved by the U.S. Department of Labor in a covered area, either individually or through an association, its affirmative action obligations on all work in the plan area (including goals) shall comply with the plan for those trades that have unions participating in the plan. Contractors must be able to demonstrate participation in, and compliance with, the provisions of the plan. Each Contractor or subcontractor participating in an approved plan is also required to comply with its obligations under the Equal Opportunity clause, and to make a good faith effort to achieve each goal under the plan in each trade in which it has employees. The overall good-faith performance by other Contractors or subcontractors toward a goal in an approved plan does not excuse any Contractor's or subcontractor's failure to make
good-faith efforts to achieve the plan's goals. - (d) The Contractor shall implement the affirmative action procedures in subparagraphs (g)(1) through (16) of this clause. The goals stated in the solicitation for this contract are expressed as percentages of the total hours of employment and training of minority and female utilization that the Contractor should reasonably be able to achieve in each construction trade in which it has employees in the covered area. If the Contractor performs construction work in a geographical area located outside of the covered area, it shall apply the goals established for the geographical area where that work is actually performed. The Contractor is expected to make substantially uniform progress toward its goals in each craft. - (e) Neither the terms and conditions of any collective bargaining agreement, nor the failure by a union with which the Contractor has a collective bargaining agreement, to refer minorities or women shall excuse the Contractor's obligations under this clause, Executive Order 11246, as amended, or the regulations thereunder. - (f) In order for the nonworking training hours of apprentices and trainees to be counted in meeting the goals, apprentices and trainees must be employed by the Contractor during the training period, and the Contractor must have made a commitment to employ the apprentices and trainees at the completion of their training, subject to the availability of employment opportunities. Trainees must be trained pursuant to training programs approved by the U.S. Department of Labor. - (g) The Contractor shall take affirmative action to ensure equal employment opportunity. The evaluation of the Contractor's compliance with this clause shall be based upon its effort to achieve maximum results from its actions. The Contractor shall document these efforts fully and implement affirmative action steps at least as extensive as the following: - (1) Ensure a working environment free of harassment, intimidation, and coercion at all sites and in all facilities where the Contractor's employees are assigned to work. The Contractor, if possible, will assign two or more women to each construction project. The Contractor shall ensure that foremen, superintendents, and other onsite supervisory personnel are aware of and carry out the Contractor's obligation to maintain such a working environment, with specific attention to minority or female individuals working at these sites or facilities. - (2) Establish and maintain a current list of sources for minority and female recruitment. Provide written notification to minority and female recruitment sources and community organizations when the Contractor or its unions have employment opportunities available, and maintain a record of the organizations' responses. - (3) Establish and maintain a current file of the names, addresses, and telephone numbers of each minority and female off-the-street applicant, referrals of minorities or females from unions, recruitment sources, or community organizations, and the action taken with respect to each individual. If an individual was sent to the union hiring hall for referral and not referred back to the Contractor by the union or, if referred back, not employed by the Contractor, this shall be documented in the file, along with whatever additional actions the Contractor may have taken. - (4) Immediately notify the Deputy Assistant Secretary when the union or unions with which the Contractor has a collective bargaining agreement has not referred back to the Contractor a minority or woman sent by the Contractor, or when the Contractor has other information that the union referral process has impeded the Contractor's efforts to meet its obligations. - (5) Develop on-the-job training opportunities and/or participate in training programs for the area that expressly include minorities and women, including upgrading programs and apprenticeship and trainee programs relevant to the Contractor's employment needs, especially those programs funded or approved by the Department of Labor. The Contractor shall provide notice of these programs to the sources compiled under subparagraph (g)(2) of this clause. - (6) Disseminate the Contractor's equal employment policy by-- - (i) Providing notice of the policy to unions and to training, recruitment, and outreach programs, and requesting their cooperation in assisting the Contractor in meeting its contract obligations; - (ii) Including the policy in any policy manual and in collective bargaining agreements; - (iii) Publicizing the policy in the company newspaper, annual report, etc.; - (iv) Reviewing the policy with all management personnel and with all minority and female employees at least once a year; and - (v) Posting the policy on bulletin boards accessible to employees at each location where construction work is performed. - (7) Review, at least annually, the Contractor's equal employment policy and affirmative action obligations with all employees having responsibility for hiring, assignment, layoff, termination, or other employment decisions. Conduct review of this policy with all on-site supervisory personnel before initiating construction work at a job site. A written record shall be made and maintained identifying the time and place of these meetings, persons attending, subject matter discussed, and disposition of the subject matter. - (8) Disseminate the Contractor's equal employment policy externally by including it in any advertising in the news media, specifically including minority and female news media. Provide written notification to, and discuss this policy with, other Contractors and subcontractors with which the Contractor does or anticipates doing business. - (9) Direct recruitment efforts, both oral and written, to minority, female, and community organizations, to schools with minority and female students, and to minority and female recruitment and training organizations serving the Contractor's recruitment area and employment needs. Not later than 1 month before the date for acceptance of applications for apprenticeship or training by any recruitment source, send written notification to organizations such as the above, describing the openings, screening procedures, and tests to be used in the selection process. - (10) Encourage present minority and female employees to recruit minority persons and women. Where reasonable, provide after-school, summer, and vacation employment to minority and female youth both on the site and in other areas of the Contractor's workforce. - (11) Validate all tests and other selection requirements where required under 41 CFR 60-3. - (12) Conduct, at least annually, an inventory and evaluation at least of all minority and female personnel for promotional opportunities. Encourage these employees to seek or to prepare for, through appropriate training, etc., opportunities for promotion. - (13) Ensure that seniority practices, job classifications, work assignments, and other personnel practices do not have a discriminatory effect by continually monitoring all personnel and employment-related activities to ensure that the Contractor's obligations under this contract are being carried out. - (14) Ensure that all facilities and company activities are nonsegregated except that separate or single-user rest rooms and necessary dressing or sleeping areas shall be provided to assure privacy between the sexes. - (15) Maintain a record of solicitations for subcontracts for minority and female construction contractors and suppliers, including circulation of solicitations to minority and female contractor associations and other business associations. - (16) Conduct a review, at least annually, of all supervisors' adherence to and performance under the Contractor's equal employment policy and affirmative action obligations. - (h) The Contractor is encouraged to participate in voluntary associations that may assist in fulfilling one or more of the affirmative action obligations contained in subparagraphs (g)(1) through (16) of this clause. The efforts of a contractor association, joint contractor-union, contractor-community, or similar group of which the contractor is a member and participant may be asserted as fulfilling one or more of its obligations under subparagraphs (g)(1) through (16) of this clause, provided the Contractor- - (1) Actively participates in the group; - (2) Makes every effort to ensure that the group has a positive impact on the employment of minorities and women in the industry; - (3) Ensures that concrete benefits of the program are reflected in the Contractor's minority and female workforce participation; - (4) Makes a good-faith effort to meet its individual goals and timetables; and - (5) Can provide access to documentation that demonstrates the effectiveness of actions taken on behalf of the Contractor. The obligation to comply is the Contractor's, and failure of such a group to fulfill an obligation shall not be a defense for the Contractor's noncompliance. - (i) A single goal for minorities and a separate single goal for women shall be established. The Contractor is required to provide equal employment opportunity and to take affirmative action for all minority groups, both male and female, and all women, both minority and nonminority. Consequently, the Contractor may be in violation of Executive Order 11246, as amended, if a particular group is employed in a substantially disparate manner. - (j) The Contractor shall not use goals or affirmative action standards to discriminate against any person because of race, color, religion, sex, or national origin. - (k) The Contractor shall not enter into any subcontract with any person or firm debarred from Government contracts under Executive Order 11246, as amended. - (l) The Contractor shall carry out such sanctions and penalties for violation of this clause and of the Equal Opportunity clause, including suspension, termination, and
cancellation of existing subcontracts, as may be imposed or ordered under Executive Order 11246, as amended, and its implementing regulations, by the OFCCP. Any failure to carry out these sanctions and penalties as ordered shall be a violation of this clause and Executive Order 11246, as amended. - (m) The Contractor in fulfilling its obligations under this clause shall implement affirmative action procedures at least as extensive as those prescribed in paragraph (g) of this clause, so as to achieve maximum results from its efforts to ensure equal employment opportunity. If the Contractor fails to comply with the requirements of Executive Order 11246, as amended, the implementing regulations, or this clause, the Deputy Assistant Secretary shall take action as prescribed in 41 CFR 60-4.8. - (n) The Contractor shall designate a responsible official to-- - (1) Monitor all employment-related activity to ensure that the Contractor's equal employment policy is being carried out; - (2) Submit reports as may be required by the Government; and (3) Keep records that shall at least include for each employee the name, address, telephone number, construction trade, union affiliation (if any), employee identification number, social security number, race, sex, status (e.g., mechanic, apprentice, trainee, helper, or laborer), dates of changes in status, hours worked per week in the indicated trade, rate of pay, and locations at which the work was performed. Records shall be maintained in an easily understandable and retrievable form; however, to the degree that existing records satisfy this requirement, separate records are not required to be maintained. Nothing contained herein shall be construed as a limitation upon the application of other laws that establish different standards of compliance or upon the requirements for the hiring of local or other area residents (e.g., those under the Public Works Employment Act of 1977 and the Community Development Block Grant Program). # 52.222-35 AFFIRMATIVE ACTION FOR DISABLED VETERANS AND VETERANS OF THE VIETNAM ERA (APR 1998) (a)) Definitions. As used in this clause-- All employment openings includes all positions except executive and top management, those positions that will be filled from within the contractor's organization, and positions lasting 3 days or less. This term includes full-time employment, temporary employment of more than 3 days' duration, and part-time employment. Appropriate office of the State employment service system means the local office of the Federal-State national system of public employment offices with assigned responsibility to serve the area where the employment opening is to be filled, including the District of Columbia, Guam, the Commonwealth of Puerto Rico, and the Virgin Islands. Positions that will be filled from within the Contractor's organization means employment openings for which no consideration will be given to persons outside the Contractor's organization (including any affiliates, subsidiaries, and parent companies) and includes any openings that the Contractor proposes to fill from regularly established 'recall" lists. The exception does not apply to a particular opening once an employer decides to consider applicants outside of its organization. Veteran of the Vietnam era means a person who-- - (1) Served on active duty for a period of more than 180 days, any part of which occurred between August 5, 1964, and May 7, 1975, and was discharged or released therefrom with other than a dishonorable discharge; or - (2) Was discharged or released from active duty for a service-connected disability if any part of such active duty was performed between August 5, 1964, and May 7, 1975. - (b) General. (1) Regarding any position for which the employee or applicant for employment is qualified, the Contractor shall not discriminate against the individual because the individual is a disabled veteran or a veteran of the Vietnam era. The Contractor agrees to take affirmative action to employ, advance in employment, and otherwise treat qualified disabled veterans and veterans of the Vietnam era without discrimination based upon their disability or veterans' status in all employment practices such as-- | (i) Employment; | | | |-----------------------------|--|--| | (ii) Upgrading; | | | | (iii) Demotion or transfer; | | | (iv) Recruitment; (v) Advertising; - (vi) Layoff or termination; - (vii) Rates of pay or other forms of compensation; and - (viii) Selection for training, including apprenticeship. - (2) The Contractor agrees to comply with the rules, regulations, and relevant orders of the Secretary of Labor (Secretary) issued under the Vietnam Era Veterans' Readjustment Assistance Act of 1972 (the Act), as amended. - (c) Listing openings. (1) The Contractor agrees to list all employment openings existing at contract award or occurring during contract performance, at an appropriate office of the State employment service system in the locality where the opening occurs. These openings include those occurring at any Contractor facility, including one not connected with performing this contract. An independent corporate affiliate is exempt from this requirement. - (2) State and local government agencies holding Federal contracts of \$10,000 or more shall also list all their employment openings with the appropriate office of the State employment service. - (3) The listing of employment openings with the State employment service system is required at least concurrently with using any other recruitment source or effort and involves the obligations of placing a bona fide job order, including accepting referrals of veterans and nonveterans. This listing does not require hiring any particular job applicant or hiring from any particular group of job applicants and is not intended to relieve the Contractor from any requirements of Executive orders or regulations concerning nondiscrimination in employment. - (4) Whenever the Contractor becomes contractually bound to the listing terms of this clause, it shall advise the State employment service system, in each State where it has establishments, of the name and location of each hiring location in the State. As long as the Contractor is contractually bound to these terms and has so advised the State system, it need not advise the State system of subsequent contracts. The Contractor may advise the State system when it is no longer bound by this contract clause. - (d) Applicability. This clause does not apply to the listing of employment openings that occur and are filled outside the 50 States, the District of Columbia, the Commonwealth of Puerto Rico, Guam, and the Virgin Islands. - (e) Postings. (1) The Contractor agrees to post employment notices stating (i) the Contractor's obligation under the law to take affirmative action to employ and advance in employment qualified disabled veterans and veterans of the Vietnam era, and (ii) the rights of applicants and employees. - (2) These notices shall be posted in conspicuous places that are available to employees and applicants for employment. They shall be in a form prescribed by the Deputy Assistant Secretary for Federal Contract Compliance Programs, Department of Labor (Deputy Assistant Secretary), and provided by or through the Contracting Officer. - (3) The Contractor shall notify each labor union or representative of workers with which it has a collective bargaining agreement or other contract understanding, that the Contractor is bound by the terms of the Act, and is committed to take affirmative action to employ, and advance in employment, qualified disabled veterans and veterans of the Vietnam Era. - (f) Noncompliance. If the Contractor does not comply with the requirements of this clause, appropriate actions may be taken under the rules, regulations, and relevant orders of the Secretary issued pursuant to the Act. - (g) Subcontracts. The Contractor shall include the terms of this clause in every subcontract or purchase order of \$10,000 or more unless exempted by rules, regulations, or orders of the Secretary. The Contractor shall act as specified by the Deputy Assistant Secretary to enforce the terms, including action for noncompliance. (End of clause) 52.222-36 AFFIRMATIVE ACTION FOR WORKERS WITH DISABILITIES (JUN 1998) - (a) General. (1) Regarding any position for which the employee or applicant for employment is qualified, the Contractor shall not discriminate against any employee or applicant because of physical or mental disability. The Contractor agrees to take affirmative action to employ, advance in employment, and otherwise treat qualified individuals with disabilities without discrimination based upon their physical or mental disability in all employment practices such as-- - (i) Recruitment, advertising, and job application procedures; - (ii) Hiring, upgrading, promotion, award of tenure, demotion, transfer, layoff, termination, right of return from layoff, and rehiring; - (iii) Rates of pay or any other form of compensation and changes in compensation; - (iv) Job assignments, job classifications, organizational structures, position descriptions, lines of progression, and seniority lists; - (v) Leaves of absence, sick leave, or any other leave; - (vi) Fringe benefits available by virtue of employment, whether or not administered by the Contractor; - (vii) Selection and financial support for training, including apprenticeships, professional meetings, conferences, and other related activities, and selection for leaves of absence to pursue training; - (viii) Activities sponsored by the Contractor, including social or recreational programs; and - (ix) Any other term, condition, or privilege of employment. - (2) The Contractor agrees to comply with the rules, regulations, and relevant orders of the Secretary of Labor (Secretary) issued under the Rehabilitation Act of 1973 (29 U.S.C. 793) (the Act), as amended. - (b) Postings. (1) The Contractor agrees to
post employment notices stating-- - (i) The Contractor's obligation under the law to take affirmative action to employ and advance in employment qualified individuals with disabilities; and - (ii) The rights of applicants and employees. - (2) These notices shall be posted in conspicuous places that are available to employees and applicants for employment. The Contractor shall ensure that applicants and employees with disabilities are informed of the contents of the notice (e.g., the Contractor may have the notice read to a visually disabled individual, or may lower the posted notice so that it might be read by a person in a wheelchair). The notices shall be in a form prescribed by the Deputy Assistant Secretary for Federal Contract Compliance of the U.S. Department of Labor (Deputy Assistant Secretary) and shall be provided by or through the Contracting Officer. - (3) The Contractor shall notify each labor union or representative of workers with which it has a collective bargaining agreement or other contract understanding, that the Contractor is bound by the terms of Section 503 of the Act and is committed to take affirmative action to employ, and advance in employment, qualified individuals with physical or mental disabilities. - (c) Noncompliance. If the Contractor does not comply with the requirements of this clause, appropriate actions may be taken under the rules, regulations, and relevant orders of the Secretary issued pursuant to the Act. (d) Subcontracts. The Contractor shall include the terms of this clause in every subcontract or purchase order in excess of \$10,000 unless exempted by rules, regulations, or orders of the Secretary. The Contractor shall act as specified by the Deputy Assistant Secretary to enforce the terms, including action for noncompliance. (End of clause) ## 52.222-37 EMPLOYMENT REPORTS ON DISABLED VETERANS AND VETERANS OF THE VIETNAM ERA (JAN 1999) - (a) Unless the Contractor is a State or local government agency, the Contractor shall report at least annually, as required by the Secretary of Labor, on-- - (1) The number of disabled veterans and the number of veterans of the Vietnam era in the workforce of the contractor by job category and hiring location; and - (2) The total number of new employees hired during the period covered by the report, and of that total, the number of disabled veterans, and the number of veterans of the Vietnam era. - (b) The above items shall be reported by completing the form entitled "Federal Contractor Veterans' Employment Report VETS-100." - (c) Reports shall be submitted no later than September 30 of each year beginning September 30, 1988. - (d) The employment activity report required by paragraph (a)(2) of this clause shall reflect total hires during the most recent 12-month period as of the ending date selected for the employment profile report required by paragraph (a)(1) of this clause. Contractors may select an ending date: (1) As of the end of any pay period during the period January through March 1st of the year the report is due, or (2) as of December 31, if the contractor has previous written approval from the Equal Employment Opportunity Commission to do so for purposes of submitting the Employer Information Report EEO-1 (Standard Form 100). - (e) The count of veterans reported according to paragraph (a) of this clause shall be based on voluntary disclosure. Each Contractor subject to the reporting requirements at 38 U.S.C. 4212 shall invite all disabled veterans and veterans of the Vietnam era who wish to benefit under the affirmative action program at 38 U.S.C. 4212 to identify themselves to the Contractor. The invitation shall state that the information is voluntarily provided; that the information will be kept confidential; that disclosure or refusal to provide the information will not subject the applicant or employee to any adverse treatment; and that the information will be used only in accordance with the regulations promulgated under 38 U.S.C. 4212. - (f) Subcontracts. The Contractor shall include the terms of this clause in every subcontract or purchase order of \$10,000 or more unless exempted by rules, regulations, or orders of the Secretary. (End of clause) ### 52.223-3 HAZARDOUS MATERIAL IDENTIFICATION AND MATERIAL SAFETY DATA (JAN 1997) - (a) "Hazardous material", as used in this clause, includes any material defined as hazardous under the latest version of Federal Standard No. 313 (including revisions adopted during the term of the contract). - (b) The offeror must list any hazardous material, as defined in paragraph (a) of this clause, to be delivered under this contract. The hazardous material shall be properly identified and include any applicable identification number, such as National Stock Number or Special Item Number. This information shall also be included on the Material Safety Data Sheet submitted under this contract. Material Identification No. (If none, | insert "None") | | | | |----------------|---------------|--|--| | | | | | | | | | | | | · | | | | | | | | - (c) This list must be updated during performance of the contract whenever the Contractor determines that any other material to be delivered under this contract is hazardous. - (d) The apparently successful offeror agrees to submit, for each item as required prior to award, a Material Safety Data Sheet, meeting the requirements of 29 CFR 1910.1200(g) and the latest version of Federal Standard No. 313, for all hazardous material identified in paragraph (b) of this clause. Data shall be submitted in accordance with Federal Standard No. 313, whether or not the apparently successful offeror is the actual manufacturer of these items. Failure to submit the Material Safety Data Sheet prior to award may result in the apparently successful offeror being considered nonresponsible and ineligible for award. - (e) If, after award, there is a change in the composition of the item(s) or a revision to Federal Standard No. 313, which renders incomplete or inaccurate the data submitted under paragraph (d) of this clause, the Contractor shall promptly notify the Contracting Officer and resubmit the data. - (f) Neither the requirements of this clause nor any act or failure to act by the Government shall relieve the Contractor of any responsibility or liability for the safety of Government, Contractor, or subcontractor personnel or property. - (g) Nothing contained in this clause shall relieve the Contractor from complying with applicable Federal, State, and local laws, codes, ordinances, and regulations (including the obtaining of licenses and permits) in connection with hazardous material. - (h) The Government's rights in data furnished under this contract with respect to hazardous material are as follows: - (1) To use, duplicate and disclose any data to which this clause is applicable. The purposes of this right are to- - (i) Apprise personnel of the hazards to which they may be exposed in using, handling, packaging, transporting, or disposing of hazardous materials; - (ii) Obtain medical treatment for those affected by the material; and - (iii) Have others use, duplicate, and disclose the data for the Government for these purposes. - (2) To use, duplicate, and disclose data furnished under this clause, in accordance with subparagraph (h)(1) of this clause, in precedence over any other clause of this contract providing for rights in data. - (3) The Government is not precluded from using similar or identical data acquired from other sources. (End of clause) # 52.223-5 POLLUTION PREVENTION AND RIGHT-TO-KNOW INFORMATION (APR 1998) (a) Executive Order 12856 of August 3, 1993, requires Federal facilities to comply with the provisions of the Emergency Planning and Community Right-to-Know Act of 1986 (EPCRA)(42 U.S.C. 11001-11050) and the Pollution Prevention Act of 1990 (PPA)(42 U.S.C. 13101-13109). (b) The Contractor shall provide all information needed by the Federal facility to comply with the emergency planning reporting requirements of Section 302 of EPCRA; the emergency notice requirements of Section 304 of EPCRA; the list of Material Safety Data Sheets required by Section 311 of EPCRA; the emergency and hazardous chemical inventory forms of Section 312 of EPCRA; the toxic chemical release inventory of Section 313 of EPCRA, which includes the reduction and recycling information required by Section 6607 of PPA; and the toxic chemical reduction goals requirements of Section 3-302 of Executive Order 12856. #### 52.223-6 DRUG-FREE WORKPLACE (JAN 1997) (a) Definitions. As used in this clause -- "Controlled substance" means a controlled substance in schedules I through V of section 202 of the Controlled Substances Act (21 U.S.C. 812) and as further defined in regulation at 21 CFR 1308.11 - 1308.15. "Conviction" means a finding of guilt (including a plea of nolo contendere) or imposition of sentence, or both, by any judicial body charged with the responsibility to deter- mine violations of the Federal or State criminal drug statutes. "Criminal drug statute" means a Federal or non-Federal criminal statute involving the manufacture, distribution, dispensing, possession, or use of any controlled substance. "Drug-free workplace" means the site(s) for the performance of work done by the Contractor in connection with a specific contract at which employees of the Contractor are prohibited from engaging in the unlawful manufacture, distribution, dispensing, possession, or use of a controlled substance. "Employee" means an employee of a Contractor directly engaged in the performance of work under a Government contract. "Directly engaged" is defined to include all direct cost employees and any other Contractor employee who has other than a minimal impact or involvement in contract performance. "Individual" means an offeror/contractor that has no more than one employee including the offeror/contractor. - (b) The Contractor, if other than an individual, shall-- within 30
days after award (unless a longer period is agreed to in writing for contracts of 30 days or more performance duration), or as soon as possible for contracts of less than 30 days performance duration-- - (1) Publish a statement notifying its employees that the unlawful manufacture, distribution, dispensing, possession, or use of a controlled substance is prohibited in the Contractor's workplace and specifying the actions that will be taken against employees for violations of such prohibition; - (2) Establish an ongoing drug-free awareness program to inform such employees about- - (i) The dangers of drug abuse in the workplace; - (ii) The Contractor's policy of maintaining a drug-free workplace; - (iii) Any available drug counseling, rehabilitation, and employee assistance programs; and - (iv) The penalties that may be imposed upon employees for drug abuse violations occurring in the workplace; - (3) Provide all employees engaged in performance of the contract with a copy of the statement required by subparagraph (b)(1) of this clause; - (4) Notify such employees in writing in the statement required by subparagraph (b)(1) of this clause that, as a condition of continued employment on this contract, the employee will-- - (i) Abide by the terms of the statement; and - (ii) Notify the employer in writing of the employee's conviction under a criminal drug statute for a violation occurring in the workplace no later than 5 days after such conviction. - (5) Notify the Contracting Officer in writing within 10 days after receiving notice under subdivision (b)(4)(ii) of this clause, from an employee or otherwise receiving actual notice of such conviction. The notice shall include the position title of the employee; - (6) Within 30 days after receiving notice under subdivision (b)(4)(ii) of this clause of a conviction, take one of the following actions with respect to any employee who is convicted of a drug abuse violation occurring in the workplace: - (i) Taking appropriate personnel action against such employee, up to and including termination; or - (ii) Require such employee to satisfactorily participate in a drug abuse assistance or rehabilitation program approved for such purposes by a Federal, State, or local health, law enforcement, or other appropriate agency; and - (7) Make a good faith effort to maintain a drug-free workplace through implementation of subparagraphs (b)(1) though (b)(6) of this clause. - (c) The Contractor, if an individual, agrees by award of the contract or acceptance of a purchase order, not to engage in the unlawful manufacture, distribution, dispensing, possession, or use of a controlled substance while performing this contract. - (d) In addition to other remedies available to the Government, the Contractor's failure to comply with the requirements of paragraph (b) or (c) of this clause may, pursuant to FAR 23.506, render the Contractor subject to suspension of contract payments, termination of the contract for default, and suspension or debarment. (End of clause) # 52.225-11 BUY AMERICAN ACT--BALANCE OF PAYMENTS PROGRAM--CONSTRUCTION MATERIALS UNDER TRADE AGREEMENTS (FEB 2000) (a) Definitions. As used in this clause-- Component means any article, material, or supply incorporated directly into construction materials. Construction material means an article, material, or supply brought to the construction site by the Contractor or subcontractor for incorporation into the building or work. The term also includes an item brought to the site preassembled from articles, materials, or supplies. However, emergency life safety systems, such as emergency lighting, fire alarm, and audio evacuation systems, that are discrete systems incorporated into a public building or work and that are produced as complete systems, are evaluated as a single and distinct construction material regardless of when or how the individual parts or components of those systems are delivered to the construction site. Materials purchased directly by the Government are supplies, not construction material. Cost of components means-- (1) For components purchased by the Contractor, the acquisition cost, including transportation costs to the place of incorporation into the end product (whether or not such costs are paid to a domestic firm), and any applicable duty (whether or not a duty-free entry certificate is issued); or (2) For components manufactured by the Contractor, all costs associated with the manufacture of the component, including transportation costs as described in paragraph (1) of this definition, plus allocable overhead costs, but excluding profit. Cost of components does not include any costs associated with the manufacture of the end product. Designated country means any of the following countries: Aruba, Austria, Bangladesh, Belgium, Benin, Bhutan, Botswana, Burkina Faso, Burundi, Canada, Cape Verde, Central African Republic, Chad, Comoros, Denmark. Djibouti, Equatorial Guinea, Finland, France, Gambia, Germany, Greece, Guinea, Guinea-Bissau, Haiti, Hong Kong, Ireland, Israel, Italy, Japan. Kiribati, Korea, Republic of, Lesotho, Liechtenstein, Luxembourg, Malawi, Maldives, Mali, Mozambique, Nepal, Netherlands, Niger, Norway, Portugal, Rwanda. Sao Tome and Principe, Sierra Leone, Singapore, Somalia, Spain, Sweden, Switzerland, Tanzania U.R., Togo, Tuvalu, Uganda, United Kingdom, Vanuatu, Western Samoa, Yemen. Designated country construction material means a construction material that- - (1) Is wholly the growth, product, or manufacture of a designated country; or - (2) In the case of a construction material that consists in whole or in part of materials from another country, has been substantially transformed in a designated country into a new and different construction material distinct from the materials from which it was transformed. Domestic construction material means-- - (1) An unmanufactured construction material mined or produced in the United States; or - (2) A construction material manufactured in the United States, if the cost of its components mined, produced, or manufactured in the United States exceeds 50 percent of the cost of all its components. Components of foreign origin of the same class or kind for which nonavailability determinations have been made are treated as domestic. Foreign construction material means a construction material other than a domestic construction material. North American Free Trade Agreement country means Canada or Mexico. North American Free Trade Agreement country construction material means a construction material that- - (1) Is wholly the growth, product, or manufacture of a North American Free Trade Agreement (NAFTA) country; or - (2) In the case of a construction material that consists in whole or in part of materials from another country, has been substantially transformed in a NAFTA country into a new and different construction material distinct from the materials from which it was transformed. United States means the 50 States and the District of Columbia, U.S. territories and possessions, Puerto Rico, the Northern Mariana Islands, and any other place subject to U.S. jurisdiction, but does not include leased bases. - (b) Construction materials. (1) This clause implements the Buy American Act (41 U.S.C. 10a-10d) and the Balance of Payments Program by providing a preference for domestic construction material. In addition, the Contracting Officer has determined that the Trade Agreements Act and the North American Free Trade Agreement (NAFTA) apply to this acquisition. Therefore, the Buy American Act and Balance of Payments Program restrictions are waived for designated country and NAFTA country construction materials. - (2) The Contractor shall use only domestic, designated country, or NAFTA country construction material in performing this contract, except as provided in paragraphs (b)(3) and (b)(4) of this clause. - (3) The requirement in paragraph (b)(2) of this clause does not apply to the construction materials or components listed by the Government as follows: [Contracting Officer to list applicable excepted materials or indicate "none"] - (4) The Contracting Officer may add other foreign construction material to the list in paragraph (b)(3) of this clause if the Government determines that-- - (i) The cost of domestic construction material would be unreasonable. The cost of a particular domestic construction material subject to the restrictions of the Buy American Act is unreasonable when the cost of such material exceeds the cost of foreign material by more than 6 percent. For determination of unreasonable cost under the Balance of Payments Program, the Contracting Officer will use a factor of 50 percent; - (ii) The application of the restriction of the Buy American Act or Balance of Payments Program to a particular construction material would be impracticable or inconsistent with the public interest; or - (iii) The construction material is not mined, produced, or manufactured in the United States in sufficient and reasonably available commercial quantities of a satisfactory quality. - (c) Request for determination of inapplicability of the Buy American Act or Balance of Payments Program. (1)(i) Any Contractor request to use foreign construction material in accordance with paragraph (b)(4) of this clause shall include adequate information for Government evaluation of the request, including-- - (A) A description of the foreign and domestic construction materials; - (B) Unit of measure; - (C) Quantity; - (D) Price; - (E) Time of delivery or availability; - (F) Location of the construction project; - (G) Name and address of the proposed supplier; and - (H) A detailed justification of the reason for use of foreign construction materials cited in accordance with paragraph (b)(3) of this clause. - (ii) A request based on unreasonable cost shall include a reasonable survey of the market and a completed price comparison table in the format in paragraph (d) of this
clause. - (iii) The price of construction material shall include all delivery costs to the construction site and any applicable duty (whether or not a duty-free certificate may be issued). - (iv) Any Contractor request for a determination submitted after contract award shall explain why the Contractor could not reasonably foresee the need for such determination and could not have requested the determination before contract award. If the Contractor does not submit a satisfactory explanation, the Contracting Officer need not make a determination. - (2) If the Government determines after contract award that an exception to the Buy American Act or Balance of Payments Program applies and the Contracting Officer and the Contractor negotiate adequate consideration, the Contracting Officer will modify the contract to allow use of the foreign construction material. However, when the basis for the exception is the unreasonable price of a domestic construction material, adequate consideration is not less than the differential established in paragraph (b)(4)(i) of this clause. - (3) Unless the Government determines that an exception to the Buy American Act or Balance of Payments Program applies, use of foreign construction material is noncompliant with the Buy American Act or Balance of Payments Program. - (d) Data. To permit evaluation of requests under paragraph (c) of this clause based on unreasonable cost, the Contractor shall include the following information and any applicable supporting data based on the survey of suppliers: | Foreign and Domesti | c Construction Materia | als Price Compar | rison | |---|------------------------|------------------|---------------------| | Construction material description | | • | Price (dollars) \1\ | | Item 1: | | | | | Foreign construction material | | | | | Domestic construction material | | | | | Item 2: | | | | | Foreign construction material | | | | | Domestic construction material | | | | | \1\ Include all delivery costs to the coentry certificate is issued). | | | | free List name, address, telephone number, and contact for suppliers surveyed. Attach copy of response; if oral, attach summary. Include other applicable supporting information. (End of clause) # 52.226-1 UTILIZATION OF INDIAN ORGANIZATIONS AND INDIAN-OWNED ECONOMIC ENTERPRISES (FEB 2000) - (a) For Department of Defense contracts, this clause applies only if the contract includes a subcontracting plan incorporated under the terms of the clause at 52.219-9, Small Business Subcontracting Plan. It does not apply to contracts awarded based on a subcontracting plan submitted and approved under paragraph (g) of the clause at 52.219-9. - (b) Definitions. As used in this clause: "Indian" means any person who is a member of any Indian tribe, band, group, pueblo or community which is recognized by the Federal Government as eligible for services from the Bureau of Indian Affairs (BIA) in accordance with 25 U.S.C. 1452(c) and any "Native" as defined in the Alaska Native Claims Settlement Act (43 U.S.C. 1601). "Indian organization" means the governing body of any Indian tribe or entity established or recognized by the governing body of an Indian tribe for the purposes of 25 U.S.C., chapter 17. "Indian-owned economic enterprise" means any Indian-owned (as determined by the Secretary of the Interior) commercial, industrial, or business activity established or organized for the purpose of profit, provided that Indian ownership shall constitute not less than 51 percent of the enterprise. "Indian tribe" means any Indian tribe, band, group, pueblo or community, including native villages and native groups (including corporations organized by Kenai, Juneau, Sitka, and Kodiak) as defined in the Alaska Native Claims Settlement Act, which is recognized by the Federal Government as eligible for services from BIA in accordance with 25 U.S.C. 1542(c). "Interested party" means a prime contractor or an actual or prospective offeror whose direct economic interest would be affected by the award of a subcontract or by the failure to award a subcontract. - (c)The Contractor agrees to use its best efforts to give Indian organizations and Indian-owned economic enterprises (25 U.S.C. 1544) the maximum practicable opportunity to participate in the subcontracts it awards to the fullest extent consistent with efficient performance of its contract. - (1) The Contracting Officer and the Contractor, acting in good faith, may rely on the representation of an Indian organization or Indian-owned economic enterprise as to its eligibility, unless an interested party challenges its status or the Contracting Officer has independent reason to question that status. In the event of a challenge to the representation of a subcontractor, the Contracting Officer shall refer the matter to the U.S. Department of the Interior, Bureau of Indian Affairs (BIA), Attn: Chief, Division of Contracting and Grants Administration, 1849 C Street, NW, MS-334A-SIB, Washington, DC 20245. The BIA will determine the eligibility and notify the Contracting Officer. The 5 percent incentive payment will not be made within 50 working days of subcontract award or while a challenge is pending. If a subcontractor is determined to be an ineligible participant, no incentive payment will be made under the Indian Incentive Program. - (2) The Contractor may request an adjustment under the Indian Incentive Program to the following: - (i) The estimated cost of a cost-type contract. - (ii) The target cost of a cost-plus-incentive-fee prime contract. - (iii) The target cost and ceiling price of a fixed-price incentive prime contract. - (iv) The price of a firm-fixed-price prime contract. - (3) The amount of the equitable adjustment to the prime contract shall be 5 percent of the estimated cost, target cost or firm-fixed-price included in the subcontract initially awarded to the Indian organization or Indian-owned economic enterprise. - (4) The Contractor has the burden of proving the amount claimed and must assert its request for an adjustment prior to completion of contract performance. - (d) T The Contracting Officer, subject to the terms and conditions of the contract and the availability of funds, will authorize an incentive payment of 5 percent of the amount paid to the subcontractor. The Contracting Officer will seek funding in accordance with agency procedures. (End of clause) # 52.227-1 AUTHORIZATION AND CONSENT (JUL 1995) (a) The Government authorizes and consents to all use and manufacture, in performing this contract or any subcontract at any tier, of any invention described in and covered by a United States patent (1) embodied in the structure or composition of any article the delivery of which is accepted by the Government under this contract or (2) used in machinery, tools, or methods whose use necessarily results from compliance by the Contractor or a subcontractor with (i) specifications or written provisions forming a part of this contract or (ii) specific written instructions given by the Contracting Officer directing the manner of performance. The entire liability to the Government for infringement of a patent of the United States shall be determined solely by the provisions of the indemnity clause, if any, included in this contract or any subcontract hereunder (including any lower-tier subcontract), and the Government assumes liability for all other infringement to the extent of the authorization and consent hereinabove granted. (b) The Contractor agrees to include, and require inclusion of, this clause, suitably modified to identify the parties, in all subcontracts at any tier for supplies or services (including construction, architect-engineer services, and materials, supplies, models, samples, and design or testing services expected to exceed the simplified acquisition threshold (however, omission of this clause from any subcontract, including those at or below the simplified acquisition threshold, does not affect this authorization and consent.) # 52.227-2 NOTICE AND ASSISTANCE REGARDING PATENT AND COPYRIGHT INFRINGEMENT (AUG 1996) - (a) The Contractor shall report to the Contracting Officer, promptly and in reasonable written detail, each notice or claim of patent or copyright infringement based on the performance of this contract of which the Contractor has knowledge. - (b) In the event of any claim or suit against the Government on account of any alleged patent or copyright infringement arising out of the performance of this contract or out of the use of any supplies furnished or work or services performed under this contract, the Contractor shall furnish to the Government, when requested by the Contracting Officer, all evidence and information in possession of the Contractor pertaining to such suit or claim. Such evidence and information shall be furnished at the expense of the Government except where the Contractor has agreed to indemnify the Government. - (c) The Contractor agrees to include, and require inclusion of, this clause in all subcontracts at any tier for supplies or services (including construction and architect-engineer subcontracts and those for material, supplies, models, samples, or design or testing services) expected to exceed the simplified acquisition threshold at (FAR) 2.101.to exceed the dollar amount set forth in 13.000 of the Federal Acquisition Regulation (FAR). (End of clause) ## 52.227-4 PATENT INDEMNITY--CONSTRUCTION CONTRACTS (APR 1984) Except as otherwise provided, the Contractor agrees to indemnify the Government and its officers, agents, and employees against liability, including costs and expenses, for infringement upon any United States patent (except a patent issued upon an application that is now or may hereafter be withheld from issue pursuant to a Secrecy Order under 35 U.S.C. 181) arising out of performing this contract or out of the use or disposal by or for the
account of the Government of supplies furnished or work performed under this contract. #### 252.227-7003 TERMINATION (AUG 1984) Notwithstanding any other provision of this contract, the Government shall have the right to terminate the within license, in whole or in part, by giving the Contractor not less than thirty (30) days notice in writing of the date such termination is to be effective; provided, however, that such termination shall not affect the obligation of the Government to pay royalties which have accrued prior to the effective date of such termination. (End of clause) #### 52.228-15 PERFORMANCE AND PAYMENT BONDS--CONSTRUCTION (SEP 1996)- (a) Definitions. As used in this clause-- Contract price means the award price of the contract or, for requirements contracts, the price payable for the estimated quantity; or for indefinite-delivery type contracts, the price payable for the specified minimum quantity. - (b) Unless the resulting contract price is \$100,000 or less, the successful offeror shall be required to furnish performance and payment bonds to the Contracting Officer as follows: - (1) Performance Bonds (Standard Form 25): (i) The penal amount of performance bonds shall be 100 percent of the original contract price. - (ii) The Government may require additional performance bond protection when the contract price is increased. The increase in protection shall generally equal 100 percent of the increase in contract price. - (iii) The Government may secure additional protection by directing the Contractor to increase the penal amount of the existing bond or to obtain an additional bond. - (2) Payment Bonds (Standard Form 25-A): - (i) The penal amount of payment bonds shall equal-- - (A) 50 percent of the contract price if the contract price is not more than \$1 million; - (B) 40 percent of the contract price if the contract price is more than \$1 million but not more than \$5 million; or - (C) \$2.5 million if the contract price is more than \$5 million. - (ii) If the original contract price is \$5 million or less, the Government may require additional protection if the contract price is increased. The penal amount of the total protection shall meet the requirement of subparagraph (b)(2)(i) of this clause. - (iii) The Government may secure additional protection by directing the Contractor to increase the penal sum of the existing bond or to obtain an additional bond. - (c) The Contractor shall furnish all executed bonds, including any necessary reinsurance agreements, to the Contracting Officer, within the time period specified in the Bid Guarantee provision of the solicitation, or otherwise specified by the Contracting Officer, but in any event, before starting work. - (d) The bonds shall be in the form of firm commitment, supported by corporate sureties whose names appear on the list contained in Treasury Department Circular 570, individual sureties, or by other acceptable security such as postal money order, certified check, cashier's check, irrevocable letter of credit, or, in accordance with Treasury Department regulations, certain bonds or notes of the United States. Treasury Circular 570 is published in the Federal Register, or may be obtained from the U.S. Department of Treasury, Financial Management Service, Surety Bond Branch, 401 14th Street, NW., 2nd Floor, West Wing, Washington, DC 20227. # 52.228-14 IRREVOCABLE LETTER OF CREDIT (DEC 1999) - (a) "Irrevocable letter of credit" (ILC), as used in this clause, means a written commitment by a federally insured financial institution to pay all or part of a stated amount of money, until the expiration date of the letter, upon presentation by the Government (the beneficiary) of a written demand therefor. Neither the financial institution nor the offeror/Contractor can revoke or condition the letter of credit. - (b) If the offeror intends to use an ILC in lieu of a bid bond, or to secure other types of bonds such as performance and payment bonds, the letter of credit and letter of confirmation formats in paragraphs (e) and (f) of this clause shall be used. - (c) The letter of credit shall be irrevocable, shall require presentation of no document other than a written demand and the ILC (including confirming letter, if any), shall be issued/confirmed by an acceptable federally insured financial institution as provided in paragraph (d) of this clause, and-- - (1) If used as a bid guarantee, the ILC shall expire no earlier than 60 days after the close of the bid acceptance period; - (2) If used as an alternative to corporate or individual sureties as security for a performance or payment bond, the offeror/Contractor may submit an ILC with an initial expiration date estimated to cover the entire period for which financial security is required or may submit an ILC with an initial expiration date that is a minimum period of one year from the date of issuance. The ILC shall provide that, unless the issuer provides the beneficiary written notice of non-renewal at least 60 days in advance of the current expiration date, the ILC is automatically extended without amendment for one year from the expiration date, or any future expiration date, until the period of required coverage is completed and the Contracting Officer provides the financial institution with a written statement waiving the right to payment. The period of required coverage shall be: - (i) For contracts subject to the Miller Act, the later of-- - (A) One year following the expected date of final payment; - (B) For performance bonds only, until completion of any warranty period; or - (C) For payment bonds only, until resolution of all claims filed against the payment bond during the one-year period following final payment. - (ii) For contracts not subject to the Miller Act, the later of-- - (A) 90 days following final payment; or - (B) For performance bonds only, until completion of any warranty period. - (d) Only federally insured financial institutions rated investment grade or higher shall issue or confirm the ILC. The offeror/Contractor shall provide the Contracting Officer a credit rating that indicates the financial institution has the required rating(s) as of the date of issuance of the ILC. Unless the financial institution issuing the ILC had letter of credit business of less than \$25 million in the past year, ILCs over \$5 million must be confirmed by another acceptable financial institution that had letter of credit business of less than \$25 million in the past year. ILC: | e) The following format shall be used by the issuing financial institution to create an | |---| | Issuing Financial Institution's Letterhead or Name and Address] | | ssue Date | | RREVOCABLE LETTER OF CREDIT NO | | account party's name | | account party's address | | For Solicitation No(for reference only) | TO: [U.S. Government agency] | [U.S. Government agency's address] | |--| | 1. We hereby establish this irrevocable and transferable Letter of Credit in your favor for one or more drawings up to United States \$ This Letter of Credit is payable at [issuing financial institution's and, if any, confirming financial institution's] office at [issuing financial institution's address and, if any, confirming financial institution's address] and expires with our close of business on, or any automatically extended expiration date. | | 2. We hereby undertake to honor your or the transferee's sight draft(s) drawn on the issuing or, if any, the confirming financial institution, for all or any part of this credit if presented with this Letter of Credit and confirmation, if any, at the office specified in paragraph 1 of this Letter of Credit on or before the expiration date or any automatically extended expiration date. | | 3. [This paragraph is omitted if used as a bid guarantee, and subsequent paragraphs are renumbered.] It is a condition of this Letter of Credit that it is deemed to be automatically extended without amendment for one year from the expiration date hereof, or any future expiration date, unless at least 60 days prior to any expiration date, we notify you or the transferee by registered mail, or other receipted means of delivery, that we elect not to consider this Letter of Credit renewed for any such additional period. At the time we notify you, we also agree to notify the account party (and confirming financial institution, if any) by the same means of delivery. | | 4. This Letter of Credit is transferable. Transfers and assignments of proceeds are to be effected without charge to either the beneficiary or the transferee/assignee of proceeds. Such transfer or assignment shall be only at the written direction of the Government (the beneficiary) in a form satisfactory to the issuing financial institution and the confirming financial institution, if any. | | 5. This Letter of Credit is subject to the Uniform Customs and Practice (UCP) for Documentary Credits, 1993 Revision, International Chamber of Commerce Publication No. 500, and to the extent not inconsistent therewith, to the laws of [state of confirming financial institution, if any, otherwise state of issuing financial institution]. | | 6. If this credit expires during an interruption of business of this
financial institution as described in Article 17 of the UCP, the financial institution specifically agrees to effect payment if this credit is drawn against within 30 days after the resumption of our business. | | Sincerely, | | [Issuing financial institution] | | (f) The following format shall be used by the financial institution to confirm an ILC: | | [Confirming Financial Institution's Letterhead or Name and Address] | | (Date) | | Our Letter of Credit Advice Number | | Beneficiary: [U.S. Government agency] | | Issuing Financial Institution: | | Issuing Financial Institution's LC No.: | | Gentlemen: | |--| | 1. We hereby confirm the above indicated Letter of Credit, the original of which is attached, issued by | | 2. Draft(s) drawn under the Letter of Credit and this Confirmation are payable at our office located at | | 3. We hereby undertake to honor sight draft(s) drawn under and presented with the Letter of Credit and this Confirmation at our offices as specified herein. | | 4. [This paragraph is omitted if used as a bid guarantee, and subsequent paragraphs are renumbered.] It is a condition of this confirmation that it be deemed automatically extended without amendment for one year from the expiration date hereof, or any automatically extended expiration date, unless: | | (a) At least 60 days prior to any such expiration date, we shall notify the Contracting Officer, or the transferee and the issuing financial institution, by registered mail or other receipted means of delivery, that we elect not to consider this confirmation extended for any such additional period; or | | (b) The issuing financial institution shall have exercised its right to notify you or the transferee, the account party, and ourselves, of its election not to extend the expiration date of the Letter of Credit. | | 5. This confirmation is subject to the Uniform Customs and Practice (UCP) for Documentary Credits, 1993 Revision, International Chamber of Commerce Publication No. 500, and to the extent not inconsistent therewith, to the laws of [state of confirming financial institution]. | | 6. If this confirmation expires during an interruption of business of this financial institution as described in Article 17 of the UCP, we specifically agree to effect payment if this credit is drawn against within 30 days after the resumption of our business. | | Sincerely, | | [Confirming financial institution] | | (g) The following format shall be used by the Contracting Officer for a sight draft to draw on the Letter of Credit: | | SIGHT DRAFT | | [City, State] | | (Date) | | [Name and address of financial institution] | | Pay to the order of [Beneficiary Agency] the sum of United States \$ | | This draft is drawn under Irrevocable Letter of Credit No | | [Beneficiary Agency] | | | |----------------------|--|--| | Ву: | | | | (End of clause) | | | #### 52.228-12 PROSPECTIVE SUBCONTRACTOR REQUESTS FOR BONDS. (OCT 1995) In accordance with Section 806(a)(3) of Pub. L. 102-190, as amended by Sections 2091 and 8105 of Pub. L. 103-355, upon the request of a prospective subcontractor or supplier offering to furnish labor or material for the performance of this contract for which a payment bond has been furnished to the Government pursuant to the Miller Act, the Contractor shall promptly provide a copy of such payment bond to the requester. #### 52.228-11 PLEDGES OF ASSETS (FEB 1992) - (a) Offerors shall obtain from each person acting as an individual surety on a bid guarantee, a performance bond, or a payment bond-- - (1) Pledge of assets; and - (2) Standard Form 28, Affidavit of Individual Surety. - (b) Pledges of assets from each person acting as an individual surety shall be in the form of- - (1) Evidence of an escrow account containing cash, certificates of deposit, commercial or Government securities, or other assets described in FAR 28.203-2 (except see 28.203-2(b)(2) with respect to Government securities held in book entry form) and/or; - (2) A recorded lien on real estate. The offeror will be required to provide-- - (i) Evidence of title in the form of a certificate of title prepared by a title insurance company approved by the United States Department of Justice. This title evidence must show fee simple title vested in the surety along with any concurrent owners; whether any real estate taxes are due and payable; and any recorded encumbrances against the property, including the lien filed in favor of the Government as required by FAR 28.203-3(d); - (ii) Evidence of the amount due under any encumbrance shown in the evidence of title; - (iii) A copy of the current real estate tax assessment of the property or a current appraisal dated no earlier than 6 months prior to the date of the bond, prepared by a professional appraiser who certifies that the appraisal has been conducted in accordance with the generally accepted appraisal standards as reflected in the Uniform Standards of Professional Appraisal Practice, as promulgated by the Appraisal Foundation. (End of clause) # 52.228-5 INSURANCE--WORK ON A GOVERNMENT INSTALLATION (JAN 1997) - (a) The Contractor shall, at its own expense, provide and maintain during the entire performance of this contract, at least the kinds and minimum amounts of insurance required in the Schedule or elsewhere in the contract. - (b) Before commencing work under this contract, the Contractor shall notify the Contracting Officer in writing that the required insurance has been obtained. The policies evidencing required insurance shall contain an endorsement to the effect that any cancellation or any material change adversely affecting the Government's interest shall not be effective (1) for such period as the laws of the State in which this contract is to be performed prescribe, or (2) until 30 days after the insurer or the Contractor gives written notice to the Contracting Officer, whichever period is longer. (c) The Contractor shall insert the substance of this clause, including this paragraph (c), in subcontracts under this contract that require work on a Government installation and shall require subcontractors to provide and maintain the insurance required in the Schedule or elsewhere in the contract. The Contractor shall maintain a copy of all subcontractors' proofs of required insurance, and shall make copies available to the Contracting Officer upon request. (End of clause) #### 52.228-2 ADDITIONAL BOND SECURITY (OCT 1997) The Contractor shall promptly furnish additional security required to protect the Government and persons supplying labor or materials under this contract if-- - (a) Any surety upon any bond, or issuing financial institution for other security, furnished with this contract becomes unacceptable to the Government. - (b) Any surety fails to furnish reports on its financial condition as required by the Government; - (c) The contract price is increased so that the penal sum of any bond becomes inadequate in the opinion of the Contracting Officer; or - (d) An irrevocable letter of credit (ILC) used as security will expire before the end of the period of required security. If the Contractor does not furnish an acceptable extension or replacement ILC, or other acceptable substitute, at least 30 days before an ILC's scheduled expiration, the Contracting officer has the right to immediately draw on the ILC. #### 52.229-3 FEDERAL, STATE, AND LOCAL TAXES (JAN 1991) - (a) "Contract date," as used in this clause, means the date set for bid opening or, if this is a negotiated contract or a modification, the effective date of this contract or modification. - "All applicable Federal, State, and local taxes and duties," as used in this clause, means all taxes and duties, in effect on the contract date, that the taxing authority is imposing and collecting on the transactions or property covered by this contract. - "After-imposed Federal tax," as used in this clause, means any new or increased Federal excise tax or duty, or tax that was exempted or excluded on the contract date but whose exemption was later revoked or reduced during the contract period, on the transactions or property covered by this contract that the Contractor is required to pay or bear as the result of legislative, judicial, or administrative action taking effect after the contract date. It does not include social security tax or other employment taxes. - "After-relieved Federal tax," as used in this clause, means any amount of Federal excise tax or duty, except social security or other employment taxes, that would otherwise have been payable on the transactions or property covered by this contract, but which the Contractor is not required to pay or bear, or for which the Contractor obtains a refund or drawback, as the result of legislative, judicial, or administrative action taking effect after the contract date. - (b) The contract price includes all applicable Federal, State, and local taxes and duties. - (c) The contract price shall be increased by the amount of any after-imposed Federal tax, provided the Contractor warrants in writing that no amount for such newly imposed Federal excise tax or duty or rate increase was included in the contract price, as a contingency reserve or otherwise. - (d) The contract price shall be decreased by the amount of any after-relieved Federal tax. - (e) The contract price shall be decreased by the amount of any Federal excise tax or duty, except social security or other employment taxes, that the Contractor is required to pay or bear, or does not obtain a refund of, through the Contractor's fault, negligence, or failure to follow instructions of the Contracting Officer. - (f) No adjustment shall be made in the
contract price under this clause unless the amount of the adjustment exceeds \$250. - (g) The Contractor shall promptly notify the Contracting Officer of all matters relating to any Federal excise tax or duty that reasonably may be expected to result in either an increase or decrease in the contract price and shall take appropriate action as the Contracting Officer directs. - (h) The Government shall, without liability, furnish evidence appropriate to establish exemption from any Federal, State, or local tax when the Contractor requests such evidence and a reasonable basis exists to sustain the exemption. (End of clause) #### 52.229-5 TAXES--CONTRACTS PERFORMED IN U.S. POSSESSIONS OR PUERTO RICO (APR 1984) The term "local taxes," as used in the Federal, State, and local taxes clause of this contract, includes taxes imposed by a possession of the United States or by Puerto Rico. (End of clause) # 52.230-2 COST ACCOUNTING STANDARDS (APR 1998) - (a) Unless the contract is exempt under 48 CFR 9903.201-1 and 9903.201-2, the provisions of 48 CFR Part 9903 are incorporated herein by reference and the Contractor, in connection with this contract, shall-- - (1) (CAS-covered Contracts Only) By submission of a Disclosure Statement, disclose in writing the Contractor's cost accounting practices as required by 48 CFR 9903.202-1 through 9903.202-5, including methods of distinguishing direct costs from indirect costs and the basis used for allocating indirect costs. The practices disclosed for this contract shall be the same as the practices currently disclosed and applied on all other contracts and subcontracts being performed by the Contractor and which contain a Cost Accounting Standards (CAS) clause. If the Contractor has notified the Contracting Officer that the Disclosure Statement contains trade secrets and commercial or financial information which is privileged and confidential, the Disclosure Statement shall be protected and shall not be released outside of the Government. - (2) Follow consistently the Contractor's cost accounting practices in accumulating and reporting contract performance cost data concerning this contract. If any change in cost accounting practices is made for the purposes of any contract or subcontract subject to CAS requirements, the change must be applied prospectively to this contract and the Disclosure Statement must be amended accordingly. If the contract price or cost allowance of this contract is affected by such changes, adjustment shall be made in accordance with subparagraph (a)(4) or (a)(5) of this clause, as appropriate. - (3) Comply with all CAS, including any modifications and interpretations indicated thereto contained in 48 CFR Part 9904, in effect on the date of award of this contract or, if the Contractor has submitted cost or pricing data, on the date of final agreement on price as shown on the Contractor's signed certificate of current cost or pricing data. The Contractor shall also comply with any CAS (or modifications to CAS) which hereafter become applicable to a contract or subcontract of the Contractor. Such compliance shall be required prospectively from the date of applicability to such contract or subcontract. - (4)(i) Agree to an equitable adjustment as provided in the Changes clause of this contract if the contract cost is affected by a change which, pursuant to subparagraph (a)(3) of this clause, the Contractor is required to make to the Contractor's established cost accounting practices. - (ii) Negotiate with the Contracting Officer to determine the terms and conditions under which a change may be made to a cost accounting practice, other than a change made under other provisions of subparagraph (a)(4) of this clause; provided that no agreement may be made under this provision that will increase costs paid by the United States. - (iii) When the parties agree to a change to a cost accounting practice, other than a change under subdivision (a)(4)(i) of this clause, negotiate an equitable adjustment as provided in the Changes clause of this contract. - (5) Agree to an adjustment of the contract price or cost allowance, as appropriate, if the Contractor or a subcontractor fails to comply with an applicable Cost Accounting Standard, or to follow any cost accounting practice consistently and such failure results in any increased costs paid by the United States. Such adjustment shall provide for recovery of the increased costs to the United States, together with interest thereon computed at the annual rate established under section 6621 of the Internal Revenue Code of 1986 (26 U.S.C. 6621) for such period, from the time the payment by the United States was made to the time the adjustment is effected. In no case shall the Government recover costs greater than the increased cost to the Government, in the aggregate, on the relevant contracts subject to the price adjustment, unless the Contractor made a change in its cost accounting practices of which it was aware or should have been aware at the time of price negotiations and which it failed to disclose to the Government. - (b) If the parties fail to agree whether the Contractor or a subcontractor has complied with an applicable CAS in 48 CFR 9904 or a CAS rule or regulation in 48 CFR 9903 and as to any cost adjustment demanded by the United States, such failure to agree will constitute a dispute under the Contract Disputes Act (41 U.S.C. 601). - (c) The Contractor shall permit any authorized representatives of the Government to examine and make copies of any documents, papers, or records relating to compliance with the requirements of this clause. - (d) The Contractor shall include in all negotiated subcontracts which the Contractor enters into, the substance of this clause, except paragraph (b), and shall require such inclusion in all other subcontracts, of any tier, including the obligation to comply with all CAS in effect on the subcontractor's award date or if the subcontractor has submitted cost or pricing data, on the date of final agreement on price as shown on the subcontractor's signed Certificate of Current Cost or Pricing Data. If the subcontract is awarded to a business unit which pursuant to 48 CFR 9903.201-2 is subject to other types of CAS coverage, the substance of the applicable clause set forth in subsection 30.201-4 of the Federal Acquisition Regulation shall be inserted. This requirement shall apply only to negotiated subcontracts in excess of \$500,000, except that the requirement shall not apply to negotiated subcontracts otherwise exempt from the requirement to include a CAS clause as specified in 48 CFR 9903.201-1. #### 52.230-3 DISCLOSURE AND CONSISTENCY OF COST ACCOUNTING PRACTICES (APR 1998) - (a) The Contractor, in connection with this contract, shall-- - (1) Comply with the requirements of 48 CFR 9904.401, Consistency in Estimating, Accumulating, and Reporting Costs; 48 CFR 9904.402, Consistency in Allocating Costs Incurred for the Same Purpose; 48 CFR 9904.405, Accounting for Unallowable Costs; and 48 CFR 9904.406, Cost Accounting Standard--Cost Accounting Period, in effect on the date of award of this contract as indicated in 48 CFR Part 9904. - (2) (CAS-covered Contracts Only) If it is a business unit of a company required to submit a Disclosure Statement, disclose in writing its cost accounting practices as required by 48 CFR 9903.202-1 through 9903.202-5. If the Contractor has notified the Contracting Officer that the Disclosure Statement contains trade secrets and commercial or financial information which is privileged and confidential, the Disclosure Statement shall be protected and shall not be released outside of the Government. - (3)(i) Follow consistently the Contractor's cost accounting practices. A change to such practices may be proposed, however, by either the Government or the Contractor, and the Contractor agrees to negotiate with the Contracting Officer the terms and conditions under which a change may be made. After the terms and conditions under which the change is to be made have been agreed to, the change must be applied prospectively to this contract, and the Disclosure Statement, if affected, must be amended accordingly. - (ii) The Contractor shall, when the parties agree to a change to a cost accounting practice and the Contracting Officer has made the finding required in 48 CFR 9903.201-6(b), that the change is desirable and not detrimental to the interests of the Government, negotiate an equitable adjustment as provided in the Changes clause of this contract. In the absence of the required finding, no agreement may be made under this contract clause that will increase costs paid by the United States. - (4) Agree to an adjustment of the contract price or cost allowance, as appropriate, if the Contractor or a subcontractor fails to comply with the applicable CAS or to follow any cost accounting practice, and such failure results in any increased costs paid by the United States. Such adjustment shall provide for recovery of the increased costs to the United States together with interest thereon computed at the annual rate of interest established under the Internal Revenue Code of 1986 (26 U.S.C. 6621), from the time the payment by the United States was made to the time the adjustment is effected. - (b) If the parties fail to agree whether the Contractor has complied with an applicable CAS, rule, or regulation as specified in 48 CFR 9903 and 9904 and as to any cost adjustment demanded by the United States, such failure to agree will constitute a dispute under the Contract Disputes Act (41 U.S.C. 601). - (c) The Contractor shall permit any authorized representatives of the Government to examine and make copies of any documents, papers, and records relating to compliance with the requirements of this clause. - (d) The Contractor shall include in all negotiated subcontracts, which the Contractor enters into, the substance of this clause, except paragraph (b), and shall
require such inclusion in all other subcontracts of any tier, except that-- - (1) If the subcontract is awarded to a business unit which pursuant to 48 CFR 9903.201-2 is subject to other types of CAS coverage, the substance of the applicable clause set forth in subsection 30.201-4 of the Federal Acquisition Regulation shall be inserted. - (2) This requirement shall apply only to negotiated subcontracts in excess of \$500,000. - (3) The requirement shall not apply to negotiated subcontracts otherwise exempt from the requirement to include a CAS clause as specified in 48 CFR 9903.201-1. ## 52.230-6 ADMINISTRATION OF COST ACCOUNTING STANDARDS (NOV 1999) For the purpose of administering the Cost Accounting Standards (CAS) requirements under this contract, the Contractor shall take the steps outlined in paragraphs (a) through (g) of this clause: - (a) Submit to the Contracting Officer a description of any cost accounting practice change, the total potential impact of the change on contracts containing a CAS clause, and a general dollar magnitude of the change which identifies the potential shift of costs between CAS-covered contracts by contract type (i.e., firm-fixed-price, incentive, cost-plus-fixed fee, etc.) and other contractor business activity. As related to CAS-covered contracts, the analysis should identify the potential impact on funds of the various Agencies/Departments (i.e., Department of Energy, National Aeronautics and Space Administration, Army, Navy, Air Force, other Department of Defense, other Government) as follows: - (1) For any change in cost accounting practices required in accordance with subparagraph (a)(3) and subdivision (a)(4)(i) of the clause at FAR 52.230-2, Cost Accounting Standards; or subparagraph (a)(3) and subdivisions (a)(4)(i) or (a)(4)(iv) of the clause at FAR 52.230-5, Cost Accounting Standards-Educational Institution; within 60 days (or such other date as may be mutually agreed to) after award of a contract requiring this change. - (2) For any change in cost accounting practices proposed in accordance with subdivision (a)(4)(ii) or (iii) of the clauses at FAR 52.230-2, Cost Accounting Standards, and FAR 52.230-5, Cost Accounting Standards-Educational Institution; or with subparagraph (a)(3) of the clause at FAR 52.230-3, Disclosure and Consistency of Cost Accounting Practices, not less than 60 days (or such other date as may be mutually agreed to) before the effective date of the proposed change. - (3) For any failure to comply with an applicable CAS or to follow a disclosed practice (as contemplated by subparagraph (a)(5) at FAR 52.230-2, Cost Accounting Standards, and FAR 52.230-5, Cost Accounting Standards-Educational Institution; or by subparagraph (a)(4) at FAR 52.230-3, Disclosure and Consistency of Cost Accounting Practices): - (i) Within 60 days (or such other date as may be mutually agreed to) after the date of agreement with the initial finding of noncompliance, or - (ii) In the event of Contractor disagreement with the initial finding of noncompliance, within 60 days of the date the Contractor is notified by the Contracting Officer of the determination of noncompliance. - (b) After an ACO, or cognizant Federal agency official, determination of materiality, submit a cost impact proposal in the form and manner specified by the Contracting Officer within 60 days (or such other date as may be mutually agreed to) after the date of determination of the adequacy and compliance of a change submitted pursuant to paragraph (a) of this clause. The cost impact proposal shall be in sufficient detail to permit evaluation, determination, and negotiation of the cost impact upon each separate CAS-covered contract and subcontract. - (1) Cost impact proposals submitted for changes in cost accounting practices required in accordance with subparagraph (a)(3) and subdivision (a)(4)(i) of the clause at FAR 52.230-2, Cost Accounting Standards; or subparagraph (a)(3) and subdivisions (a)(4)(i) or (a)(4)(iv) of the clause at FAR 52.230-5, Cost Accounting Standards-Educational Institution; shall identify the applicable standard or cost principle and all contracts and subcontracts containing the clauses entitled Cost Accounting Standards or Cost Accounting Standards-Educational Institution, which have an award date before the effective date of that standard or cost principle. - (2) Cost impact proposals submitted for any change in cost accounting practices proposed in accordance with subdivisions (a)(4) (ii) or (iii) of the clauses at FAR 52.230-2, Cost Accounting Standards, and FAR 52.230-5, Cost Accounting Standards-Educational Institution; or with subparagraph (a)(3) of the clause at FAR 52.230-3, Disclosure and Consistency of Cost Accounting Practices; shall identify all contracts and subcontracts containing the clauses at FAR 52.230-2, Cost Accounting Standards, FAR 52.230-5, Cost Accounting Standards-Educational Institution, and FAR 52.230-3, Disclosure and Consistency of Cost Accounting Practices. - (3) Cost impact proposals submitted for failure to comply with an applicable CAS or to follow a disclosed practice as contemplated by subparagraph (a)(5) of the clauses at FAR 52.230-2, Cost Accounting Standards, and FAR 52.230-5, Cost Accounting Standards-Educational Institution; or by subparagraph (a)(4) of the clause at FAR 52.230-3, Disclosure and Consistency of Cost Accounting Practices, shall identify the cost impact on each separate CAS covered contract from the date of failure to comply until the noncompliance is corrected. - (c) If the submissions required by paragraphs (a) and (b) of this clause are not submitted within the specified time, or any extension granted by the Contracting Officer, an amount not to exceed 10 percent of each subsequent amount determined payable related to the Contractor's CAS-covered prime contracts, up to the estimated general dollar magnitude of the cost impact, may be withheld until such time as the required submission has been provided in the form and manner specified by the Contracting Officer. - (d) Agree to appropriate contract and subcontract amendments to reflect adjustments established in accordance with subparagraphs (a)(4) and (a)(5) of the clauses at FAR 52.230-2 and 52.230-5 or with subparagraphs (a)(3) or (a)(4) of the Disclosure and Consistency of Cost Accounting Practices clause at FAR 52.230-3. - (e) For all subcontracts subject to the clauses at FAR 52.230-2, 52.230-3, or 52.230-5-- - (1) So state in the body of the subcontract, in the letter of award, or in both (self-deleting clauses shall not be used); - (2) Include the substance of this clause in all negotiated subcontracts; and - (3) Within 30 days after award of the subcontract, submit the following information to the Contractor's cognizant contract administration office for transmittal to the contract administration office cognizant of the subcontractor's facility: - (i) Subcontractor's name and subcontract number. - (ii) Dollar amount and date of award. - (iii) Name of Contractor making the award. - (f) Notify the Contracting Officer in writing of any adjustments required to subcontracts under this contract and agree to an adjustment, based on them, to this contract price or estimated cost and fee. This notice is due within 30 days after proposed subcontract adjustments are received and shall include a proposal for adjusting the higher tier subcontract or the prime contract appropriately. - (g) For subcontracts containing the clauses at FAR 52.230-2 or 52.230-5, require the subcontractor to comply with all Standards in effect on the date of award or of final agreement on price, as shown on the subcontractor's signed Certificate of Current Cost or Pricing Data, whichever is earlier. #### 252.231-7000 SUPPLEMENTAL COST PRINCIPLES (DEC 1991) When the allowability of costs under this contract is determined in accordance with part 31 of the Federal Acquisition Regulation (FAR), allowability shall also be determined in accordance with part 231 of the Defense FAR Supplement, in effect on the date of this contract. # 52.232-5 PAYMENTS UNDER FIXED-PRICE CONSTRUCTION CONTRACTS (MAY 1997) - (a) Payment of price. The Government shall pay the Contractor the contract price as provided in this contract. - (b) Progress payments. The Government shall make progress payments monthly as the work proceeds, or at more frequent intervals as determined by the Contracting Officer, on estimates of work accomplished which meets the standards of quality established under the contract, as approved by the Contracting Officer. - (1) The Contractor's request for progress payments shall include the following substantiation: - (i) An itemization of the amounts requested, related to the various elements of work required by the contract covered by the payment requested. - (ii) A listing of the amount included for work performed by each subcontractor under the contract. - (iii) A listing of the total amount of each subcontract under the contract. - (iv) A listing of the amounts previously paid to each such subcontractor under the contract. - (v) Additional supporting data in a form and detail required by the Contracting Officer. - (2) In the preparation of estimates, the Contracting Officer may authorize material delivered on the site and preparatory work done to be taken into consideration. Material delivered to the Contractor at locations other than the site also may be taken into consideration if-- - (i) Consideration is specifically authorized by this contract; and - (ii) The Contractor furnishes satisfactory evidence that it has acquired title to such material and that the material will be used to perform this contract. - (c) Contractor certification. Along with each request for progress payments, the Contractor shall furnish the following certification, or payment shall not be made: (However, if the Contractor elects to delete paragraph (c)(4) from the certification, the certification is still acceptable.)
I hereby certify, to the best of my knowledge and belief, that-- - (1) The amounts requested are only for performance in accordance with the specifications, terms, and conditions of the contract; - (2) Payments to subcontractors and suppliers have been made from previous payments received under the contract, and timely payments will be made from the proceeds of the payment covered by this certification, in accordance with subcontract agreements and the requirements of chapter 39 of Title 31, United States Code; - (3) This request for progress payments does not include any amounts which the prime contractor intends to withhold or retain from a subcontractor or supplier in accordance with the terms and conditions of the subcontract; and | (4) This certification is not to be construed as final acceptance of a subcontractor's performance. | |---| | (Name) | | (Title) | | (Date) | - (d) Refund of unearned amounts. If the Contractor, after making a certified request for progress payments, discovers that a portion or all of such request constitutes a payment for performance by the Contractor that fails to conform to the specifications, terms, and conditions of this contract (hereinafter referred to as the "unearned amount"), the Contractor shall-- - (1) Notify the Contracting Officer of such performance deficiency; and - (2) Be obligated to pay the Government an amount (computed by the Contracting Officer in the manner provided in paragraph (j) of this clause) equal to interest on the unearned amount from the 8th day after the date of receipt of the unearned amount until-- - (i) The date the Contractor notifies the Contracting Officer that the performance deficiency has been corrected; or - (ii) The date the Contractor reduces the amount of any subsequent certified request for progress payments by an amount equal to the unearned amount. - (e) Retainage. If the Contracting Officer finds that satisfactory progress was achieved during any period for which a progress payment is to be made, the Contracting Officer shall authorize payment to be made in full. However, if satisfactory progress has not been made, the Contracting Officer may retain a maximum of 10 percent of the amount of the payment until satisfactory progress is achieved. When the work is substantially complete, the Contracting Officer may retain from previously withheld funds and future progress payments that amount the Contracting Officer considers adequate for protection of the Government and shall release to the Contractor all the remaining withheld funds. Also, on completion and acceptance of each separate building, public work, or other division of the contract, for which the price is stated separately in the contract, payment shall be made for the completed work without retention of a percentage. - (f) Title, liability, and reservation of rights. All material and work covered by progress payments made shall, at the time of payment, become the sole property of the Government, but this shall not be construed as-- - (1) Relieving the Contractor from the sole responsibility for all material and work upon which payments have been made or the restoration of any damaged work; or - (2) Waiving the right of the Government to require the fulfillment of all of the terms of the contract. - (g) Reimbursement for bond premiums. In making these progress payments, the Government shall, upon request, reimburse the Contractor for the amount of premiums paid for performance and payment bonds (including coinsurance and reinsurance agreements, when applicable) after the Contractor has furnished evidence of full payment to the surety. The retainage provisions in paragraph (e) of this clause shall not apply to that portion of progress payments attributable to bond premiums. - (h) Final payment. The Government shall pay the amount due the Contractor under this contract after- - (1) Completion and acceptance of all work; - (2) Presentation of a properly executed voucher; and - (3) Presentation of release of all claims against the Government arising by virtue of this contract, other than claims, in stated amounts, that the Contractor has specifically excepted from the operation of the release. A release may also be required of the assignee if the Contractor's claim to amounts payable under this contract has been assigned under the Assignment of Claims Act of 1940 (31 U.S.C. 3727 and 41 U.S.C. 15). - (i) Limitation because of undefinitized work. Notwithstanding any provision of this contract, progress payments shall not exceed 80 percent on work accomplished on undefinitized contract actions. A "contract action" is any action resulting in a contract, as defined in FAR Subpart 2.1, including contract modifications for additional supplies or services, but not including contract modifications that are within the scope and under the terms of the contract, such as contract modifications issued pursuant to the Changes clause, or funding and other administrative changes. - (j) Interest computation on unearned amounts. In accordance with 31 U.S.C. 3903(c)(1), the amount payable under subparagraph (d)(2) of this clause shall be-- - (1) Computed at the rate of average bond equivalent rates of 91-day Treasury bills auctioned at the most recent auction of such bills prior to the date the Contractor receives the unearned amount; and - (2) Deducted from the next available payment to the Contractor. ## 52.232-16 PROGRESS PAYMENTS (MAR 2000) The Government will make progress payments to the Contractor when requested as work progresses, but not more frequently than monthly, in amounts of \$2,500 or more approved by the Contracting Officer, under the following conditions: - (a) Computation of amounts. (1) Unless the Contractor requests a smaller amount, the Government will compute each progress payment as 80 percent of the Contractor's total costs incurred under this contract whether or not actually paid, plus financing payments to subcontractors (see paragraph (j) of this clause), less the sum of all previous progress payments made by the Government under this contract. The Contracting Officer will consider cost of money that would be allowable under FAR 31.205-10 as an incurred cost for progress payment purposes. - (2) The amount of financing and other payments for supplies and services purchased directly for the contract are limited to the amounts that have been paid by cash, check, or other forms of payment, or that will be paid to subcontractors-- - (i) In accordance with the terms and conditions of a subcontract or invoice; and - (ii) Ordinarily prior to the submission of the Contractor's next payment request to the Government. - (3) The Government will exclude accrued costs of Contractor contributions under employee pension plans until actually paid unless-- - (i) The Contractor's practice is to make contributions to the retirement fund quarterly or more frequently; and - (ii) The contribution does not remain unpaid 30 days after the end of the applicable quarter or shorter payment period (any contribution remaining unpaid shall be excluded from the Contractor's total costs for progress payments until paid). - (4) The Contractor shall not include the following in total costs for progress payment purposes in subparagraph (a)(1)(i) above: - (i) Costs that are not reasonable, allocable to this contract, and consistent with sound and generally accepted accounting principles and practices. - (ii) Costs incurred by subcontractors or suppliers. - (iii) Costs ordinarily capitalized and subject to depreciation or amortization except for the properly depreciated or amortized portion of such costs. - (iv) Payments made or amounts payable to subcontractors or suppliers, except for -- - (A) Completed work, including partial deliveries, to which the Contractor has acquired title; and - (B) Work under cost-reimbursement or time-and-material subcontracts to which the Contractor has acquired title. - (5) The Contractor shall not include the following in total costs for progress payment purposes in paragraph (a)(1) of this clause: - (i) the progress payments made against incomplete work (including allowable unliquidated progress payments to subcontractors) nor - (ii) the value, for progress payment purposes, of the incomplete work. Incomplete work shall be considered to be the supplies and services required by this contract, for which delivery and invoicing by the Contractor and acceptance by the Government are incomplete. - (6) The total amount of progress payments shall not exceed 80 percent of the total contract price. - (7) If a progress payment or the unliquidated progress payments exceed the amounts permitted by subparagraphs (a)(4) or (a)(5) above, the Contractor shall repay the amount of such excess to the Government on demand. - (8) Notwithstanding any other terms of the contract, the Contractor agrees not to request progress payments in dollar amounts of less than \$2,500. The Contracting Officer may make exceptions. - (b) Liquidation. Except as provided in the Termination for Convenience of the Government clause, all progress payments shall be liquidated by deducting from any payment under this contract, other than advance or progress payments, the unliquidated progress payments, or 80 percent of the amount invoiced, whichever is less. The Contractor shall repay to the Government any amounts required by a retroactive price reduction, after computing liquidations and payments on past invoices at the reduced prices and adjusting the unliquidated progress payments accordingly. The Government reserves the right to unilaterally change from the ordinary liquidation rate to an alternate rate when deemed appropriate for proper contract financing. - (c) Reduction or suspension. The Contracting Officer may reduce or suspend progress payments, increase the rate of liquidation, or take a combination of these
actions, after finding on substantial evidence any of the following conditions: - (1) The Contractor failed to comply with any material requirement of this contract (which includes paragraphs (f) and (g) below). - (2) Performance of this contract is endangered by the Contractor's (i) failure to make progress or (ii) unsatisfactory financial condition. - (3) Inventory allocated to this contract substantially exceeds reasonable requirements. - (4) The Contractor is delinquent in payment of the costs of performing this contract in the ordinary course of business. - (5) The unliquidated progress payments exceed the fair value of the work accomplished on the undelivered portion of this contract. - (6) The Contractor is realizing less profit than that reflected in the establishment of any alternate liquidation rate in paragraph (b) above, and that rate is less than the progress payment rate stated in subparagraph (a)(1) above. - (d) Title. (1) Title to the property described in this paragraph (d) shall vest in the Government. Vestiture shall be immediately upon the date of this contract, for property acquired or produced before that date. Otherwise, vestiture shall occur when the property is or should have been allocable or properly chargeable to this contract. - (2) "Property," as used in this clause, includes all of the below-described items acquired or produced by the Contractor that are or should be allocable or properly chargeable to this contract under sound and generally accepted accounting principles and practices. - (i) Parts, materials, inventories, and work in process; - (ii) Special tooling and special test equipment to which the Government is to acquire title under any other clause of this contract; - (iii) Nondurable (i.e., noncapital) tools, jigs, dies, fixtures, molds, patterns, taps, gauges, test equipment, and other similar manufacturing aids, title to which would not be obtained as special tooling under subparagraph (ii) above; and - (iv) Drawings and technical data, to the extent the Contractor or subcontractors are required to deliver them to the Government by other clauses of this contract. - (3) Although title to property is in the Government under this clause, other applicable clauses of this contract; e.g., the termination or special tooling clauses, shall determine the handling and disposition of the property. - (4) The Contractor may sell any scrap resulting from production under this contract without requesting the Contracting Officer's approval, but the proceeds shall be credited against the costs of performance. - (5) To acquire for its own use or dispose of property to which title is vested in the Government under this clause, the Contractor must obtain the Contracting Officer's advance approval of the action and the terms. The Contractor shall (i) exclude the allocable costs of the property from the costs of contract performance, and (ii) repay to the Government any amount of unliquidated progress payments allocable to the property. Repayment may be by cash or credit memorandum. - (6) When the Contractor completes all of the obligations under this contract, including liquidation of all progress payments, title shall vest in the Contractor for all property (or the proceeds thereof) not-- - (i) Delivered to, and accepted by, the Government under this contract; or - (ii) Incorporated in supplies delivered to, and accepted by, the Government under this contract and to which title is vested in the Government under this clause. - (7) The terms of this contract concerning liability for Government-furnished property shall not apply to property to which the Government acquired title solely under this clause. - (e) Risk of loss. Before delivery to and acceptance by the Government, the Contractor shall bear the risk of loss for property, the title to which vests in the Government under this clause, except to the extent the Government expressly assumes the risk. The Contractor shall repay the Government an amount equal to the unliquidated progress payments that are based on costs allocable to property that is damaged, lost, stolen, or destroyed. - (f) Control of costs and property. The Contractor shall maintain an accounting system and controls adequate for the proper administration of this clause. - (g) Reports and access to records. The Contractor shall promptly furnish reports, certificates, financial statements, and other pertinent information reasonably requested by the Contracting Officer for the administration of this clause. Also, the Contractor shall give the Government reasonable opportunity to examine and verify the Contractor's books, records, and accounts. - (h) Special terms regarding default. If this contract is terminated under the Default clause, (i) the Contractor shall, on demand, repay to the Government the amount of unliquidated progress payments and (ii) title shall vest in the Contractor, on full liquidation of progress payments, for all property for which the Government elects not to require delivery under the Default clause. The Government shall be liable for no payment except as provided by the Default clause. - (i) Reservations of rights. (1) No payment or vesting of title under this clause shall (i) excuse the Contractor from performance of obligations under this contract or (ii) constitute a waiver of any of the rights or remedies of the parties under the contract. - (2) The Government's rights and remedies under this clause (i) shall not be exclusive but rather shall be in addition to any other rights and remedies provided by law or this contract and (ii) shall not be affected by delayed, partial, or omitted exercise of any right, remedy, power, or privilege, nor shall such exercise or any single exercise preclude or impair any further exercise under this clause or the exercise of any other right, power, or privilege of the Government. - (j) Financing payments to subcontractors. The financing payments to subcontractors mentioned in paragraphs (a)(1) and (a)(2) of this clause shall be all financing payments to subcontractors or divisions, if the following conditions are met: - (1) The amounts included are limited to-- - (i) The unliquidated remainder of financing payments made; plus - (ii) Any unpaid subcontractor requests for financing payments. - (2) The subcontract or interdivisional order is expected to involve a minimum of approximately 6 months between the beginning of work and the first delivery; or, if the subcontractor is a small business concern, 4 months. - (3) If the financing payments are in the form of progress payments, the terms of the subcontract or interdivisional order concerning progress payments-- - (i) Are substantially similar to the terms of this clause for any subcontractor that is a large business concern, or this clause with its Alternate I for any subcontractor that is a small business concern; - (ii) Are at least as favorable to the Government as the terms of this clause; - (iii) Are not more favorable to the subcontractor or division than the terms of this clause are to the Contractor; - (iv) Are in conformance with the requirements of FAR 32.504(e); and - (v) Subordinate all subcontractor rights concerning property to which the Government has title under the subcontract to the Government's right to require delivery of the property to the Government if-- - (A) The Contractor defaults; or - (B) The subcontractor becomes bankrupt or insolvent. - (4) If the financing payments are in the form of performance-based payments, the terms of the subcontract or interdivisional order concerning payments-- - (i) Are substantially similar to the Performance-Based Payments clause at FAR 52.232-32 and meet the criteria for, and definition of, performance-based payments in FAR Part 32; - (ii) Are in conformance with the requirements of FAR 32.504(f); and - (iii) Subordinate all subcontractor rights concerning property to which the Government has title under the subcontract to the Government's right to require delivery of the property to the Government if-- - (A) The Contractor defaults; or - (B) The subcontractor becomes bankrupt or insolvent. - (5) If the financing payments are in the form of commercial item financing payments, the terms of the subcontract or interdivisional order concerning payments-- - (i) Are constructed in accordance with FAR 32.206(c) and included in a subcontract for a commercial item purchase that meets the definition and standards for acquisition of commercial items in FAR Parts 2 and 12; - (ii) Are in conformance with the requirements of FAR 32.504(g); and - (iii) Subordinate all subcontractor rights concerning property to which the Government has title under the subcontract to the Government's right to require delivery of the property to the Government if-- - (A) The Contractor defaults; or - (B) The subcontractor becomes bankrupt or insolvent. - (6) If financing is in the form of progress payments, the progress payment rate in the subcontract is the customary rate used by the contracting agency, depending on whether the subcontractor is or is not a small business concern. - (7) Concerning any proceeds received by the Government for property to which title has vested in the Government under the subcontract terms, the parties agree that the proceeds shall be applied to reducing any unliquidated financing payments by the Government to the Contractor under this contract. - (8) If no unliquidated financing payments to the Contractor remain, but there are unliquidated financing payments that the Contractor has made to any subcontractor, the Contractor shall be subrogated to all the rights the Government obtained through the terms required by this clause to be in any subcontract, as if all such rights had been assigned and transferred to the Contractor. - (9) To facilitate small business participation in subcontracting under this contract, the Contractor shall provide financing payments to small business concerns, in conformity
with the standards for customary contract financing payments stated in FAR 32.113. The Contractor shall not consider the need for such financing payments as a handicap or adverse factor in the award of subcontracts. - (k) Limitations on Undefinitized Contract Actions. Notwithstanding any other progress payment provisions in this contract, progress payments may not exceed 80 percent of costs incurred on work accomplished under undefinitized contract actions. A "contract action" is any action resulting in a contract, as defined in Subpart 2.1, including contract modifications for additional supplies or services, but not including contract modifications that are within the scope and under the terms of the contract, such as contract modifications issued pursuant to the Changes clause, or funding and other administrative changes. This limitation shall apply to the costs incurred, as computed in accordance with paragraph (a) of this clause, and shall remain in effect until the contract action is definitized. Costs incurred which are subject to this limitation shall be segregated on Contractor progress payment requests and invoices from those costs eligible for higher progress payment rates. For purposes of progress payment liquidation, as described in paragraph (b) of this clause, progress payments for undefinitized contract actions shall be liquidated at 80 percent of the amount invoiced for work performed under the undefinitized contract action as long as the contract action remains undefinitized. The amount of unliquidated progress payments for undefinitized contract actions shall not exceed 80 percent of the maximum liability of the Government under the undefinitized contract action or such lower limit specified elsewhere in the contract. Separate limits may be specified for separate actions. ## 52.232-17 INTEREST (JUNE 1996) - (a) Except as otherwise provided in this contract under a Price Reduction for Defective Cost or Pricing Data clause or a Cost Accounting Standards clause, all amounts that become payable by the Contractor to the Government under this contract (net of any applicable tax credit under the Internal Revenue Code (26 U.S.C. 1481)) shall bear simple interest from the date due until paid unless paid within 30 days of becoming due. The interest rate shall be the interest rate established by the Secretary of the Treasury as provided in Section 12 of the Contract Disputes Act of 1978 (Public Law 95-563), which is applicable to the period in which the amount becomes due, as provided in paragraph (b) of this clause, and then at the rate applicable for each six-month period as fixed by the Secretary until the amount is paid, reproduce, prepare derivative works, distribute copies to the public, and (b) Amounts shall be due at the earliest of the following dates: - (1) The date fixed under this contract. - (2) The date of the first written demand for payment consistent with this contract, including any demand resulting from a default termination. - (3) The date the Government transmits to the Contractor a proposed supplemental agreement to confirm completed negotiations establishing the amount of debt. - (4) If this contract provides for revision of prices, the date of written notice to the Contractor stating the amount of refund payable in connection with a pricing proposal or a negotiated pricing agreement not confirmed by contract modification. (c) The interest charge made under this clause may be reduced under the procedures prescribed in 32.614-2 of the Federal Acquisition Regulation in effect on the date of this contract. #### 52.232-23 ASSIGNMENT OF CLAIMS (JAN 1986) - (a) The Contractor, under the Assignment of Claims Act, as amended, 31 U.S.C. 3727, 41 U.S.C. 15 (hereafter referred to as "the Act"), may assign its rights to be paid amounts due or to become due as a result of the performance of this contract to a bank, trust company, or other financing institution, including any Federal lending agency. The assignee under such an assignment may thereafter further assign or reassign its right under the original assignment to any type of financing institution described in the preceding sentence. - (b) Any assignment or reassignment authorized under the Act and this clause shall cover all unpaid amounts payable under this contract, and shall not be made to more than one party, except that an assignment or reassignment may be made to one party as agent or trustee for two or more parties participating in the financing of this contract. - (c) The Contractor shall not furnish or disclose to any assignee under this contract any classified document (including this contract) or information related to work under this contract until the Contracting Officer authorizes such action in writing. #### 52.232-27 PROMPT PAYMENT FOR CONSTRUCTION CONTRACTS (JUN 1997) Notwithstanding any other payment terms in this contract, the Government will make invoice payments and contract financing payments under the terms and conditions specified in this clause. Payment shall be considered as being made on the day a check is dated or the date of an electronic funds transfer. Definitions of pertinent terms are set forth in section 32.902 of the Federal Acquisition Regulation. All days referred to in this clause are calendar days, unless otherwise specified. (However, see subparagraph (a)(3) concerning payments due on Saturdays, Sundays, and legal holidays.) - (a) Invoice payments. (1) Types of invoice payments. For purposes of this clause, there are several types of invoice payments that may occur under this contract, as follows: - (i) Progress payments, if provided for elsewhere in this contract, based on Contracting Officer approval of the estimated amount and value of work or services performed, including payments for reaching milestones in any project: - (A) The due date for making such payments shall be 14 days after receipt of the payment request by the designated billing office. If the designated billing office fails to annotate the payment request with the actual date of receipt at the time of receipt, the payment due date shall be the 14th day after the date of the Contractor's payment request, provided a proper payment request is received and there is no disagreement over quantity, quality, or Contractor compliance with contract requirements. - (B) The due date for payment of any amounts retained by the Contracting Officer in accordance with the clause at 52.232-5, Payments Under Fixed-Price Construction Contracts, shall be as specified in the contract or, if not specified, 30 days after approval for release to the Contractor by the Contracting Officer. - (ii) Final payments based on completion and acceptance of all work and presentation of release of all claims against the Government arising by virtue of the contract, and payments for partial deliveries that have been accepted by the Government (e.g., each separate building, public work, or other division of the contract for which the price is stated separately in the contract): - (A) The due date for making such payments shall be either the 30th day after receipt by the designated billing office of a proper invoice from the Contractor, or the 30th day after Government acceptance of the work or services completed by the Contractor, whichever is later. If the designated billing office fails to annotate the invoice with the date of actual receipt at the time of receipt, the invoice payment due date shall be the 30th day after the date of the Contractor's invoice, provided a proper invoice is received and there is no disagreement over quantity, quality, or Contractor compliance with contract requirements. - (B) On a final invoice where the payment amount is subject to contract settlement actions (e.g., release of claims), acceptance shall be deemed to have occurred on the effective date of the contract settlement. - (2) Contractor's invoice. The Contractor shall prepare and submit invoices to the designated billing office specified in the contract. A proper invoice must include the items listed in subdivisions (a)(2)(i) through (a)(2)(ix) of this clause. If the invoice does not comply with these requirements, it shall be returned within 7 days after the date the designated billing office received the invoice, with a statement of the reasons why it is not a proper invoice. Untimely notification will be taken into account in computing any interest penalty owed the Contractor in the manner described in subparagraph (a)(4) of this clause. - (i) Name and address of the Contractor. - (ii) Invoice date. (The Contractor is encouraged to date invoices as close as possible to the date of mailing or transmission.) - (iii) Contract number or other authorization for work or services performed (including order number and contract line item number). - (iv) Description of work or services performed. - (v) Delivery and payment terms (e.g., prompt payment discount terms). - (vi) Name and address of Contractor official to whom payment is to be sent (must be the same as that in the contract or in a proper notice of assignment). - (vii) Name (where practicable), title, phone number, and mailing address of person to be notified in the event of a defective invoice. - (viii) For payments described in subdivision (a)(1)(i) of this clause, substantiation of the amounts requested and certification in accordance with the requirements of the clause at 52.232-5, Payments Under Fixed-Price Construction Contracts. - (ix) Any other information or documentation required by the contract. - (x) While not required, the Contractor is strongly encouraged to assign an identification number to each invoice. - (3) Interest penalty. An interest penalty shall be paid automatically by the designated payment office, without request from the Contractor, if payment is not made by the due date and the conditions listed in subdivisions (a)(3)(i) through (a)(3)(iii) of this clause are met, if applicable. However, when
the due date falls on a Saturday, Sunday, or legal holiday when Federal Government offices are closed and Government business is not expected to be conducted, payment may be made on the following business day without incurring a late payment interest penalty. - (i) A proper invoice was received by the designated billing office. - (ii) A receiving report or other Government documentation authorizing payment was processed and there was no disagreement over quantity, quality, Contractor compliance with any contract term or condition, or requested progress payment amount. - (iii) In the case of a final invoice for any balance of funds due the Contractor for work or services performed, the amount was not subject to further contract settlement actions between the Government and the Contractor. - (4) Computing penalty amount. The interest penalty shall be at the rate established by the Secretary of the Treasury under section 12 of the Contract Disputes Act of 1978 (41 U.S.C. 611) that is in effect on the day after the due date, except where the interest penalty is prescribed by other governmental authority (e.g., tariffs). This rate is referred to as the "Renegotiation Board Interest Rate," and it is published in the Federal Register semiannually on or about January 1 and July 1. The interest penalty shall accrue daily on the invoice principal payment amount approved by the Government until the payment date of such approved principal amount; and will be compounded in 30-day increments inclusive from the first day after the due date through the payment date. That is, interest accrued at the end of any 30-day period will be added to the approved invoice principal payment amount and will be subject to interest penalties if not paid in the succeeding 30-day period. If the designated billing office failed to notify the Contractor of a defective invoice within the periods prescribed in subparagraph (a)(2) of this clause, the due date on the corrected invoice will be adjusted by subtracting from such date the number of days taken beyond the prescribed notification of defects period. Any interest penalty owed the Contractor will be based on this adjusted due date. Adjustments will be made by the designated payment office for errors in calculating interest penalties. - (i) For the sole purpose of computing an interest penalty that might be due the Contractor for payments described in subdivision (a)(1)(ii) of this clause, Government acceptance or approval shall be deemed to have occurred constructively on the 7th day after the Contractor has completed the work or services in accordance with the terms and conditions of the contract. In the event that actual acceptance or approval occurs within the constructive acceptance or approval period, the determination of an interest penalty shall be based on the actual date of acceptance or approval. Constructive acceptance or constructive approval requirements do not apply if there is a disagreement over quantity, quality, or Contractor compliance with a contract provision. These requirements also do not compel Government officials to accept work or services, approve Contractor estimates, perform contract administration functions, or make payment prior to fulfilling their responsibilities. - (ii) The following periods of time will not be included in the determination of an interest penalty: - (A) The period taken to notify the Contractor of defects in invoices submitted to the Government, but this may not exceed 7 days. - (B) The period between the defects notice and resubmission of the corrected invoice by the Contractor. - (C) For incorrect electronic funds transfer (EFT) information, in accordance with the EFT clause of this contract. - (iii) Interest penalties will not continue to accrue after the filing of a claim for such penalties under the clause at 52.233-1, Disputes, or for more than 1 year. Interest penalties of less than \$1 need not be paid. - (iv) Interest penalties are not required on payment delays due to disagreement between the Government and the Contractor over the payment amount or other issues involving contract compliance, or on amounts temporarily withheld or retained in accordance with the terms of the contract. Claims involving disputes, and any interest that may be payable, will be resolved in accordance with the clause at 52.233-1, Disputes. - (5) Prompt payment discounts. An interest penalty also shall be paid automatically by the designated payment office, without request from the Contractor, if a discount for prompt payment is taken improperly. The interest penalty will be calculated on the amount of discount taken for the period beginning with the first day after the end of the discount period through the date when the Contractor is paid. - (6) Additional interest penalty. (i) If this contract was awarded on or after October 1, 1989, a penalty amount, calculated in accordance with subdivision (a)(6)(iii) of this clause, shall be paid in addition to the interest penalty amount if the Contractor-- - (A) Is owed an interest penalty of \$1 or more; - (B) Is not paid the interest penalty within 10 days after the date the invoice amount is paid; and - (C) Makes a written demand to the designated payment office for additional penalty payment, in accordance with subdivision (a)(6)(ii) of this clause, postmarked not later than 40 days after the date the invoice amount is paid. - (ii)(A) Contractors shall support written demands for additional penalty payments with the following data. No additional data shall be required. Contractors shall-- - (1) Specifically assert that late payment interest is due under a specific invoice, and request payment of all overdue late payment interest penalty and such additional penalty as may be required; - (2) Attach a copy of the invoice on which the unpaid late payment interest was due; and - (3) State that payment of the principal has been received, including the date of receipt. - (B) Demands must be postmarked on or before the 40th day after payment was made, except that- - (1) If the postmark is illegible or nonexistent, the demand must have been received and annotated with the date of receipt by the designated payment office on or before the 40th day after payment was made; or - (2) If the postmark is illegible or nonexistent and the designated payment office fails to make the required annotation, the demand's validity will be determined by the date the Contractor has placed on the demand; provided such date is no later than the 40th day after payment was made. - (iii)(A) The additional penalty shall be equal to 100 percent of any original late payment interest penalty, except- - (1) The additional penalty shall not exceed \$5,000; - (2) The additional penalty shall never be less than \$25; and - (3) No additional penalty is owed if the amount of the underlying interest penalty is less than \$1. - (B) If the interest penalty ceases to accrue in accordance with the limits stated in subdivision (a)(4)(iii) of this clause, the amount of the additional penalty shall be calculated on the amount of interest penalty that would have accrued in the absence of these limits, subject to the overall limits on the additional penalty specified in subdivision (a)(6)(iii)(A) of this clause. - (C) For determining the maximum and minimum additional penalties, the test shall be the interest penalty due on each separate payment made for each separate contract. The maximum and minimum additional penalty shall not be based upon individual invoices unless the invoices are paid separately. Where payments are consolidated for disbursing purposes, the maximum and minimum additional penalty determination shall be made separately for each contract therein. - (D) The additional penalty does not apply to payments regulated by other Government regulations (e.g., payments under utility contracts subject to tariffs and regulation). - (b) Contract financing payments. (1) Due dates for recurring financing payments. If this contract provides for contract financing, requests for payment shall be submitted to the designated billing office as specified in this contract or as directed by the Contracting Officer. Contract financing payments shall be made on 14th day after receipt of a proper contract financing request by the designated billing office. In the event that an audit or other review of a specific financing request is required to ensure compliance with the terms and conditions of the contract, the designated payment office is not compelled to make payment by the due date specified. - (2) Due dates for other contract financing. For advance payments, loans, or other arrangements that do not involve recurring submissions of contract financing requests, payment shall be made in accordance with the corresponding contract terms or as directed by the Contracting Officer. - (3) Interest penalty not applicable. Contract financing payments shall not be assessed an interest penalty for payment delays. - (c) Subcontract clause requirements. The Contractor shall include in each subcontract for property or services (including a material supplier) for the purpose of performing this contract the following: - (1) Prompt payment for subcontractors. A payment clause that obligates the Contractor to pay the subcontractor for satisfactory performance under its subcontract not later than 7 days from receipt of payment out of such amounts as are paid to the Contractor under this contract. - (2) Interest for subcontractors. An interest penalty clause that obligates the Contractor to pay to the subcontractor an interest penalty for each payment not made in accordance with the payment clause-- - (i) For the period beginning on the day after the required payment date and ending on the date on which payment of the amount due is made; and - (ii) Computed at the rate of interest established by the Secretary of the Treasury, and published in the Federal Register, for interest payments
under section 12 of the Contract Disputes Act of 1978 (41 U.S.C. 611) in effect at the time the Contractor accrues the obligation to pay an interest penalty. - (3) Subcontractor clause flowdown. A clause requiring each subcontractor to include a payment clause and an interest penalty clause conforming to the standards set forth in subparagraphs (c)(1) and (c)(2) of this clause in each of its subcontracts, and to require each of its subcontractors to include such clauses in their subcontracts with each lower-tier subcontractor or supplier. - (d) Subcontract clause interpretation. The clauses required by paragraph (c) of this clause shall not be construed to impair the right of the Contractor or a subcontractor at any tier to negotiate, and to include in their subcontract, provisions that-- - (1) Retainage permitted. Permit the Contractor or a subcontractor to retain (without cause) a specified percentage of each progress payment otherwise due to a subcontractor for satisfactory performance under the subcontract without incurring any obligation to pay a late payment interest penalty, in accordance with terms and conditions agreed to by the parties to the subcontract, giving such recognition as the parties deem appropriate to the ability of a subcontractor to furnish a performance bond and a payment bond; - (2) Withholding permitted. Permit the Contractor or subcontractor to make a determination that part or all of the subcontractor's request for payment may be withheld in accordance with the subcontract agreement; and - (3) Withholding requirements. Permit such withholding without incurring any obligation to pay a late payment penalty if-- - (i) A notice conforming to the standards of paragraph (g) of this clause previously has been furnished to the subcontractor; and - (ii) A copy of any notice issued by a Contractor pursuant to subdivision (d)(3)(i) of this clause has been furnished to the Contracting Officer. - (e) Subcontractor withholding procedures. If a Contractor, after making a request for payment to the Government but before making a payment to a subcontractor for the subcontractor's performance covered by the payment request, discovers that all or a portion of the payment otherwise due such subcontractor is subject to withholding from the subcontractor in accordance with the subcontract agreement, then the Contractor shall-- - (1) Subcontractor notice. Furnish to the subcontractor a notice conforming to the standards of paragraph (g) of this clause as soon as practicable upon ascertaining the cause giving rise to a withholding, but prior to the due date for subcontractor payment; - (2) Contracting Officer notice. Furnish to the Contracting Officer, as soon as practicable, a copy of the notice furnished to the subcontractor pursuant to subparagraph (e)(1) of this clause; - (3) Subcontractor progress payment reduction. Reduce the subcontractor's progress payment by an amount not to exceed the amount specified in the notice of withholding furnished under subparagraph (e)(1) of this clause; - (4) Subsequent subcontractor payment. Pay the subcontractor as soon as practicable after the correction of the identified subcontract performance deficiency, and-- - (i) Make such payment within-- - (A) Seven days after correction of the identified subcontract performance deficiency (unless the funds therefor must be recovered from the Government because of a reduction under subdivision (e)(5)(i)) of this clause; or - (B) Seven days after the Contractor recovers such funds from the Government; or - (ii) Incur an obligation to pay a late payment interest penalty computed at the rate of interest established by the Secretary of the Treasury, and published in the Federal Register, for interest payments under section 12 of the Contracts Disputes Act of 1978 (41 U.S.C. 611) in effect at the time the Contractor accrues the obligation to pay an interest penalty; - (5) Notice to Contracting Officer. Notify the Contracting Officer upon-- - (i) Reduction of the amount of any subsequent certified application for payment; or - (ii) Payment to the subcontractor of any withheld amounts of a progress payment, specifying- - (A) The amounts withheld under subparagraph (e)(1) of this clause; and - (B) The dates that such withholding began and ended; and - (6) Interest to Government. Be obligated to pay to the Government an amount equal to interest on the withheld payments (computed in the manner provided in 31 U.S.C. 3903(c)(1)), from the 8th day after receipt of the withheld amounts from the Government until-- - (i) The day the identified subcontractor performance deficiency is corrected; or - (ii) The date that any subsequent payment is reduced under subdivision (e)(5)(i) of this clause. - (f) Third-party deficiency reports. (1) Withholding from subcontractor. If a Contractor, after making payment to a first-tier subcontractor, receives from a supplier or subcontractor of the first-tier subcontractor (hereafter referred to as a "second-tier subcontractor") a written notice in accordance with section 2 of the Act of August 24, 1935 (40 U.S.C. 270b, Miller Act), asserting a deficiency in such first-tier subcontractor's performance under the contract for which the Contractor may be ultimately liable, and the Contractor determines that all or a portion of future payments otherwise due such first-tier subcontractor is subject to withholding in accordance with the subcontract agreement, the Contractor may, without incurring an obligation to pay an interest penalty under subparagraph (e)(6) of this clause-- - (i) Furnish to the first-tier subcontractor a notice conforming to the standards of paragraph (g) of this clause as soon as practicable upon making such determination; and - (ii) Withhold from the first-tier subcontractor's next available progress payment or payments an amount not to exceed the amount specified in the notice of withholding furnished under subdivision (f)(1)(i) of this clause. - (2) Subsequent payment or interest charge. As soon as practicable, but not later than 7 days after receipt of satisfactory written notification that the identified subcontract performance deficiency has been corrected, the Contractor shall-- - (i) Pay the amount withheld under subdivision (f)(1)(ii) of this clause to such first-tier subcontractor; or - (ii) Incur an obligation to pay a late payment interest penalty to such first-tier subcontractor computed at the rate of interest established by the Secretary of the Treasury, and published in the Federal Register, for interest payments under section 12 of the Contracts Disputes Act of 1978 (41 U.S.C. 611) in effect at the time the Contractor accrues the obligation to pay an interest penalty. - (g) Written notice of subcontractor withholding. A written notice of any withholding shall be issued to a subcontractor (with a copy to the Contracting Officer of any such notice issued by the Contractor), specifying-- - (1) The amount to be withheld; - (2) The specific causes for the withholding under the terms of the subcontract; and - (3) The remedial actions to be taken by the subcontractor in order to receive payment of the amounts withheld. - (h) Subcontractor payment entitlement. The Contractor may not request payment from the Government of any amount withheld or retained in accordance with paragraph (d) of this clause until such time as the Contractor has determined and certified to the Contracting Officer that the subcontractor is entitled to the payment of such amount. - (i) Prime-subcontractor disputes. A dispute between the Contractor and subcontractor relating to the amount or entitlement of a subcontractor to a payment or a late payment interest penalty under a clause included in the subcontract pursuant to paragraph (c) of this clause does not constitute a dispute to which the United States is a party. The United States may not be interpleaded in any judicial or administrative proceeding involving such a dispute. - (j) Preservation of prime-subcontractor rights. Except as provided in paragraph (i) of this clause, this clause shall not limit or impair any contractual, administrative, or judicial remedies otherwise available to the Contractor or a subcontractor in the event of a dispute involving late payment or nonpayment by the Contractor or deficient subcontract performance or nonperformance by a subcontractor. - (k) Non-recourse for prime contractor interest penalty. The Contractor's obligation to pay an interest penalty to a subcontractor pursuant to the clauses included in a subcontract under paragraph (c) of this clause shall not be construed to be an obligation of the United States for such interest penalty. A cost-reimbursement claim may not include any amount for reimbursement of such interest penalty. # 52.232-33 PAYMENT BY ELECTRONIC FUNDS TRANSFER—CENTRAL CONTRACTOR REGISTRATION (MAY 1999) - (a) Method of payment. (1) All payments by the Government under this contract shall be made by electronic funds transfer (EFT), except as provided in paragraph (a)(2) of this clause. As used in this clause, the term ``EFT'' refers to the funds transfer and may also include the payment information transfer. - (2) In the event the Government is unable to release one or more payments by EFT, the Contractor agrees to either-- - (i) Accept payment by check or some other mutually agreeable method of payment; or - (ii) Request the Government to extend the payment due date until such time as the Government can make payment by EFT (but see paragraph (d) of this clause). - (b) Contractor's EFT information. The Government shall make payment to the Contractor using the EFT information contained in the Central Contractor Registration (CCR) database. In the event that the EFT information changes, the Contractor shall be responsible for providing the updated information to the CCR database. - (c) Mechanisms for EFT payment. The Government may make payment by EFT through either the Automated Clearing House
(ACH) network, subject to the rules of the National Automated Clearing House Association, or the Fedwire Transfer System. The rules governing Federal payments through the ACH are contained in 31 CFR part 210. - (d) Suspension of payment. If the Contractor's EFT information in the CCR database is incorrect, then the Government need not make payment to the Contractor under this contract until correct EFT information is entered into the CCR database; and any invoice or contract financing request shall be deemed not to be a proper invoice for the purpose of prompt payment under this contract. The prompt payment terms of the contract regarding notice of an improper invoice and delays in accrual of interest penalties apply. - (e) Contractor EFT arrangements. If the Contractor has identified multiple payment receiving points (i.e., more than one remittance address and/or EFT information set) in the CCR database, and the Contractor has not notified the Government of the payment receiving point applicable to this contract, the Government shall make payment to the first payment receiving point (EFT information set or remittance address as applicable) listed in the CCR database. - (f) Liability for uncompleted or erroneous transfers. (1) If an uncompleted or erroneous transfer occurs because the Government used the Contractor's EFT information incorrectly, the Government remains responsible for-- - (i) Making a correct payment; - (ii) Paying any prompt payment penalty due; and - (iii) Recovering any erroneously directed funds. - (2) If an uncompleted or erroneous transfer occurs because the Contractor's EFT information was incorrect, or was revised within 30 days of Government release of the EFT payment transaction instruction to the Federal Reserve System, and-- - (i) If the funds are no longer under the control of the payment office, the Government is deemed to have made payment and the Contractor is responsible for recovery of any erroneously directed funds; or - (ii) If the funds remain under the control of the payment office, the Government shall not make payment, and the provisions of paragraph (d) of this clause shall apply. - (g) EFT and prompt payment. A payment shall be deemed to have been made in a timely manner in accordance with the prompt payment terms of this contract if, in the EFT payment transaction instruction released to the Federal Reserve System, the date specified for settlement of the payment is on or before the prompt payment due date, provided the specified payment date is a valid date under the rules of the Federal Reserve System. - (h) EFT and assignment of claims. If the Contractor assigns the proceeds of this contract as provided for in the assignment of claims terms of this contract, the Contractor shall require as a condition of any such assignment, that the assignee shall register in the CCR database and shall be paid by EFT in accordance with the terms of this clause. In all respects, the requirements of this clause shall apply to the assignee as if it were the Contractor. EFT information that shows the ultimate recipient of the transfer to be other than the Contractor, in the absence of a proper assignment of claims acceptable to the Government, is incorrect EFT information within the meaning of paragraph (d) of this clause. - (i) Liability for change of EFT information by financial agent. The Government is not liable for errors resulting from changes to EFT information made by the Contractor's financial agent. - (j) Payment information. The payment or disbursing office shall forward to the Contractor available payment information that is suitable for transmission as of the date of release of the EFT instruction to the Federal Reserve System. The Government may request the Contractor to designate a desired format and method(s) for delivery of payment information from a list of formats and methods the payment office is capable of executing. However, the Government does not guarantee that any particular format or method of delivery is available at any particular payment office and retains the latitude to use the format and delivery method most convenient to the Government. If the Government makes payment by check in accordance with paragraph (a) of this clause, the Government shall mail the payment information to the remittance address contained in the CCR database. (End of Clause) #### 52.233-1 DISPUTES. (DEC 1998) - (a) This contract is subject to the Contract Disputes Act of 1978, as amended (41 U.S.C. 601-613). - (b) Except as provided in the Act, all disputes arising under or relating to this contract shall be resolved under this clause. - (c) "Claim," as used in this clause, means a written demand or written assertion by one of the contracting parties seeking, as a matter of right, the payment of money in a sum certain, the adjustment or interpretation of contract terms, or other relief arising under or relating to this contract. A claim arising under a contract, unlike a claim relating to that contract, is a claim that can be resolved under a contract clause that provides for the relief sought by the claimant. However, a written demand or written assertion by the Contractor seeking the payment of money exceeding \$100,000 is not a claim under the Act until certified as required by subparagraph (d)(2) of this clause. A voucher, invoice, or other routine request for payment that is not in dispute when submitted is not a claim under the Act. The submission may be converted to a claim under the Act, by complying with the submission and certification requirements of this clause, if it is disputed either as to liability or amount or is not acted upon in a reasonable time. - (d)(1) A claim by the Contractor shall be made in writing and, unless otherwise stated in this contract, submitted within 6 years after accrual of the claim to the Contracting Officer for a written decision. A claim by the Government against the Contractor shall be subject to a written decision by the Contracting Officer. - (2)(i) The contractors shall provide the certification specified in subparagraph (d)(2)(iii) of this clause when submitting any claim - - (A) Exceeding \$100,000; or - (B) Regardless of the amount claimed, when using - - (1) Arbitration conducted pursuant to 5 U.S.C. 575-580; or - (2) Any other alternative means of dispute resolution (ADR) technique that the agency elects to handle in accordance with the Administrative Dispute Resolution Act (ADRA). - (ii) The certification requirement does not apply to issues in controversy that have not been submitted as all or part of a claim. - (iii) The certification shall state as follows: "I certify that the claim is made in good faith; that the supporting data are accurate and complete to the best of my knowledge and belief; that the amount requested accurately reflects the contract adjustment for which the Contractor believes the Government is liable; and that I am duly authorized to certify the claim on behalf of the Contractor. - (3) The certification may be executed by any person duly authorized to bind the Contractor with respect to the claim. - (e) For Contractor claims of \$100,000 or less, the Contracting Officer must, if requested in writing by the Contractor, render a decision within 60 days of the request. For Contractor-certified claims over \$100,000, the Contracting Officer must, within 60 days, decide the claim or notify the Contractor of the date by which the decision will be made. - (f) The Contracting Officer's decision shall be final unless the Contractor appeals or files a suit as provided in the Act. - (g) If the claim by the Contractor is submitted to the Contracting Officer or a claim by the Government is presented to the Contractor, the parties, by mutual consent, may agree to use alternative disput resolution (ADR). If the Contractor refuses an offer for ADR, the Contractor shall inform the Contracting Officer, in writing, of the Contractor's specific reasons for rejecting the request. - (h) The Government shall pay interest on the amount found due and unpaid from (1) the date the Contracting Officer receives the claim (certified, if required); or (2) the date that payment otherwise would be due, if that date is later, until the date of payment. With regard to claims having defective certifications, as defined in (FAR) 48 CFR 33.201, interest shall be paid from the date that the Contracting Officer initially receives the claim. Simple interest on claims shall be paid at the rate, fixed by the Secretary of the Treasury as provided in the Act, which is applicable to the period during which the Contracting Officer receives the claim and then at the rate applicable for each 6-month period as fixed by the Treasury Secretary during the pendency of the claim. - (i) The Contractor shall proceed diligently with performance of this contract, pending final resolution of any request for relief, claim, appeal, or action arising under the contract, and comply with any decision of the Contracting Officer. (End of clause) #### 52.236-2 DIFFERING SITE CONDITIONS (APR 1984) As prescribed in 36.502, insert the following clause in solicitations and contracts when a fixed-price construction contract or a fixed-price dismantling, demolition, or removal of improvements contract is contemplated and the contract amount is expected to exceed the small purchase limitation. The Contracting Officer may insert the clause in solicitations and contracts when a fixed-price construction or a fixed-price contract for dismantling, demolition, or removal of improvements is contemplated and the contract amount is expected to be within the small purchase limitation. - (a) The Contractor shall promptly, and before the conditions are disturbed, give a written notice to the Contracting Officer of - (1) subsurface or latent physical conditions at the site which differ materially from those indicated in this contract, or - (2) unknown physical conditions at the site, of an
unusual nature, which differ materially from those ordinarily encountered and generally recognized as inhering in work of the character provided for in the contract. - (b) The Contracting Officer shall investigate the site conditions promptly after receiving the notice. If the conditions do materially so differ and cause an increase or decrease in the Contractor's cost of, or the time required for, performing any part of the work under this contract, whether or not changed as a result of the conditions, an equitable adjustment shall be made under this clause and the contract modified in writing accordingly. - (c) No request by the Contractor for an equitable adjustment to the contract under this clause shall be allowed, unless the Contractor has given the written notice required; provided, that the time prescribed in (a) above for giving written notice may be extended by the Contracting Officer. (d) No request by the Contractor for an equitable adjustment to the contract for differing site conditions shall be allowed if made after final payment under this contract. #### 52.236-3 SITE INVESTIGATION AND CONDITIONS AFFECTING THE WORK (APR 1984) - (a) The Contractor acknowledges that it has taken steps reasonably necessary to ascertain the nature and location of the work, and that it has investigated and satisfied itself as to the general and local conditions which can affect the work or its cost, including but not limited to - (1) conditions bearing upon transportation, disposal, handling, and storage of materials; - (2) the availability of labor, water, electric power, and roads; - (3) uncertainties of weather, river stages, tides, or similar physical conditions at the site; - (4) the conformation and conditions of the ground; and (5) the character of equipment and facilities needed preliminary to and during work performance. The Contractor also acknowledges that it has satisfied itself as to the character, quality, and quantity of surface and subsurface materials or obstacles to be encountered insofar as this information is reasonably ascertainable from an inspection of the site, including all exploratory work done by the Government, as well as from the drawings and specifications made a part of this contract. Any failure of the Contractor to take the actions described and acknowledged in this paragraph will not relieve the Contractor from responsibility for estimating properly the difficulty and cost of successfully performing the work, or for proceeding to successfully perform the work without additional expense to the Government. - (b) The Government assumes no responsibility for any conclusions or interpretations made by the Contractor based on the information made available by the Government. Nor does the Government assume responsibility for any understanding reached or representation made concerning conditions which can affect the work by any of its officers or agents before the execution of this contract, unless that understanding or representation is expressly stated in this contract. #### 52.236-5 MATERIAL AND WORKMANSHIP (APR 1984) - (a) All equipment, material, and articles incorporated into the work covered by this contract shall be new and of the most suitable grade for the purpose intended, unless otherwise specifically provided in this contract. References in the specifications to equipment, material, articles, or patented processes by trade name, make, or catalog number, shall be regarded as establishing a standard of quality and shall not be construed as limiting competition. The Contractor may, at its option, use any equipment, material, article, or process that, in the judgment of the Contracting Officer, is equal to that named in the specifications, unless otherwise specifically provided in this contract. - (b) The Contractor shall obtain the Contracting Officer's approval of the machinery and mechanical and other equipment to be incorporated into the work. When requesting approval, the Contractor shall furnish to the Contracting Officer the name of the manufacturer, the model number, and other information concerning the performance, capacity, nature, and rating of the machinery and mechanical and other equipment. When required by this contract or by the Contracting Officer, the Contractor shall also obtain the Contracting Officer's approval of the material or articles which the Contractor contemplates incorporating into the work. When requesting approval, the Contractor shall provide full information concerning the material or articles. When directed to do so, the Contractor shall submit samples for approval at the Contractor's expense, with all shipping charges prepaid. Machinery, equipment, material, and articles that do not have the required approval shall be installed or used at the risk of subsequent rejection. - (c) All work under this contract shall be performed in a skillful and workmanlike manner. The Contracting Officer may require, in writing, that the Contractor remove from the work any employee the Contracting Officer deems incompetent, careless, or otherwise objectionable. # 52.236-6 SUPERINTENDENCE BY THE CONTRACTOR (APR 1984) At all times during performance of this contract and until the work is completed and accepted, the Contractor shall directly superintend the work or assign and have on the worksite a competent superintendent who is satisfactory to the Contracting Officer and has authority to act for the Contractor. #### 52.236-7 PERMITS AND RESPONSIBILITIES (NOV 1991) The Contractor shall, without additional expense to the Government, be responsible for obtaining any necessary licenses and permits, and for complying with any Federal, State, and municipal laws, codes, and regulations applicable to the performance of the work. The Contractor shall also be responsible for all damages to persons or property that occur as a result of the Contractor's fault or negligence. The Contractor shall also be responsible for all materials delivered and work performed until completion and acceptance of the entire work, except for any completed unit of work which may have been accepted under the contract. #### 52.236-8 OTHER CONTRACTS (APR 1984) The Government may undertake or award other contracts for additional work at or near the site of the work under this contract. The Contractor shall fully cooperate with the other contractors and with Government employees and shall carefully adapt scheduling and performing the work under this contract to accommodate the additional work, heeding any direction that may be provided by the Contracting Officer. The Contractor shall not commit or permit any act that will interfere with the performance of work by any other contractor or by Government employees. # 52.236-9 PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES, AND IMPROVEMENTS (APR 1984) - (a) The Contractor shall preserve and protect all structures, equipment, and vegetation (such as trees, shrubs, and grass) on or adjacent to the work site, which are not to be removed and which do not unreasonably interfere with the work required under this contract. The Contractor shall only remove trees when specifically authorized to do so, and shall avoid damaging vegetation that will remain in place. If any limbs or branches of trees are broken during contract performance, or by the careless operation of equipment, or by workmen, the Contractor shall trim those limbs or branches with a clean cut and paint the cut with a tree-pruning compound as directed by the Contracting Officer. - (b) The Contractor shall protect from damage all existing improvements and utilities - (1) at or near the work site, and - (2) on adjacent property of a third party, the locations of which are made known to or should be known by the Contractor. The Contractor shall repair any damage to those facilities, including those that are the property of a third party, resulting from failure to comply with the requirements of this contract or failure to exercise reasonable care in performing the work. If the Contractor fails or refuses to repair the damage promptly, the Contracting Officer may have the necessary work performed and charge the cost to the Contractor. # 52.236-10 OPERATIONS AND STORAGE AREAS (APR 1984) (a) The Contractor shall confine all operations (including storage of materials) on Government premises to areas authorized or approved by the Contracting Officer. The Contractor shall hold and save the Government, its officers and agents, free and harmless from liability of any nature occasioned by the Contractor's performance. - (b) Temporary buildings (e.g., storage sheds, shops, offices) and utilities may be erected by the Contractor only with the approval of the Contracting Officer and shall be built with labor and materials furnished by the Contractor without expense to the Government. The temporary buildings and utilities shall remain the property of the Contractor and shall be removed by the Contractor at its expense upon completion of the work. With the written consent of the Contracting Officer, the buildings and utilities may be abandoned and need not be removed. - (c) The Contractor shall, under regulations prescribed by the Contracting Officer, use only established roadways, or use temporary roadways constructed by the Contractor when and as authorized by the Contracting Officer. When materials are transported in prosecuting the work, vehicles shall not be loaded beyond the loading capacity recommended by the manufacturer of the vehicle or prescribed by any Federal, State, or local law or regulation. When it is necessary to cross curbs or sidewalks, the Contractor shall protect them from damage. The Contractor shall repair or pay for the repair of any damaged curbs, sidewalks, or roads. #### 52.236-11 USE AND POSSESSION PRIOR TO COMPLETION (APR 1984) - (a) The Government shall have the right to take possession of or use any completed or partially completed part of the work. Before taking
possession of or using any work, the Contracting Officer shall furnish the Contractor a list of items of work remaining to be performed or corrected on those portions of the work that the Government intends to take possession of or use. However, failure of the Contracting Officer to list any item of work shall not relieve the Contractor of responsibility for complying with the terms of the contract. The Government's possession or use shall not be deemed an acceptance of any work under the contract. - (b) While the Government has such possession or use, the Contractor shall be relieved of the responsibility for the loss of or damage to the work resulting from the Government's possession or use, notwithstanding the terms of the clause in this contract entitled "Permits and Responsibilities." If prior possession or use by the Government delays the progress of the work or causes additional expense to the Contractor, an equitable adjustment shall be made in the contract price or the time of completion, and the contract shall be modified in writing accordingly. #### 52.236-12 CLEANING UP (APR 1984) The Contractor shall at all times keep the work area, including storage areas, free from accumulations of waste materials. Before completing the work, the Contractor shall remove from the work and premises any rubbish, tools, scaffolding, equipment, and materials that are not the property of the Government. Upon completing the work, the Contractor shall leave the work area in a clean, neat, and orderly condition satisfactory to the Contracting Officer. # 52.236-13 ACCIDENT PREVENTION (NOV 1991) – ALTERNATE I (NOV 1991) - (a) The Contractor shall provide and maintain work environments and procedures which will - (1) safeguard the public and Government personnel, property, materials, supplies, and equipment exposed to Contractor operations and activities; - (2) avoid interruptions of Government operations and delays in project completion dates; and - (3) control costs in the performance of this contract. - (b) For these purposes on contracts for construction or dismantling, demolition, or removal of improvements, the Contractor shall- - (1) Provide appropriate safety barricades, signs, and signal lights; - (2) Comply with the standards issued by the Secretary of Labor at 29 CFR Part 1926 and 29 CFR Part 1910; and - (3) Ensure that any additional measures the Contracting Officer determines to be reasonably necessary for the purposes are taken. - (c) If this contract is for construction or dismantling, demolition or removal of improvements with any Department of Defense agency or component, the Contractor shall comply with all pertinent provisions of the latest version of U.S. Army Corps of Engineers Safety and Health Requirements Manual, EM 385-1-1, in effect on the date of the solicitation. - (d) Whenever the Contracting Officer becomes aware of any noncompliance with these requirements or any condition which poses a serious or imminent danger to the health or safety of the public or Government personnel, the Contracting Officer shall notify the Contractor orally, with written confirmation, and request immediate initiation of corrective action. This notice, when delivered to the Contractor or the Contractor's representative at the work site, shall be deemed sufficient notice of the noncompliance and that corrective action is required. After receiving the notice, the Contractor shall immediately take corrective action. If the Contractor fails or refuses to promptly take corrective action, the Contracting Officer may issue an order stopping all or part of the work until satisfactory corrective action has been taken. The Contractor shall not be entitled to any equitable adjustment of the contract price or extension of the performance schedule on any stop work order issued under this clause. - (e) The Contractor shall insert this clause, including this paragraph (e), with appropriate changes in the designation of the parties, in subcontracts. - (f) Before commencing the work, the Contractor shall- - (1) Submit a written proposed plan for implementing this clause. The plan shall include an analysis of the significant hazards to life, limb, and property inherent in contract work performance and a plan for controlling these hazards; and - (2) Meet with representatives of the Contracting Officer to discuss and develop a mutual understanding relative to administration of the overall safety program. # 52.236-15 SCHEDULES FOR CONSTRUCTION CONTRACTS (APR 1984) - (a) The Contractor shall, within five days after the work commences on the contract or another period of time determined by the Contracting Officer, prepare and submit to the Contracting Officer for approval three copies of a practicable schedule showing the order in which the Contractor proposes to perform the work, and the dates on which the Contractor contemplates starting and completing the several salient features of the work (including acquiring materials, plant, and equipment). The schedule shall be in the form of a progress chart of suitable scale to indicate appropriately the percentage of work scheduled for completion by any given date during the period. If the Contractor fails to submit a schedule within the time prescribed, the Contracting Officer may withhold approval of progress payments until the Contractor submits the required schedule. - (b) The Contractor shall enter the actual progress on the chart as directed by the Contracting Officer, and upon doing so shall immediately deliver three copies of the annotated schedule to the Contracting Officer. If, in the opinion of the Contracting Officer, the Contractor falls behind the approved schedule, the Contractor shall take steps necessary to improve its progress, including those that may be required by the Contracting Officer, without additional cost to the Government. In this circumstance, the Contracting Officer may require the Contractor to increase the number of shifts, overtime operations, days of work, and/or the amount of construction plant, and to submit for approval any supplementary schedule or schedules in chart form as the Contracting Officer deems necessary to demonstrate how the approved rate of progress will be regained. (c) Failure of the Contractor to comply with the requirements of the Contracting Officer under this clause shall be grounds for a determination by the Contracting Officer that the Contractor is not prosecuting the work with sufficient diligence to ensure completion within the time specified in the contract. Upon making this determination, the Contracting Officer may terminate the Contractor's right to proceed with the work, or any separable part of it, in accordance with the default terms of this contract. #### 52.236-17 LAYOUT OF WORK (APR 1984) The Contractor shall lay out its work from Government established base lines and bench marks indicated on the drawings, and shall be responsible for all measurements in connection with the layout. The Contractor shall furnish, at its own expense, all stakes, templates, platforms, equipment, tools, materials, and labor required to lay out any part of the work. The Contractor shall be responsible for executing the work to the lines and grades that may be established or indicated by the Contracting Officer. The Contractor shall also be responsible for maintaining and preserving all stakes and other marks established by the Contracting Officer until authorized to remove them. If such marks are destroyed by the Contractor or through its negligence before their removal is authorized, the Contracting Officer may replace them and deduct the expense of the replacement from any amounts due or to become due to the Contractor. #### 52.236-21 SPECIFICATIONS AND DRAWINGS FOR CONSTRUCTION (FEB 1997) - (a) The Contractor shall keep on the work site a copy of the drawings and specifications and shall at all times give the Contracting Officer access thereto. Anything mentioned in the specifications and not shown on the drawings, or shown on the drawings and not mentioned in the specifications, shall be of like effect as if shown or mentioned in both. In case of difference between drawings and specifications, the specifications shall govern. In case of discrepancy in the figures, in the drawings, or in the specifications, the matter shall be promptly submitted to the Contracting Officer, who shall promptly make a determination in writing. Any adjustment by the Contractor without such a determination shall be at its own risk and expense. The Contracting Officer shall furnish from time to time such detailed drawings and other information as considered necessary, unless otherwise provided. - (b) Wherever in the specifications or upon the drawings the words "directed", "required", "ordered", "designated", "prescribed", or words of like import are used, it shall be understood that the "direction", "requirement", "order", "designation", or "prescription", of the Contracting Officer is intended and similarly the words "approved", "acceptable", "satisfactory", or words of like import shall mean "approved by," or "acceptable to", or "satisfactory to" the Contracting Officer, unless otherwise expressly stated. - (c) Where "as shown," as indicated", "as detailed", or words of similar import are used, it shall be understood that the reference is made to the drawings accompanying this contract unless stated otherwise. The word "provided" as used herein shall be understood to mean "provide complete in place," that is "furnished and installed". - (d) Shop drawings means drawings, submitted to the Government by the Contractor, subcontractor, or any lower tier subcontractor pursuant to a construction contract, showing in detail (1) the proposed fabrication and assembly of structural elements, and (2) the installation (i.e., fit, and attachment details) of materials or equipment. It includes drawings, diagrams, layouts, schematics, descriptive literature, illustrations,
schedules, performance and test data, and similar materials furnished by the contractor to explain in detail specific portions of the work required by the contract. The Government may duplicate, use, and disclose in any manner and for any purpose shop drawings delivered under this contract. - (e) If this contract requires shop drawings, the Contractor shall coordinate all such drawings, and review them for accuracy, completeness, and compliance with contract requirements and shall indicate its approval thereon as evidence of such coordination and review. Shop drawings submitted to the Contracting Officer without evidence of the Contractor's approval may be returned for resubmission. The Contracting Officer will indicate an approval or disapproval of the shop drawings and if not approved as submitted shall indicate the Government's reasons therefor. Any work done before such approval shall be at the Contractor's risk. Approval by the Contracting Officer shall not relieve the Contractor from responsibility for any errors or omissions in such drawings, nor from responsibility for complying with the requirements of this contract, except with respect to variations described and approved in accordance with (f) below. - (f) If shop drawings show variations from the contract requirements, the Contractor shall describe such variations in writing, separate from the drawings, at the time of submission. If the Contracting Officer approves any such variation, the Contracting Officer shall issue an appropriate contract modification, except that, if the variation is minor or does not involve a change in price or in time of performance, a modification need not be issued. - (g) The Contractor shall submit to the Contracting Officer for approval four copies (unless otherwise indicated) of all shop drawings as called for under the various headings of these specifications. Three sets (unless otherwise indicated) of all shop drawings, will be retained by the Contracting Officer and one set will be returned to the Contractor. #### 52.236-26 PRECONSTRUCTION CONFERENCE (FEB 1995) If the Contracting Officer decides to conduct a preconstruction conference, the successful offeror will be notified and will be required to attend. The Contracting Officer's notification will include specific details regarding the date, time, and location of the conference, any need for attendance by subcontractors, and information regarding the items to be discussed. #### 52.236-28 PREPARATION OF PROPOSALS--CONSTRUCTION (OCT 1997) - (a) Proposals must be (1) submitted on the forms furnished by the Government or on copies of those forms, and (2) manually signed. The person signing a proposal must initial each erasure or change appearing on any proposal form. - (b) The proposal form may require offerors to submit proposed prices for one or more items on various bases, including-- - (1) Lump sum price; - (2) Alternate prices; - (3) Units of construction; or - (4) Any combination of paragraphs (b)(1) through (b)(3) of this provision. - (c) If the solicitation requires submission of a proposal on all items, failure to do so may result in the proposal being rejected without further consideration. If a proposal on all items is not required, offerors should insert the words "no proposal" in the space provided for any item on which no price is submitted. - (d) Alternate proposals will not be considered unless this solicitation authorizes their submission. (End of provision) #### 252.236-7000 MODIFICATION PROPOSALS - PRICE BREAKDOWN. (DEC 1991) (a) The Contractor shall furnish a price breakdown, itemized as required and within the time specified by the Contracting Officer, with any proposal for a contract modification. - (b) The price breakdown -- - (1) Must include sufficient detail to permit an analysis of profit, and of all costs for -- - (i) Material; - (ii) Labor; - (iii) Equipment; - (iv) Subcontracts; and - (v) Overhead; and - (2) Must cover all work involved in the modification, whether the work was deleted, added, or changed. - (c) The Contractor shall provide similar price breakdowns to support any amounts claimed for subcontracts. - (d) The Contractor's proposal shall include a justification for any time extension proposed. #### 52.242-13 BANKRUPTCY (JUL 1995) In the event the Contractor enters into proceedings relating to bankruptcy, whether voluntary or involuntary, the Contractor agrees to furnish, by certified mail or electronic commerce method authorized by the contract, written notification of the bankruptcy to the Contracting Officer responsible for administering the contract. This notification shall be furnished within five days of the initiation of the proceedings relating to bankruptcy filing. This notification shall include the date on which the bankruptcy petition was filed, the identity of the court in which the bankruptcy petition was filed, and a listing of Government contract numbers and contracting offices for all Government contracts against which final payment has not been made. This obligation remains in effect until final payment under this contract. (End of clause) # 52.242-14 SUSPENSION OF WORK (APR 1984) - (a) The Contracting Officer may order the Contractor, in writing, to suspend, delay, or interrupt all or any part of the work of this contract for the period of time that the Contracting Officer determines appropriate for the convenience of the Government. - (b) If the performance of all or any part of the work is, for an unreasonable period of time, suspended, delayed, or interrupted (1) by an act of the Contracting Officer in the administration of this contract, or (2) by the Contracting Officer's failure to act within the time specified in this contract (or within a reasonable time if not specified), an adjustment shall be made for any increase in the cost of performance of this contract (excluding profit) necessarily caused by the unreasonable suspension, delay, or interruption, and the contract modified in writing accordingly. However, no adjustment shall be made under this clause for any suspension, delay, or interruption to the extent that performance would have been so suspended, delayed, or interrupted by any other cause, including the fault or negligence of the Contractor, or for which an equitable adjustment is provided for or excluded under any other term or condition of this contract. (c) A claim under this clause shall not be allowed (1) for any costs incurred more than 20 days before the Contractor shall have notified the Contracting Officer in writing of the act or failure to act involved (but this requirement shall not apply as to a claim resulting from a suspension order), and (2) unless the claim, in an amount stated, is asserted in writing as soon as practicable after the termination of the suspension, delay, or interruption, but not later than the date of final payment under the contract. #### 52.243-4 CHANGES (AUG 1987) - (a) The Contracting Officer may, at any time, without notice to the sureties, if any, by written order designated or indicated to be a change order, make changes in the work within the general scope of the contract, including changes-- - (1) In the specifications (including drawings and designs); - (2) In the method or manner of performance of the work; - (3) In the Government-furnished facilities, equipment, materials, services, or site; or - (4) Directing acceleration in the performance of the work. - (b) Any other written or oral order (which, as used in this paragraph (b), includes direction, instruction, interpretation, or determination) from the Contracting Officer that causes a change shall be treated as a change order under this clause; provided, that the Contractor gives the Contracting Officer written notice stating - (1) the date, circumstances, and source of the order and - (2) that the Contractor regards the order as a change order. - (c) Except as provided in this clause, no order, statement, or conduct of the Contracting Officer shall be treated as a change under this clause or entitle the Contractor to an equitable adjustment. - (d) If any change under this clause causes an increase or decrease in the Contractor's cost of, or the time required for, the performance of any part of the work under this contract, whether or not changed by any such order, the Contracting Officer shall make an equitable adjustment and modify the contract in writing. However, except for an adjustment based on defective specifications, no adjustment for any change under paragraph (b) of this clause shall be made for any costs incurred more than 20 days before the Contractor gives written notice as required. In the case of defective specifications for which the Government is responsible, the equitable adjustment shall include any increased cost reasonably incurred by the Contractor in attempting to comply with the defective specifications. - (e) The Contractor must assert its right to an adjustment under this clause within 30 days after - (1) receipt of a written change order under paragraph (a) of this clause or (2) the furnishing of a written notice under paragraph (b) of this clause, by submitting to the Contracting Officer a written statement describing the general nature and amount of the proposal, unless this period is extended by the Government. The statement of proposal for adjustment may be included in the notice under paragraph (b) above. - (f) No proposal by the Contractor for an equitable adjustment shall be allowed if asserted after final payment under this contract. # 252.243-7001 PRICING OF CONTRACT MODIFICATIONS (DEC 1991) When costs are a factor in any price adjustment under this contract, the contract cost principles and procedures in FAR part 31 and DFARS part 231, in effect on the date of this contract, apply. # 252.243-7002 REQUESTS FOR EQUITABLE ADJUSTMENT (MAR 1998) (a) The amount of any request for equitable adjustment to contract terms shall accurately reflect the contract
adjustment for which the Contractor believes the Government is liable. The request shall include only costs for performing the change, and shall not include any costs that already have been reimbursed or that have been separately claimed. All indirect costs included in the request shall be properly allocable to the change in accordance with applicable acquisition regulations. (b) In accordance with 10 U.S.C. 2410(a), any request for equitable adjustment to contract terms that exceeds the simplified acquisition threshold shall bear, at the time of submission, the following certificate executed by an individual authorized to certify the request on behalf of the Contractor: I certify that the request is made in good faith, and that the supporting data are accurate and complete to the best of my knowledge and belief. | |
 |
 | |-------------------|------|------| | (Official's Name) | | | | (Title) |
 |
 | - (c) The certification in paragraph (b) of this clause requires full disclosure of all relevant facts, including-- - (1) Cost or pricing data if required in accordance with subsection 15.403-4 of the Federal Acquisition Regulation (FAR); and - (2) Information other than cost or pricing data, in accordance with subsection 15.403-3 of the FAR, including actual cost data and data to support any estimated costs, even if cost or pricing data are not required. - (d) The certification requirement in paragraph (b) of this clause does not apply to---- - (1) Requests for routine contract payments; for example, requests for payment for accepted supplies and services, routine vouchers under a cost-reimbursement type contract, or progress payment invoices; or - (2) Final adjustment under an incentive provision of the contract. - 52.246-12 INSPECTION OF CONSTRUCTION (AUG 1996) - (a) Definition. "Work" includes, but is not limited to, materials, workmanship, and manufacture and fabrication of components. - (b) The Contractor shall maintain an adequate inspection system and perform such inspections as will ensure that the work performed under the contract conforms to contract requirements. The Contractor shall maintain complete inspection records and make them available to the Government. All work shall be conducted under the general direction of the Contracting Officer and is subject to Government inspection and test at all places and at all reasonable times before acceptance to ensure strict compliance with the terms of the contract. - (c) Government inspections and tests are for the sole benefit of the Government and do not-- - (1) Relieve the Contractor of responsibility for providing adequate quality control measures; - (2) Relieve the Contractor of responsibility for damage to or loss of the material before acceptance; - (3) Constitute or imply acceptance; or - (4) Affect the continuing rights of the Government after acceptance of the completed work under paragraph (i) of this section. - (d) The presence or absence of a Government inspector does not relieve the Contractor from any contract requirement, nor is the inspector authorized to change any term or condition of the specification without the Contracting Officer's written authorization. - (e) The Contractor shall promptly furnish, at no increase in contract price, all facilities, labor, and material reasonably needed for performing such safe and convenient inspections and tests as may be required by the Contracting Officer. The Government may charge to the Contractor any additional cost of inspection or test when work is not ready at the time specified by the Contractor for inspection or test, or when prior rejection makes reinspection or retest necessary. The Government shall perform all inspections and tests in a manner that will not unnecessarily delay the work. Special, full size, and performance tests shall be performed as described in the contract. - (f) The Contractor shall, without charge, replace or correct work found by the Government not to conform to contract requirements, unless in the public interest the Government consents to accept the work with an appropriate adjustment in contract price. The Contractor shall promptly segregate and remove rejected material from the premises. - (g) If the Contractor does not promptly replace or correct rejected work, the Government may (1) by contract or otherwise, replace or correct the work and charge the cost to the Contractor or (2) terminate for default the Contractor's right to proceed. - (h) If, before acceptance of the entire work, the Government decides to examine already completed work by removing it or tearing it out, the Contractor, on request, shall promptly furnish all necessary facilities, labor, and material. If the work is found to be defective or nonconforming in any material respect due to the fault of the Contractor or its subcontractors, the Contractor shall defray the expenses of the examination and of satisfactory reconstruction. However, if the work is found to meet contract requirements, the Contracting Officer shall make an equitable adjustment for the additional services involved in the examination and reconstruction, including, if completion of the work was thereby delayed, an extension of time. - (i) Unless otherwise specified in the contract, the Government shall accept, as promptly as practicable after completion and inspection, all work required by the contract or that portion of the work the Contracting Officer determines can be accepted separately. Acceptance shall be final and conclusive except for latent defects, fraud, gross mistakes amounting to fraud, or the Government's rights under any warranty or guarantee. #### 52.246-21 WARRANTY OF CONSTRUCTION (MAR 1994) - (a) In addition to any other warranties in this contract, the Contractor warrants, except as provided in paragraph (i) of this clause, that work performed under this contract conforms to the contract requirements and is free of any defect in equipment, material, or design furnished, or workmanship performed by the Contractor or any subcontractor or supplier at any tier. - (b) This warranty shall continue for a period of 1 year from the date of final acceptance of the work. If the Government takes possession of any part of the work before final acceptance, this warranty shall continue for a period of 1 year from the date the Government takes possession. - (c) The Contractor shall remedy at the Contractor's expense any failure to conform, or any defect. In addition, the Contractor shall remedy at the Contractor's expense any damage to Government-owned or controlled real or personal property, when that damage is the result of-- - (1) The Contractor's failure to conform to contract requirements; or - (2) Any defect of equipment, material, workmanship, or design furnished. - (d) The Contractor shall restore any work damaged in fulfilling the terms and conditions of this clause. The Contractor's warranty with respect to work repaired or replaced will run for 1 year from the date of repair or replacement. - (e) The Contracting Officer shall notify the Contractor, in writing, within a reasonable time after the discovery of any failure, defect, or damage. - (f) If the Contractor fails to remedy any failure, defect, or damage within a reasonable time after receipt of notice, the Government shall have the right to replace, repair, or otherwise remedy the failure, defect, or damage at the Contractor's expense. - (g) With respect to all warranties, express or implied, from subcontractors, manufacturers, or suppliers for work performed and materials furnished under this contract, the Contractor shall-- - (1) Obtain all warranties that would be given in normal commercial practice; - (2) Require all warranties to be executed, in writing, for the benefit of the Government, if directed by the Contracting Officer; and - (3) Enforce all warranties for the benefit of the Government, if directed by the Contracting Officer. - (h) In the event the Contractor's warranty under paragraph (b) of this clause has expired, the Government may bring suit at its expense to enforce a subcontractor's, manufacturer's, or supplier's warranty. - (i) Unless a defect is caused by the negligence of the Contractor or subcontractor or supplier at any tier, the Contractor shall not be liable for the repair of any defects of material or design furnished by the Government nor for the repair of any damage that results from any defect in Government-furnished material or design. - (j) This warranty shall not limit the Government's rights under the Inspection and Acceptance clause of this contract with respect to latent defects, gross mistakes, or fraud. (End of clause) #### 52.248-3 VALUE ENGINEERING--CONSTRUCTION (FEB 2000) - (a) General. The Contractor is encouraged to develop, prepare, and submit value engineering change proposals (VECP's) voluntarily. The Contractor shall share in any instant contract savings realized from accepted VECP's, in accordance with paragraph (f) below. - (b) Definitions. "Collateral costs," as used in this clause, means agency costs of operation, maintenance, logistic support, or Government-furnished property. - "Collateral savings," as used in this clause, means those measurable net reductions resulting from a VECP in the agency's overall projected collateral costs, exclusive of acquisition savings, whether or not the acquisition cost changes. - "Contractor's development and implementation costs," as used in this clause, means those costs the Contractor incurs on a VECP specifically in developing, testing, preparing, and submitting the VECP, as well as those costs the Contractor incurs to make the contractual changes required by Government acceptance of a VECP. - "Government costs," as used in this clause, means those agency costs that result directly from developing and implementing the VECP, such as any net increases in the cost of testing, operations, maintenance, and logistic support. The term does not include the
normal administrative costs of processing the VECP. - "Instant contract savings," as used in this clause, means the estimated reduction in Contractor cost of performance resulting from acceptance of the VECP, minus allowable Contractor's development and implementation costs, including subcontractors' development and implementation costs (see paragraph (h) below). [&]quot;Value engineering change proposal (VECP)" means a proposal that-- - (1) Requires a change to this, the instant contract, to implement; and - (2) Results in reducing the contract price or estimated cost without impairing essential functions or characteristics; provided, that it does not involve a change-- - (i) In deliverable end item quantities only; or - (ii) To the contract type only. - (c) VECP preparation. As a minimum, the Contractor shall include in each VECP the information described in subparagraphs (1) through (7) below. If the proposed change is affected by contractually required configuration management or similar procedures, the instructions in those procedures relating to format, identification, and priority assignment shall govern VECP preparation. The VECP shall include the following: - (1) A description of the difference between the existing contract requirement and that proposed, the comparative advantages and disadvantages of each, a justification when an item's function or characteristics are being altered, and the effect of the change on the end item's performance. - (2) A list and analysis of the contract requirements that must be changed if the VECP is accepted, including any suggested specification revisions. - (3) A separate, detailed cost estimate for - (i) the affected portions of the existing contract requirement and - (ii) the VECP. The cost reduction associated with the VECP shall take into account the Contractor's allowable development and implementation costs, including any amount attributable to subcontracts under paragraph (h) below. - (4) A description and estimate of costs the Government may incur in implementing the VECP, such as test and evaluation and operating and support costs. - (5) A prediction of any effects the proposed change would have on collateral costs to the agency. - (6) A statement of the time by which a contract modification accepting the VECP must be issued in order to achieve the maximum cost reduction, noting any effect on the contract completion time or delivery schedule. - (7) Identification of any previous submissions of the VECP, including the dates submitted, the agencies and contract numbers involved, and previous Government actions, if known. - (d) Submission. The Contractor shall submit VECP's to the Resident Engineer at the worksite, with a copy to the Contracting Officer. - (e) Government action. - (1) The Contracting Officer will notify the Contractor of the status of the VECP within 45 calendar days after the contracting office receives it. If additional time is required, the Contracting Officer will notify the Contractor within the 45-day period and provide the reason for the delay and the expected date of the decision. The Government will process VECP's expeditiously; however, it shall not be liable for any delay in acting upon a VECP. If the VECP is not accepted, the Contracting Officer will notify the Contractor in writing, explaining the reasons for rejection. The Contractor may withdraw any VECP, in whole or in part, at any time before it is accepted by the Government. The Contracting Officer may require that the Contractor provide written notification before undertaking significant expenditures for VECP effort. Any VECP may be accepted, in whole or in part, by the Contracting Officer's award of a modification to this contract citing this clause. The Contracting Officer may accept the VECP, even though an agreement on price reduction has not been reached, by issuing the Contractor a notice to proceed with the change. Until a notice to proceed is issued or a contract modification applies a VECP to this contract, the Contractor shall perform in accordance with the existing contract. The decision to accept or reject all or part of any VECP is a unilateral decision made solely at the discretion of the Contracting Officer. - (f) Sharing. - (1) Rates. The Government's share of savings is determined by subtracting Government costs from instant contract savings and multiplying the result by - (i) 45 percent for fixed-price contracts or - (ii) 75 percent for cost-reimbursement contracts. - (2) Payment. Payment of any share due the Contractor for use of a VECP on this contract shall be authorized by a modification to this contract to-- - (i) Accept the VECP; - (ii) Reduce the contract price or estimated cost by the amount of instant contract savings; and - (iii) Provide the Contractor's share of savings by adding the amount calculated to the contract price or fee. - (g) Collateral savings. If a VECP is accepted, the Contracting Officer will increase the instant contract amount by 20 percent of any projected collateral savings determined to be realized in a typical year of use after subtracting any Government costs not previously offset. However, the Contractor's share of collateral savings will not exceed the contract's firm-fixed-price or estimated cost, at the time the VECP is accepted, or \$100,000, whichever is greater. The Contracting Officer is the sole determiner of the amount of collateral savings. - (h) Subcontracts. The Contractor shall include an appropriate value engineering clause in any subcontract of \$50,000 or more and may include one in subcontracts of lesser value. In computing any adjustment in this contract's price under paragraph (f) above, the Contractor's allowable development and implementation costs shall include any subcontractor's allowable development and implementation costs clearly resulting from a VECP accepted by the Government under this contract, but shall exclude any value engineering incentive payments to a subcontractor. The Contractor may choose any arrangement for subcontractor value engineering incentive payments; provided, that these payments shall not reduce the Government's share of the savings resulting from the VECP. - (i) Data. The Contractor may restrict the Government's right to use any part of a VECP or the supporting data by marking the following legend on the affected parts: "These data, furnished under the Value Engineering-- Construction clause of contract , shall not be disclosed outside the Government or duplicated, used, or disclosed, in whole or in part, for any purpose other than to evaluate a value engineering change proposal submitted under the clause. This restriction does not limit the Government's right to use information contained in these data if it has been obtained or is otherwise available from the Contractor or from another source without limitations." If a VECP is accepted, the Contractor hereby grants the Government unlimited rights in the VECP and supporting data, except that, with respect to data qualifying and submitted as limited rights technical data, the Government shall have the rights specified in the contract modification implementing the VECP and shall appropriately mark the data. (The terms "unlimited rights" and "limited rights" are defined in Part 27 of the Federal Acquisition Regulation.) (End of clause) #### 52.249-10 DEFAULT (FIXED-PRICE CONSTRUCTION) (APR 1984) - (a) If the Contractor refuses or fails to prosecute the work or any separable part, with the diligence that will insure its completion within the time specified in this contract including any extension, or fails to complete the work within this time, the Government may, by written notice to the Contractor, terminate the right to proceed with the work (or the separable part of the work) that has been delayed. In this event, the Government may take over the work and complete it by contract or otherwise, and may take possession of and use any materials, appliances, and plant on the work site necessary for completing the work. The Contractor and its sureties shall be liable for any damage to the Government resulting from the Contractor's refusal or failure to complete the work within the specified time, whether or not the Contractor's right to proceed with the work is terminated. This liability includes any increased costs incurred by the Government in completing the work. - (b) The Contractor's right to proceed shall not be terminated nor the Contractor charged with damages under this clause, if-- - (1) The delay in completing the work arises from unforeseeable causes beyond the control and without the fault or negligence of the Contractor. Examples of such causes include - (i) acts of God or of the public enemy, - (ii) acts of the Government in either its sovereign or contractual capacity, - (iii) acts of another Contractor in the performance of a contract with the Government, - (iv) fires, - (v) floods, - (vi) epidemics, - (vii) quarantine restrictions, - (viii) strikes, - (ix) freight embargoes, - (x) unusually severe weather, or delays of subcontractors or suppliers at any tier arising from unforeseeable causes beyond the control and without the fault or negligence of both the Contractor and the subcontractors or suppliers; and - (2) The Contractor, within 10 days from the beginning of any delay (unless extended by the Contracting Officer), notifies the Contracting Officer in writing of the causes of delay. The Contracting Officer shall ascertain the facts and the extent of delay. If, in the judgment of the Contracting Officer, the findings of fact warrant such action, the time for completing the work shall be extended. The findings of the Contracting Officer shall be final and conclusive on the parties, but subject to appeal under the Disputes clause. - (c) If, after termination of the Contractor's right to proceed, it is determined that the Contractor was not in default, or that the delay was excusable, the rights
and obligations of the parties will be the same as if the termination had been issued for the convenience of the Government. The rights and remedies of the Government in this clause are in addition to any other rights and remedies provided by law or under this contract. # 52.249-2 TERMINATION FOR CONVENIENCE OF THE GOVERNMENT (FIXED-PRICE) (SEP 1996) - ALTERNATE I (SEP 1996) - (a) The Government may terminate performance of work under this contract in whole or, from time to time, in part if the Contracting Officer determines that a termination is in the Government's interest. The Contracting Officer shall terminate by delivering to the Contractor a Notice of Termination specifying the extent of termination and the effective date. - (b) After receipt of a Notice of Termination, and except as directed by the Contracting Officer, the Contractor shall immediately proceed with the following obligations, regardless of any delay in determining or adjusting any amounts due under this clause: - (1) Stop work as specified in the notice. - (2) Place no further subcontracts or orders (referred to as subcontracts in this clause) for materials, services, or facilities, except as necessary to complete the continued portion of the contract. - (3) Terminate all subcontracts to the extent they relate to the work terminated. - (4) Assign to the Government, as directed by the Contracting Officer, all right, title, and interest of the Contractor under the subcontracts terminated, in which case the Government shall have the right to settle or to pay any termination settlement proposal arising out of those terminations. - (5) With approval or ratification to the extent required by the Contracting Officer, settle all outstanding liabilities and termination settlement proposals arising from the termination of subcontracts; the approval or ratification will be final for purposes of this clause. - (6) As directed by the Contracting Officer, transfer title and deliver to the Government (i) the fabricated or unfabricated parts, work in process, completed work, supplies, and other material produced or acquired for the work terminated, and (ii) the completed or partially completed plans, drawings, information, and other property that, if the contract had been completed, would be required to be furnished to the Government. - (7) Complete performance of the work not terminated. - (8) Take any action that may be necessary, or that the Contracting Officer may direct, for the protection and preservation of the property related to this contract that is in the possession of the Contractor and in which the Government has or may acquire an interest. - (9) Use its best efforts to sell, as directed or authorized by the Contracting Officer, any property of the types referred to in subparagraph (b)(6) of this clause; provided, however, that the Contractor (i) is not required to extend credit to any purchaser and (ii) may acquire the property under the conditions prescribed by, and at prices approved by, the Contracting Officer. The proceeds of any transfer or disposition will be applied to reduce any payments to be made by the Government under this contract, credited to the price or cost of the work, or paid in any other manner directed by the Contracting Officer. - (c) The Contractor shall submit complete termination inventory schedules no later than 120 days from the effective date of termination, unless extended in writing by the Contracting Officer upon written request of the Contractor within this 120-day period. - (d) After expiration of the plant clearance period as defined in Subpart 45.6 of the Federal Acquisition Regulation, the Contractor may submit to the Contracting Officer a list, certified as to quantity and quality, of termination inventory not previously disposed of, excluding items authorized for disposition by the Contracting Officer. The Contractor may request the Government to remove those items or enter into an agreement for their storage. Within 15 days, the Government will accept title to those items and remove them or enter into a storage agreement. The Contracting Officer may verify the list upon removal of the items, or if stored, within 45 days from submission of the list, and shall correct the list, as necessary, before final settlement. - (e) After termination, the Contractor shall submit a final termination settlement proposal to the Contracting Officer in the form and with the certification prescribed by the Contracting Officer. The Contractor shall submit the proposal promptly, but no later than 1 year from the effective date of termination, unless extended in writing by the Contracting Officer upon written request of the Contractor within this 1-year period. However, if the Contracting Officer determines that the facts justify it, a termination settlement proposal may be received and acted on after 1 year or any extension. If the Contractor fails to submit the proposal within the time allowed, the Contracting Officer may determine, on the basis of information available, the amount, if any, due the Contractor because of the termination and shall pay the amount determined. - (f) Subject to paragraph (e) of this clause, the Contractor and the Contracting Officer may agree upon the whole or any part of the amount to be paid or remaining to be paid because of the termination. The amount may include a reasonable allowance for profit on work done. However, the agreed amount, whether under this paragraph (g) or paragraph (g) of this clause, exclusive of costs shown in subparagraph (g)(3) of this clause, may not exceed the total contract price as reduced by (1) the amount of payments previously made and (2) the contract price of work not terminated. The contract shall be modified, and the Contractor paid the agreed amount. Paragraph (g) of this clause shall not limit, restrict, or affect the amount that may be agreed upon to be paid under this paragraph. - (g) If the Contractor and Contracting Officer fail to agree on the whole amount to be paid the Contractor because of the termination of work, the Contracting Officer shall pay the Contractor the amounts determined as follows, but without duplication of any amounts agreed upon under paragraph (f) of this clause: - (1) For contract work performed before the effective date of termination, the total (without duplication of any items) of-- - (i) The cost of this work; - (ii) The cost of settling and paying termination settlement proposals under terminated subcontracts that are properly chargeable to the terminated portion of the contract if not included in subdivision (g)(1)(i) of this clause; and - (iii) A sum, as profit on subdivision (g)(1)(i) of this clause, determined by the Contracting Officer under 49.202 of the Federal Acquisition Regulation, in effect on the date of this contract, to be fair and reasonable; however, if it appears that the Contractor would have sustained a loss on the entire contract had it been completed, the Contracting Officer shall allow no profit under this subdivision (iii) and shall reduce the settlement to reflect the indicated rate of loss. - (2) The reasonable costs of settlement of the work terminated, including-- - (i) Accounting, legal, clerical, and other expenses reasonably necessary for the preparation of termination settlement proposals and supporting data; - (ii) The termination and settlement of subcontracts (excluding the amounts of such settlements); and - (iii) Storage, transportation, and other costs incurred, reasonably necessary for the preservation, protection, or disposition of the termination inventory. - (h) Except for normal spoilage, and except to the extent that the Government expressly assumed the risk of loss, the Contracting Officer shall exclude from the amounts payable to the Contractor under paragraph (g) of this clause, the fair value, as determined by the Contracting Officer, of property that is destroyed, lost, stolen, or damaged so as to become undeliverable to the Government or to a buyer. - (i) The cost principles and procedures of Part 31 of the Federal Acquisition Regulation, in effect on the date of this contract, shall govern all costs claimed, agreed to, or determined under this clause. - (j) The Contractor shall have the right of appeal, under the Disputes clause, from any determination made by the Contracting Officer under paragraph (e), (g), or (l) of this clause, except that if the Contractor failed to submit the termination settlement proposal or request for equitable adjustment within the time provided in paragraph (e) or (l), respectively, and failed to request a time extension, there is no right of appeal. - (k) In arriving at the amount due the Contractor under this clause, there shall be deducted- - (1) All unliquidated advance or other payments to the Contractor under the terminated portion of this contract; - (2) Any claim which the Government has against the Contractor under this contract; and - (3) The agreed price for, or the proceeds of sale of, materials, supplies, or other things acquired by the Contractor or sold under the provisions of this clause and not recovered by or credited to the Government. - (l) If the termination is partial, the Contractor may file a proposal with the Contracting Officer for an equitable adjustment of the price(s) of the continued portion of the contract. The Contracting Officer shall make any equitable adjustment agreed upon. Any proposal by the Contractor for an equitable adjustment under this clause shall be requested within 90 days from the effective date of termination unless extended in writing by the Contracting Officer. - (m)(1) The Government may, under the terms and conditions it prescribes, make partial payments and payments against costs incurred by the Contractor for the terminated portion of the contract, if the Contracting Officer believes the total of these payments will not exceed the amount to which the Contractor will be entitled. - (2) If
the total payments exceed the amount finally determined to be due, the Contractor shall repay the excess to the Government upon demand, together with interest computed at the rate established by the Secretary of the Treasury under 50 U.S.C. App. 1215(b)(2). Interest shall be computed for the period from the date the excess payment is received by the Contractor to the date the excess is repaid. Interest shall not be charged on any excess payment due to a reduction in the Contractor's termination settlement proposal because of retention or other disposition of termination inventory until 10 days after the date of the retention or disposition, or a later date determined by the Contracting Officer because of the circumstances. - (n) Unless otherwise provided in this contract or by statute, the Contractor shall maintain all records and documents relating to the terminated portion of this contract for 3 years after final settlement. This includes all books and other evidence bearing on the Contractor's costs and expenses under this contract. The Contractor shall make these records and documents available to the Government, at the Contractor's office, at all reasonable times, without any direct charge. If approved by the Contracting Officer, photographs, microphotographs, or other authentic reproductions may be maintained instead of original records and documents. # 52.252-4 ALTERATIONS IN CONTRACT (APR 1984) Portions of this contract are altered as follows: (End of clause) #### 52.252-6 AUTHORIZED DEVIATIONS IN CLAUSES (APR 1984) (a) The use in this solicitation or contract of any Federal Acquisition Regulation (48 CFR Chapter 1) clause with an authorized deviation is indicated by the addition of "(DEVIATION)" after the date of the clause. | (b) The use in this solicitation or contract of any | (48 CFR |) clause with an authorized deviation is | |---|------------------|--| | indicated by the addition of "(DEVIATION)" after th | e name of the re | gulation. | # 52.253-1 COMPUTER GENERATED FORMS (JAN 1991) - (a) Any data required to be submitted on a Standard or Optional Form prescribed by the Federal Acquisition Regulation (FAR) may be submitted on a computer generated version of the form, provided there is no change to the name, content, or sequence of the data elements on the form, and provided the form carries the Standard or Optional Form number and edition date. - (b) Unless prohibited by agency regulations, any data required to be submitted on an agency unique form prescribed by an agency supplement to the FAR may be submitted on a computer generated version of the form provided there is no change to the name, content, or sequence of the data elements on the form and provided the form carries the agency form number and edition date. - (c) If the Contractor submits a computer generated version of a form that is different than the required form, then the rights and obligations of the parties will be determined based on the content of the required form. # SECTION 00800 # SPECIAL CLAUSES # TABLE OF CONTENTS | PARAGRAPH NO. | PARAGRAPH TITLE | |---------------|--| | SC-1 | COMMENCEMENT, PROSECUTION, AND COMPLETION OF WORK | | SC-1.1 | OPTION FOR INCREASED QUANTITY | | SC-2 | LIQUIDATED DAMAGES - CONSTRUCTION | | SC-3 | <u>DELETED</u> - TIME EXTENSIONS | | SC-4 | <u>DELETED</u> - VARIATIONS IN ESTIMATED QUANTITIES - SUBDIVIDED ITEMS | | SC-5 | INSURANCE - WORK ON A GOVERNMENT INSTALLATION | | SC-6 | DELETED - CONTINUING CONTRACTS | | SC-7 | PERFORMANCE OF WORK BY THE CONTRACTOR | | SC-8 | PHYSICAL DATA | | SC-9 | <u>DELETED</u> - QUANTITY SURVEYS | | SC-10 | LAYOUT OF WORK | | SC-11 | <u>DELETED</u> - PAYMENT FOR MOBILIZATION AND PREPARATORY WORK | | SC-12 | AIRFIELD SAFETY PRECAUTIONS | | SC-13 | <u>DELETED</u> - IDENTIFICATION OF GOVERNMENT-FURNISHED PROPERTY | | SC-14 | EQUIPMENT OWNERSHIP AND OPERATING EXPENSE SCHEDULE | | SC-15 | PAYMENT FOR MATERIALS DELIVERED OFF-SITE | | SC-16 | DELETED - ORDER OF PRECEDENCE | | SC-17 | DELETED - LIMITATION OF PAYMENT FOR DESIGN | | SC-18 | CONTRACT DRAWINGS, MAPS AND SPECIFICATIONS | | SC-19 | $\underline{DELETED}$ - TECHNICAL PROPOSAL - COPIES TO BE FURNISHED UPON AWARD | | SC-20 | DELETED - COMPLIANCE CERTIFICATION | | SC-21 | <u>DELETED</u> - VALUE ENGINEERING | | SC-22 | <u>DELETED</u> - EPA ENERGY STAR | | SC-23 | DELETED - YEAR 2000 COMPLIANCE | | SC-24 | <u>DELETED</u> - RECOVERED MATERIALS | #### SPECIAL CLAUSES SC-1. COMMENCEMENT, PROSECUTION, AND COMPLETION OF WORK (APR 1984) (FAR 52.211-10). The Contractor shall be required to (a) commence work under this Contract within 10 calendar days after the date the Contractor receives the notice to proceed, (b) prosecute the work diligently, and (c) complete the entire work ready for use not later than 365 calendar days after date of receipt by Contractor of notice to proceed. The time stated for completion shall include final cleanup of the premises. The work shall be accomplished in phases: Phase 1: Hangar Bldg 1013 Work. Accomplish this work first before Phase 2 work. The contractor shall assume that Hangar 1012 will not be available until 8 August 2000. Install trailer and provide utility service to trailer. Upgrade electrical power outlets inside Hangar 1013. Phase 1 work when completed will permit the occupants of Hangar 1012 to relocate to 1013; thus making the vacant Hangar 1012 available for the contractor. Refer to Specifications Section 01005, paragraph Office Trailer, for a description of Phase 1 work within Hangar 1013. Phase 2: Remaining project work includes exposing a utility corridor trench in the taxiway to receive the gas and AFFF water supply service by jacking and boring the gas, which requires coordination with AVISTA utilities company (point of contact is Darrell Padayao, 509-495-4966) for the latter to install the gas line inside the Contractor's gas line sleeve; and separate water line conduits (and installing the waterline pipe in the waterline conduit), and closing the trench. #### SC-1.1 OPTION FOR INCREASED QUANTITY - a. The Government may increase the quantity of work awarded by exercising Optional Bid Item 0005 at any time, or not at all, but no later than 90 calendar days after receipt by Contractor of notice to proceed for Base Bid Items. Notice to proceed on work items added by exercise of the options will be given upon execution of consent of surety. - b. The parties hereto further agree that any option herein shall be considered to have been exercised at the time the Government deposits written notification to the Contractor in the mails. - c. The time allowed for completion of any optional items awarded under this contract will be the same as that for the base items, and will be measured from the date of receipt of the notice to proceed for the base items # SC-2. LIQUIDATED DAMAGES - CONSTRUCTION (APR 1984) (FAR 52.211-12) - (a) If the Contractor fails to complete the work within the time specified in the Contract, or any extension, the Contractor shall pay to the Government as liquidated damages, the sum of \$795.00 for each day of delay. - (b) If the Government terminates the Contractor's right to proceed, the resulting damage will consist of liquidated damages until such reasonable time as may be required for final completion of the work together with any increased costs occasioned the Government in completing the work. - (c) If the Government does not terminate the Contractor's right to proceed, the resulting damage will consist of liquidated damages until the work is completed or accepted. #### SC-3 AND SC-4. DELETED - SC-5. INSURANCE WORK ON A GOVERNMENT INSTALLATION (SEP 1989) (FAR 52.228-5) - (a) The Contractor shall, at its own expense, provide and maintain during the entire performance period of this Contract at least the kinds and minimum amounts of insurance required in the Insurance Liability Schedule or elsewhere in the Contract. - (b) Before commencing work under this Contract, the Contractor shall certify to the Contracting Officer in writing that the required insurance has been obtained. The policies evidencing required insurance shall contain an endorsement to the effect that any cancellation or any material change adversely affecting the Government's interest shall not be effective: - (1) for such period as the laws of the State in which this Contract is to be performed prescribe; or - (2) until 30 days after the insurer or the Contractor gives written notice to the Contracting Officer, whichever period is longer. - (c) The Contractor shall insert the substance of this clause, including this paragraph (c), in subcontracts under this Contract that require work on a Government installation and shall require subcontractors to provide and maintain the insurance required in the Schedule or elsewhere in the Contract. The Contractor shall maintain a copy of all subcontractors' proofs of required insurance, and shall make copies available to the Contracting Officer upon request. - (d) Insurance Liability Schedule (FAR 28.307-2) - (1) Workers' compensation and employer's liability. Contractors are required to comply with applicable Federal and State workers' compensation and occupational disease statutes. If occupational diseases are not compensable under those statutes, they shall be covered under the employer's liability section of the insurance policy, except when Contract operations are so commingled with a Contractor's commercial operation that it would not be practical to require this coverage. Employer's liability coverage of at least \$100,000 shall be required, except in states with exclusive or monopolistic funds that do not permit workers' compensation to be written by private carriers. # (2) General Liability. - (a) The Contracting Officer shall require bodily injury liability insurance coverage
written on the comprehensive form of policy of at least \$500,000 per occurrence. - (b) Property damage liability insurance shall be required only in special circumstances as determined by the agency. - (3) <u>Automobile liability</u>. The Contracting Officer shall require automobile liability insurance written on the comprehensive form of policy. The policy shall provide for bodily injury and property damage liability covering the operation of all automobiles used in connection with performing the Contract. Policies covering automobiles operated in the United States shall provide coverage of at least \$200,000 per person and \$500,000 per occurrence for bodily injury and \$20,000 per occurrence for property damage. The amount of liability coverage on other policies shall be commensurate with any legal requirements of the locality and sufficient to meet normal and customary claims. - (4) Aircraft public and passenger liability. When aircraft are used in connection with performing the Contract, the Contracting Officer shall require aircraft public and passenger liability insurance. Coverage shall be at least \$200,000 per person and \$500,000 per occurrence for bodily injury, other than passenger liability, and \$200,000 per occurrence for property damage. Coverage for passenger liability bodily injury shall be at least \$200,000, multiplied by the number of seats or passengers, whichever is greater. - (5) <u>Vessel liability</u>. When Contract performance involves use of vessels, the Contracting Officer shall require, as determined by the agency, vessel collision liability and protection and indemnity liability insurance. - (6) <u>Environmental Liability</u> If this contract includes the transport, treatment, storage, or disposal of hazardous material waste the following coverage is required. The Contractor shall ensure the transporter and disposal facility have liability insurance if effect for claims arising out of the death or bodily injury and property damage from hazardous material/waste transport, treatment, storage and disposal, including vehicle liability and legal defense costs in the amount of \$1,000,000.00 as evidenced by a certificate of insurance for General, Automobile, and Environmental Liability Coverage. Proof of this insurance shall be provided to the Contracting Officer. - SC-7. PERFORMANCE OF WORK BY THE CONTRACTOR (APR 1984) (FAR 52.236-1): The Contractor shall perform on the site, and with its own organization, work equivalent to at least fifteen (15%) percent of the total amount of work to be performed under the Contract. The percentage may be reduced by a supplemental agreement to this Contract if, during performing the work, the Contractor requests a reduction and the Contracting Officer determines that the reduction would be to the advantage of the Government. - SC-8. PHYSICAL DATA (APR 1984) (FAR 52.236-4): Data and information furnished or referred to below is for the Contractor's information. The Government will not be responsible for any interpretation of or conclusion drawn from the data or information by the Contractor. - (a) <u>Physical Conditions</u>: The indications of physical conditions on the drawings and in the specifications are the result of site investigations by test holes shown on the drawings. - (b) <u>Weather Conditions</u>: Each bidder shall be satisfied before submitting his bid as to the hazards likely to arise from weather conditions. Complete weather records and reports may be obtained from any National Weather Service Office. - (c) <u>Transportation Facilities</u>: Each bidder, before submitting his bid, shall make an investigation of the conditions of existing public and private roads and of clearances, restrictions, bridge load limits, and other limitations affecting transportation and ingress and egress at the jobsite. The unavailability of transportation facilities or limitations thereon shall not become a basis for claims for damages or extension of time for completion of the work. - (d) <u>Right-of-Way</u>: The right-of-way for the work covered by these specifications will be furnished by the Government. The Contractor may use such portions of the land within the right-of-way not otherwise occupied as may be designated by the Contracting Officer. The Contractor shall, without expense to the Government, and at any time during the progress of the work when space is needed within the right-of-way for any other purposes, promptly vacate and clean up any part of the grounds that have been allotted to, or have been in use by, him when directed to do so by the Contracting Officer. The Contractor shall keep the buildings and grounds in use by him at the site of the work in an orderly and sanitary condition. Should the Contractor require additional working space or lands for material yards, job offices, or other purposes, he shall obtain such additional lands or easements at his expense. SC-10. LAYOUT OF WORK (APR 1984) (FAR 52.236-17): The Contractor shall lay out its work from Government-established base lines and bench marks indicated on the drawings, and shall be responsible for all measurements in connection with the layout. The Contractor shall furnish, at its own expense, all stakes, templates, platforms, equipment, tools, materials, and labor required to lay out any part of the work. The Contractor shall be responsible for executing the work to the lines and grades that may be established or indicated by the Contracting Officer. The Contractor shall also be responsible for maintaining and preserving all stakes and other marks established by the Contracting Officer until authorized to remove them. If such marks are destroyed by the Contractor or through its negligence before their removal is authorized, the Contracting Officer may replace them and deduct the expense of the replacement from any amounts due, or to become due, to the Contractor. #### SC-11. DELETED - SC-12. AIRFIELD SAFETY PRECAUTIONS (DEC 1991) (DOD FAR SUPP 252.236-7005) - (a) Definitions: As used in this clause -- - (1) "Landing Areas" means: - (i) the primary surfaces which are comprised of the surface of the runways, the runway shoulders, and the lateral safety zones (the length of each primary surface is the same as the runway length; the width of each primary surface is 2,000 feet, 1,000 feet on each side of the runway centerline; (see footnote at end of clause)). - (ii) the "clear zone" beyond the ends of each runway, i.e., the extension of the "primary surface" for a distance of 1,000 feet beyond each end of each runway; - (iii) all taxiways plus the lateral clearance zones along each side for the length of the taxiways (the outer edge of each lateral clearance zone is laterally 250 feet from the far or opposite edge of the taxiway, i.e., a 75-foot-wide taxiway would have a combined width of taxiway and lateral clearance zones of 425 feet; and - (iv) all aircraft parking aprons plus the area 125 feet in width extending beyond each edge all around the aprons. - (2) "Safety precaution areas" means those portions of approach-departure clearance zones and transitional zones where placement of objects incident to Contract performance might result in vertical projections at or above the approach-departure clearance surface or the transitional surface. - (i) The "approach-departure clearance surface" is an extension of the primary surface and the clear zone at each end of each runway, for a distance of 50,000 feet, first along an inclined (glide angle) and then along a horizontal plane, both flaring symmetrically about the runway centerline extended. - (a) The inclined plane (glide angle) begins in the clear zone 200 feet past the end of the runway (and primary surface) at the same elevation as the end of the runway, and continues upward at a slope of 50:1 (one foot vertically for each 50 feet horizontally) to an elevation of 500 feet above the established airfield elevation; at that point the plane becomes horizontal, continuing at that same uniform elevation to a point 50,000 feet longitudinally from the beginning of the inclined plane (glide angle) and ending there. - (b) The width of the surface at the beginning of the inclined plane (glide angle) is the same as the width of the clear zone; thence it flares uniformly, reaching the maximum width of 16,000 feet at the end. - (ii) The "approach-departure clearance zone" is the ground area under the approach-departure clearance surface. - (iii) The "transitional surface" is a sideways extension of all primary surfaces, clear zones, and approach-departure clearance surfaces along inclined planes. - (a) The inclined plane in each case begins at the edge of the surface. - (b) The slope of the inclined plane is 7:1 (one foot vertically for each 7 feet horizontally), and it continues to the point of intersection with - (1) Inner horizontal surface (which is the horizontal plane 150 feet above the established airfield elevation) or - (2) Outer horizontal surface (which is the horizontal plane 500 feet above the established airfield elevation), whichever is applicable. - (iv) The "transitional zone" is the ground area under the transitional surface. (It adjoins the primary surface, clear zone and approach-departure clearance zone.) # (b) General - (1) The Contractor shall comply with the requirements of this clause while - (i) Operating all ground equipment (mobile or station art); - (ii) Placing all materials; and - (iii) Performing all work, upon and around all airfields. - (a) The requirements of this clause are in addition to any other safety requirements of this contract. - (c) The Contractor shall-- - (1) Report to the Contracting Officer before initiating any work; - (2) Notify the Contracting Officer of proposed changes to locations and operations; - (3) Not permit either its equipment or personnel to use any runway for purposes other than aircraft operation without permission of the Contracting Officer, unless the runway is-- - (i)
Closed by order of the Contracting Officer, and - (ii) Marked as provided in paragraph (d)(2) of this clause; - (4) Keep all paved surfaces such as runways, taxiways, and hardstands, clean at all times and, specifically, free from small stones which might damage aircraft propellers or jet aircraft: - (5) Operate mobile equipment according to the safety provisions of this clause, while actually performing work on the airfield. At all other times, the Contractor shall remove all mobile equipment to locations-- - (i) Approved by the Contracting Officer, - (ii) At a distance of at least 750 feet from the runway centerline, plus any additional distance; and - (iii) Necessary to ensure compliance with the other provisions of this clause; and - (6) Not open a trench unless material is on hand and ready for placing in the trench. As soon as practicable after material has been placed and work approved, the Contractor shall backfill and compact trenches as required by the contract. Meanwhile, all hazardous conditions shall be marked and lighted in accordance with the other provisions of this clause. - (e) Landing Areas The Contractor shall-- - (1) Place nothing upon the landing areas without the authorization of the Contracting Officer. - (2) Outline those landing areas hazardous to aircraft, using (unless otherwise authorized by the Contracting Officer) red flags by day, and electric, battery-operated low-intensity red flasher lights by night; - (3) Obtain, at an airfield where flying is controlled, additional permission from the control tower operator every time before entering any landing area, unless the landing area is marked as hazardous in accordance with paragraph (d)(2) of this clause; - (4) Identify all vehicles it operates in landing areas by means of a flag on a staff attached to, and flying above, the vehicle. The flag shall be 3 feet square, and consist of a checkered pattern of international orange and white squares of 1 foot on each side (except that the flag may vary up to 10 percent from each of these dimensions); - (5) Mark all other equipment and materials in the landing areas, using the same marking devices as in paragraph (d)(2) of this clause; and - (6) Perform work so as to leave that portion of the landing area which is available to aircraft free from hazards, holes, piles of material, and projecting shoulders that might damage an airplane tire. - (e) Safety Precaution Areas The Contractor shall-- - (1) Place nothing upon the safety precaution areas without authorization of the Contracting Officer; - (2) Mark all equipment and materials in safety precaution areas, using (unless otherwise authorized by the Contracting Officer) red flags by day, and electric, battery-operated, low-intensity red flasher lights by night; and - (3) Provide all objects placed in safety precaution areas with a red light or red lantern at night, if the objects project above the approach-departure clearance surface or above the transitional surface. SC-13. DELETED - SC-14. EQUIPMENT OWNERSHIP AND OPERATING EXPENSE SCHEDULE (MAR 1995)-(EFARS 52.231-5000) - (a) This clause does not apply to terminations. See 52.249-5000, Basis for Settlement of Proposals and FAR Part 49. - (b) Allowable cost for construction and marine plant and equipment in sound workable condition owned or controlled and furnished by a contractor or subcontractor at any tier shall be based on actual cost data for each piece of equipment or groups of similar serial and series for which the Government can determine both ownership and operating costs from the contractor's accounting records. When both ownership and operating costs cannot be determined for any piece of equipment or groups of similar serial or series equipment from the contractor's accounting records, costs for that equipment shall be based upon the applicable provisions of EP 1110-1-8, Construction Equipment Ownership and Operating Expense Schedule, Region VIII. Working conditions shall be considered to be average for determining equipment rates using the schedule unless specified otherwise by the contracting officer. For equipment not included in the schedule, rates for comparable pieces of equipment may be used or a rate may be developed using the formula provided in the schedule. For forward pricing, the schedule in effect at the time of negotiations shall apply. For retroactive pricing, the schedule in effect at the time the work was performed shall apply. - (c) Equipment rental costs are allowable, subject to the provisions of FAR 31.105(d)(ii) and FAR 31.205-36. Rates for equipment rented from an organization under common control, lease-purchase arrangements, and sale-leaseback arrangements, will be determined using the schedule, except that actual rates will be used for equipment leased from an organization under common control that has an established practice of leasing the same or similar equipment to unaffiliated lessees. - (d) When actual equipment costs are proposed and the total amount of the pricing action exceeds the small purchase threshold, the contracting officer shall request the contractor to submit either certified cost or pricing data, or partial/limited data, as appropriate. The data shall be submitted on Standard Form 1411, Contract Pricing Proposal Cover Sheet. (e) Copies of EP1110-1-8 "Construction Equipment Ownership and Operating Expense Schedule" Volume 8 (Washington, Oregon and Idaho) are available from the Superintendent of Documents, P.O. Box 371954, Pittsburgh, PA 15250-7954, phone (202) 512-1800 and fax (202) 512-2250, OR from the Government Bookstore in the Jackson Federal Building, Seattle, WA, phone (206) 553-4279. The cost is \$33.00 for each volume. Use the following stock numbers when ordering schedules: S/N 008-022-00321-5 Volume 8 # SC-15. PAYMENT FOR MATERIALS DELIVERED OFF-SITE (MAR 1995)-(EFARS 52.232-5000) - (a) Pursuant to FAR clause 52.232-5, Payments Under Fixed Priced Construction Contracts, materials delivered to the contractor at locations other than the site of the work may be taken into consideration in making payments if included in payment estimates and if all the conditions of the General Provisions are fulfilled. Payment for items delivered to locations other than the work site will be limited to: (1) materials required by the technical provisions; or (2) materials that have been fabricated to the point where they are identifiable to an item of work required under this contract. - (b) Such payment will be made only after receipt of paid or receipted invoices or invoices with canceled check showing title to the items in the prime contractor and including the value of material and labor incorporated into the item. In addition to petroleum products, payment for materials delivered off-site is limited to the following items: Any other construction material stored offsite may be considered in determining the amount of a progress payment. SC-16 AND SC-17. DELETED SC-18. EBS CONTRACT DRAWINGS, MAPS, AND SPECIFICATIONS (OCT 1996)(52.0236 – 4001 EBS) - (a) The Government-- - (1) Will provide the Contractor, without charge, one set of contract drawings and one set of specifications in electronic format on a compact disk. The Government will not give the Contractor any hard copy paper drawings or specifications for any contract resulting from this solicitation. - (b) The Contractor shall-- - (1) Check all drawings furnished immediately upon receipt; - (2) Compare all drawings and verify the figures before laying out the work; - (3) Promptly notify the Contracting Officer of any discrepancies; and - (4) Be responsible for any errors which might have been avoided by complying with this paragraph (b). - (c) Large scale drawings shall, in general, govern small scale drawings. Figures marked on drawings shall, in general, be followed in preference to scale measurements. - (d) Omissions from the drawings or specifications or the misdescription of details of work which are manifestly necessary to carry out the intent of the drawings and specifications, or which are customarily performed, shall not relieve the Contractor from performing such omitted or misdescribed details of the work, but shall be performed as if fully and correctly set forth and described in the drawings and specifications. - (e) The work shall conform to the specifications and the contract drawings identified in the index of drawings attached at the end of this section. SC-19 THROUGH SC-24. DELETED. # **INDEX OF DRAWINGS** | DRAWING
NUMBER | SHEET
NO. | PLATE
NO. | TITLE | REVISION
NUMBER | DATE | |-------------------|--------------|--------------|---|--------------------|---------| | | | | Repair Fuel Systems
Maintenance Dock, Fairchild Air
Force Base, Washington
PN: 99-0151 | | | | | | | GENERAL | | | | 236s/113-40-02 | 1 | T1.0 | Cover Sheet | | 24APR00 | | | 2 | A1.1 | General Information | | 24APR00 | | | | | CIVIL | | | | | 3 | CO.1 | Civil Legend | | 24APR00 | | | 4 | CO.2 | Project Location Map, Haul Road and Project Area | 10MAY00 | 24APR00 | | | 5 | C1.1 | Existing Site and Demolition Plan - Sheet 1 | | 24APR00 | | | 6 | C1.2 | Existing Site and Demolition Plan - Sheet 2 | | 24APR00 | | | 7 | C2.1 | Utility Plan - Sheet 1 | 10MAY00 | 24APR00 | | | 8 | C2.2 | Utility Plan - Sheet 2 | | 24APR00 | | | 9 | C3.1 | AFFF Water Supply Line Profile | | 24APR00 | | | 10 | C4.1 | Miscellaneous Utility Details -
Sheet 1 | | 24APR00 | | | 11 | C4.2 | Miscellaneous Utility Details -
Sheet 2 | | 24APR00 | | | | | GEOTECHNICAL | | | | | 12 | GT-1 | Exploration Logs | | 24APR00 | | | 13 | GT-2 | Locations of Explorations | | 24APR00 | | DRAWING
NUMBER | SHEET
NO. | PLATE
NO. | TITLE | REVISION
NUMBER | DATE | |-------------------|--------------|--------------|---|--------------------|---------|
 | | | ARCHITECTURAL | | | | 236/113-40-02 | 14 | A2.1 | Composite Floor Plan and Office
Mezzanine Floor Plan | | 24APR00 | | | 15 | A2.2 | Mezzanine Enlarged Floor Plans and Elevations | | 24APR00 | | | 16 | A2.3 | Washrooms Enlarged Floor Plans and Elevations | | 24APR00 | | | 17 | A2.4 | Washrooms Enlarged Floor Plans and Elevations | | 24APR00 | | | 18 | A2.5 | AFFF Room, Cell Room and
Platform Level Enlarged Floor
Plan | | 24APR00 | | | 19 | A2.6 | Life Safety/Fire Protection Plans | | 24APR00 | | | 20 | A2.7 | Building Signage and Details | | 24APR00 | | | 21 | A3.1 | Interior Sections | | 24APR00 | | | 22 | A4.1 | Wall Sections | | 24APR00 | | | 23 | A4.2 | Wall Sections | | 24APR00 | | | 24 | A6.1 | Ladder Details | | 24APR00 | | | 25 | A7.1 | Reflected Ceiling Plans | | 24APR00 | | | 26 | A8.1 | Casework Details and Elevations | | 24APR00 | | | 27 | A9.1 | Schedules | | 24APR00 | | | 28 | A12.1 | Pump House Floor Plan and Elevations | 10MAY00 | 24APR00 | | | 29 | A12.2 | Pump House Wall Section and Details | 10MAY00 | 24APR00 | | DRAWING
NUMBER | SHEET
NO. | PLATE
NO. | TITLE | REVISION
NUMBER | DATE | |-------------------|--------------|--------------|---|--------------------|---------| | | | | STRUCTURAL | | | | 236s/113-40-02 | 30 | S2.5 | Structural Notes and Plans | | 24APR00 | | | 31 | S4.1 | Masonry Details | | 24APR00 | | | 32 | S6.1 | Elevations and Details | | 24APR00 | | | 33 | S12.1 | Tank Foundation Plan | 10MAY00 | 24APR00 | | | | | MECHANICAL | | | | | 34 | M0.1 | Mechanical HVAC - Legend,
Abbreviations and General Notes | | 24APR00 | | | 35 | M2.0 | Mechanical HVAC Demolition Plan | | 24APR00 | | | 36 | M2.1 | Mechanical HVAC Ground Floor
Plan | | 24APR00 | | | 37 | M3.1 | Mechanical HVAC Enlarged Plans | | 24APR00 | | | 38 | M3.2 | Mechanical HVAC Section | | 24APR00 | | | 39 | M3.3 | Enlarged Mechanical Room 109 Floor Plans | | 24APR00 | | | 40 | M4.1 | Air Flow Diagram | | 24APR00 | | | 41 | M5.1 | Mechanical Details | | 24APR00 | | | 42 | M6.1 | Mechanical Schedules | | 24APR00 | | | 43 | M7.1 | HVAC System Controls Block
Diagrams, Symbols, and
Abbreviations | | 24APR00 | | | 44 | M7.2 | HVAC System Controls AHU-
101 | | 24APR00 | | | 45 | M7.3 | HVAC System Controls AHU-
108 | | 24APR00 | | DRAWING
NUMBER | SHEET
NO. | PLATE
NO. | TITLE | REVISION
NUMBER | DATE | |-------------------|--------------|--------------|--|--------------------|---------| | 236s/113-40-02 | 46 | M7.4 | HVAC System Controls EAHU-
101 | | 24APR00 | | | 47 | M7.5 | HVAC System Controls EAHU-
101A | | 24APR00 | | | 48 | M7.6 | HVAC System Controls EAHU-
108 | | 24APR00 | | | 49 | M7.7 | HVAC System Controls B-109 and DWB-109 | | 24APR00 | | | 50 | M7.8 | HVAC System Controls AHU
Supply Fan and Exhaust Fan
Control Schematics | | 24APR00 | | | 51 | M7.9 | HVAC System Controls AHU
Supply Fan and Exhaust Fan
Control Schematics | | 24APR00 | | | 52 | M7.10 | HVAC System Controls Hot
Water Pump Control
Schematics | | 24APR00 | | | | | PLUMBING | | | | | 53 | P0.1 | Plumbing - Legend,
Abbreviations and General Notes | | 24APR00 | | | 54 | P2.1 | Plumbing Ground Floor Plan | | 24APR00 | | | 55 | P3.1 | Enlarged Plumbing Floor Plans | | 24APR00 | | | 56 | P3.2 | Enlarged Plumbing Floor Plans | | 24APR00 | | | 57 | P4.1 | Plumbing Riser Diagrams | | 24APR00 | | | 58 | P4.2 | Plumbing Diagrams and Details | 10MAY00 | 24APR00 | | | 59 | P6.1 | Plumbing and Piping Schedules | 10MAY00 | 24APR00 | | | 60 | P12.1 | Mechanical and Fire Protection
Pump House Plan | 10MAY00 | 24APR00 | | DRAWING
NUMBER | SHEET
NO. | PLATE
NO. | TITLE | REVISION
NUMBER | DATE | |-------------------|--------------|--------------|--|--------------------|---------| | 236s/113-40-02 | 61 | F0.1 | Legend Abbreviations and
General Notes | | 24APR00 | | | 62 | F2.1 | Aircraft Service Area AFFF
Nozzle Ground Floor Plan | | 24APR00 | | | 63 | F2.2 | Aircraft Service Area Roof Level
Plan | | 24APR00 | | | 64 | F2.3 | AFFF Room Floor Plan | | 24APR00 | | | 65 | F2.4 | Dry Pipe Fire Protection Areas | | 24APR00 | | | 66 | F3.1 | Elevation and Details | | 24APR00 | | | 67 | F3.2 | Details and Isometric Diagrams | | 24APR00 | | | 68 | F4.1 | Fire Alarm Detection | | 24APR00 | | | 69 | F4.2 | AFFF Detection Main Floor Plan | | 24APR00 | | | 70 | F4.3 | AFFF Detection Roof Level Plan | | 24APR00 | | | 71 | F6.1 | Foam System Control Panel
Riser Diagram | | 24APR00 | | | 72 | F6.2 | Fire Alarm Detection Riser
Diagram | | 24APR00 | | | 73 | F6.3 | Fire Detection and Alarm Matrix | | 24APR00 | | | | | ELECTRICAL | | | | | 74 | E0.1 | Electrical - Symbols & Abbreviations | | 24APR00 | | | 75 | E1.1 | Electrical - Building 1012
Demolition Plan | | 24APR00 | | | 76 | E1.2 | Electrical - Site Utilities Interface
Plan | | 24APR00 | | | 77 | E1.3 | Electrical - Building 1019 Power Interface Plan | | 24APR00 | | DRAWING
NUMBER | SHEET
NO. | PLATE
NO. | TITLE | REVISION
NUMBER | DATE | |-------------------|--------------|--------------|--|--------------------|---------| | 236s/113-40-02 | 78 | E1.4 | Electrical - Building 1012 Area
Classification Plan | | 24APR00 | | | 79 | E2.1 | Electrical - Lighting Composite
Floor Plan | | 24APR00 | | | 80 | E3.1 | Electrical - Power Composite
Floor Plan | | 24APR00 | | | 81 | E4.1 | Electrical - Demolition Enlarged Floor Plans | | 24APR00 | | | 82 | E5.1 | Electrical - Lighting Enlarged Floor Plans | | 24APR00 | | | 83 | E5.2 | Electrical - Power Enlarged Floor
Plans | | 24APR00 | | | 84 | E6.1 | Electrical - Power One-Line
Diagram for Building 1012 | | 24APR00 | | | 85 | E6.2 | Electrical - Power One-Line
Diagram for Pump House | | 24APR00 | | | 86 | E7.1 | Electrical - Miscellaneous Power
Details | | 24APR00 | | | 87 | E8.1 | Electrical - Panel Schedules | | 24APR00 | | | 88 | E8.2 | Electrical - Lighting Fixture
Schedule and Details | | 24APR00 | | | 89 | E11.1 | AFFF Pump House Site Power Plan | | 24APR00 | | | 90 | E12.1 | Electrical - AFFF Pump House
Power Floor Plan | 10MAY00 | 24APR00 | # DRAWING CHANGES BY NOTATION Sheet 42, Plate M6.1, Air Handling Unit Schedule, EAHU-101, EAHU-101A, EAHU-108, and AHU108: Add the words "Spark Resistant" to the Supply Fan, Type column and add the words "Motor Outside Air Stream" to the Remarks column. Sheet 42, Plate M6.2, Cabinet Unit Heater Schedule: CUH-102 row shall read the same as CUH-103 except for the area served column. # STANDARD DETAILS BOUND IN THE SPECIFICATIONS | DRAWING SHEET TITLE DATE NUMBER NUMBER | | |--|--| |--|--| # SECTION 01501 - CONSTRUCTION FACILITIES AND TEMPORARY CONTROLS 1 & 2U.S. Air Force Project Construction Sign 84JUN20Hard Hat Sign 10SEP90 **END OF SECTION** # **DESIGN AUTHENTICATION** # REPAIR FUEL SYSTEMS MAINTENANCE DOCK-BUILDING 1012 FAIRCHILD AFB, WA Signatures affixed below indicate the drawings and specifications included in this solicitation were prepared, reviewed and certified in accordance with Department of Army Engineer Regulation ER 1110-345-100, DESIGN POLICY FOR MILITARY CONSTRUCTION. (Signed Drawings on File) for HNTB ANDY MASER, R.E. P. COE Project Manager Dean M. Schmidt, Chief Tech. Eng. & Review Section, Construction Branch Rick Moshier, P.E. Chief, Design Branch Brian Applebury, P.E. -Acting Chief, Engineering & Construction Division This project was designed for the U.S. Army Corps of Engineers, Seattle District. The initials and/or signatures and registration designations of individuals appearing on these project documents are as required by ER 1110-1-8152, ENGINEERING AND DESIGN PROFESSIONAL REGISTRATION. BRS Document Viewer General Decision Number WA000007 ``` General Decision Number wA000007 Superseded General Decision No. wA990007 State: Washington Construction Type: BUILDING County(ies): SPOKANE SPUKANE BUILDING CONSTRUCTION PROJECTS (does not include residential construction consisting of single family homes and apartments up to and including 4 stories) Modification Number Publication Date 02/11/2000 02/18/2000 02/18/2000 02/25/2000 03/10/2000 03/31/2000 06/02/2000 06/16/2000 COUNTY(ies): BRWA0003C 06/01/1998 Rates 21.79 17.50 BRICKLAYERS TERRAZZO WORKERS 5.38 5.38 5.38 TERRAZZO AND TILE FINISHERS CARPOO04E 06/01/1999 Rates CARPENTERS (including Drywall Hangers), INSULATORS- ALL TYPES MILLWRIGHTS Fringes 5.60 PILEDRIVERS HAZMAT PROJECTS Anyone working a HAZMAT job (task), where HAZMAT certification is required, shall be compensated at a premium, in addition to the classification working in as follows: LEVEL D+ $.25 per hour - This is the lowest level of protection. No respirator is used and skin protection is minimal. LEVEL C+ $.50 per hour - This level uses an air purifying respirator or additional protective clothing. LEVEL B+ $.75 per hour - Uses same respirator protection as Level A. Supplied air line is provided in conjunction with a chemical "splash suit." LEVEL A+ $1.00 per hour - This level utilizes a fully encapsulated suit with a self-contained breathing apparatus or a supplied air line. PILEDRIVERS ELEC0073C 01/01/2000 Fringes 3%+8.38 ELECTRICIANS CABLE SPLICERS 3%+8,38 ELEC0073F 06/01/2000 Rates Fringes COMMUNICATION & SOUND TECHNICIAN 19.00 4.80 SCOPE OF WORK SCOPE OF WORK Includes the installation, testing, service and maintenance, of the following systems which utilize the transmission and/or transference of voice, sound, vision and digital for commercial, education, security and entertainment purposes for the following: IV monitoring and surveillance, background foreground music, ``` | intercom and telephone interconnumicrowave
transmission, multi-mensystem, radio page, school interc | ect, inventory | CONTROL SYSTEMS | |---|---------------------------------------|-----------------| | system, radio page, school interdand low voltage master clock system. | lia, multiplex, | nurse call | | and low voltage master clock syst | tom and Sound, | burgiar alarms, | | | | ve | | information and/or control system to the above listed systems | is that are int | rinsic | | to the above listed systems SCADA (Supervisory control/data | acquisition | | | Inventory control systems | | | | Didital data systems | | | | Broadband & baseband and carrier | 'S | | | Point of sale systems
VSAT data systems | | | | VSAT data systems Data communication systems | | | | | | | | Fiber optic data systems B. Sound and Voice Transmission/T Background-Engagound Music | rancfausus c | | | Background-Foreground Music | ransierence sy | stems | | Intercom and telephone intercoru | ect Systems | | | | | | | Nurse Call Systems Radio Page Systems School Intercom and Sound System | | | | School Intercom and Sound System
Burglar Alarm Systems | s | | | LOW-Voltage Master Clock Systems | | | | Mujti-Media/Muitiplex Systems | | | | Telephone Systems RF Systems and Antennas and Wave | e | | | C. Fire Alaim Systems-Installat | ion, wire nulli | ing and | | | · · · · · · · · · · · · · · · · · · · | ing and | | D. Television and Video Systems Television Monitoring and Surve | (11ansa s | | | Video Security Systems
Video Entertainment Systems | rriance Systems | i | | Video Entertainment Systems | | | | Video Educational Systems
Microwave Transmission Systems | | | | (ATV and CCTV | | | | E. Security Systems Perimeter Security Systems Vibration Sensor Systems Sonar/Infrared Monitoring Sonar/Infrared Monitoring | | | | Vibration Sensor Systems | | | | Sonar/Infrared Monitoring Equipm ACCESS Control Systems Card Access Systems | ent | | | | | | | "Fire Alarm Systems | | | | 1. Fire Alarms-In Raceways | | | | a. wire and cable pulling, in ra
at the current electrician w
benefits | ceways, perfor | med | | | | | | b. Installation and termination | of devices, pa | nels, | | startup, testing and program the technician. | ming pertormed | by | | the technician. 2. Fire Alarms-Open wire Systems | | | | a. Open wire systems installed b | | an. | | ENGI0370€ 06/01/1999 | | ************ | | ALL COVERED COUNTREE (EXCLUSIVE OF | Rates | Fringes | | ALL COVERED COUNTIES (EXCLUDING DO WHICH LIES WEST OF THE 120TH MERID | UGLAS AND OKANO | OGAN COUNTIES | | ZUNE 1; | *^** | | | POWER EQUIPMENT OPERATORS:
GROUP LA | 30.01 | _ | | GROUP 1 | 20.01
- 20.56 | 5.45 | | GROUP 2 | 20.88 | 5.45
5.45 | | GROUP 3
GROUP 4 | 21.49 | 5.45 | | GROUP 5 | 21.65
21.81 | 5.45 | | GROUP 6 | 22.09 | 5.45
5.45 | | GROUP 7 | 22.36 | 5.45 | | | | | GROUP 8 ZONE DIFFERENTIAL (Add to Zone 1 rate): Zone 2 - \$2.00 Zone 1: Within \$4 mile radius of Spokane, Moses Lake, Pasco, Washington; Lewiston, Idaho Zone 2: Outside 45 mile radius of Spokane, Moses Lake, Pasco, Washington; Lewiston, Idaho POWER EQUIPMENT DPERATORS CLASSIFICATIONS GROUP 1: Bit Grinders; Bolt Threading Machine; Compressors (under 2000 CFM, gas, diesel, or electric power); Deck Hand; Drillers Helper (assist driller in making drill rod connections, service drill engine and air compressor, repair drill rig and drill tools; drive drill support truck to and one the job site, remove drill cuttings from around bore hole and inspect drill rig and drill tools; drive drill support truck to and one the job site, remove drill cuttings from around bore hole and inspect drill rig and chine; Pulpman, Rollers, all types on subgrade, including seal and chip expender, worzleman; oiler Driver, & Cable Tender, Mucking Machine; Pulpman, Rollers, all types on subgrade, including seal and chip selected withing seal seader with group and chip selected within a selected within a seal of the group gro 8 23.46 5.45 ZONE DIFFERENTIAL (Add to Zone 1 rate): Zone 2 - \$2.00 I within 45 mile radius of Spokane, Moses Lake, Pasco, GROUP 5: Backhoe (under 45,000 gw); Backhoe and Hoe Ram (under 3/4 yd.); Carrydeck & boom truck (under 25 tons); Cranes (25 tons & under); Derricks & Stifflegs (under 65 tons); Drilling Equipment (8" bit & over) (Robbins, reverse circulation & similar)(operates drill machine, drive or transport drill rig to and on job site and weld well casing); Hoe Ram; Piledriving Engineers; Paving (dual drum); Railroad Track Liner Operator (self-propelled); Refrigeration Plant Engineer (1000 tons & over); Signalman (whirleys, Highline Hammerheads or similar) GROUP 6: Asphalt Plant Operator; Automatic Subgrader (Ditches & Trimmers) (Autograde, ABC, R.A. Hansen & similar on grade wire); Backhoe (45,000 gw and over to 110,000 gw); Backhoes & Hoe Ram (3/4 yd. to 3 yd.); Batch Plant (over 4 units); Batch & Hoe Ram Operator (multiple units, 2 & incl. 4); Blade Operator (Motor Patrol & Attachments, Athey & Huber); Boom Cats (side); Cableway Compactor (self-propelled with blade); Concrete Pump Boom Truck; Concrete Slip Form Paver; Cranes (over 25 tons including 45 tons), all attachments including clamshell, dragline); Crusher, Grizzle & Screening Plant Operator; Dozer, 834 R/T & similar; Draglines (under 3 yds.); Drill Doctor; Heavy Duty Welder; Loader Operator (front-end & overhead, 4 yds. incl. 8 yds.), Multiple Dozer Units with single blade; Paving Machine (asphalt and concrete); Quad-Track or similar equipment; Rollerman (finishing asphalt pavement); Roto Mill (pavement grinder); Scrapers, all, all rubber tired; Screed Operator; Shovel (under 3 yds.); Tractors (D-6 & equilvalent & over); Trenching Machines (7 tr. depth & over); Trag Boat Operator; Vactor Guzzler, Super Sucker GROUP 7: Backhoe (over 110,000 gw); Backhoes & Hoe Ram (3 yds. & over); Blade (finish db luetop), Automatic, CMI, ABC, Finish tons to but not including 85 tons), all attachments including clamshell and dragline; Derricks and Stifflegs (65 tons and over); Draglines (3 yds. & over); Elevating Belt (Holland type); Heavy Equipment Robototics Operator; Loader (360 degress revolving Koehring Scooper or similar); Coader (overhead & front-end, over 8 yds. to 10 yds.); Rubber-tired Scrapers over); Whirleys & Hammerheads, ALL GROUP 8: Cranes (65 tons and over); Helicopter Pilot 9000 PAY; (All Cranes, Inclu Pilot BOOM PAY: (All Cranes, Including fower) 180' to 250' \$.30 over scale Over 250' \$.60 over scale NOTE: In computing the length of the boom on Tower Cranes, they shall be measured from the base of the tower to the point HAZMAT: Anyone working on HAZMAT jobs, working with supplied air shall receive \$1.00 an hour above classification. IRON0014D 07/01/1999 Fringes 10.35 IRONWORKERS * LABO0238D 06/01/2000 Rates Fringes LABORERS: GROUP GROUP 18.44 GROUP 4.76 GROUP 18.98 GROUP GROUP 6 LABORERS CLASSIFICATIONS LABORERS CLASSIFICATIONS GROUP I: Flagman; Landscape taborer; Scaleman; Traffic Control Maintenance taborer (to include erection and maintenance of barricades, signs, and relief of flagperson); window washer/Cleaner (detail cleanup, such as, but not limited to cleaning floors, ceilings, walls, windows, etc. prior to final acceptance by the owner) acceptance by the owner) GROUP 2: Asbestos Abatement Worker; Brush Hog Feeder; Carpenter Fender; Cement Handler; Cleanup Laborer; Concrete Crewman (to include stripping of forms, hand operating jacks on slip form construction, application of concrete curing compounds, pumpcrete machine, signaling, handling the nozzle of squeezcrete or similar machine, 6 inches and smaller); Confined Space Attendant; Concrete Signalman; Crusher Feeder; Demolition (to include cleanup, burning, loading, wrecking and salvage of all material); Dumpman; Fence Erector; Fire Watch; Form Cleaning Machine Feeder, (to include guard rail, guide and reference post, sign posts, and respirator is used and skin protection is minimal); Miner, Class "A" (to include all bull gang, concrete crewman, dumpman and pumpcrete crewman, including distributing pipe, assembly & dismantle, and nipper); Nipper; Riprap Man; Sandblast Tailhoseman; Scaffold Erector (wood or steel); Stake Jumper; Structural Mover (to include separating foundation, preparation, Tailhoseman (water nozzle); Timber Bucker and Faller (by hand); Track Laborer (RR); Truck Loader; well-Point Man; All Other Work General Laborer GROUP 2: Asbestos Abatement Worker; Brush Hog Feeder; Carpenter Tailhoseman (water nozzle); Timber Bucker and Faller (by hand); Track Laborer (RR); Truck Loader; well-Point Man; All Other work Classifications Not Specially Listed Shall Be Classified As General Laborer GROUP 3: Asphalt Roller, walking; Cement Finisher Tender; Concrete Saw, walking; Demolition Torch; Dope Pot Fireman; nonmechanical; Driller Tender (when required to move and position machine); Form Setter, Paving; Grade Checker using level; and air purifying respirator); Jackhammer Operator; Miner, Class "B" (to include brakeman, finisher, vibrator, form Setter); Nozzleman (to include squeeze and flo-crete nozzle); Nozzleman, water, air or steam; Pavement Breaker (under 90 lbs.); Pipelayer, Corrugated metal culvert; Pipelayer, multiplate; Pot Tender; Power Buggy Operator; Power Tool Operator, gas, electric, pneumatic; Ralfroad Equipment, power driven, except dual mobile; power spiker or puller; Ralfroad Power Spiker or Puller, dual mobile; Rodder and Spreader; Tamper (to include operation of Barco, Essex and similar tampers); Trencher, Wheelbarrow (power driven) GROUP 4: Air and Hydraulic Track Drill; Asphalt Raker; Brush Machine (to include horizontal construction joint cleanup brush machine, power propelled); Caisson Worker, free air; Chain saw Operator and Faller; Concrete Stack (to include laborers when working on free standing concrete stacks for soke or fume control above 40 feet high); Gunite
(to include operation of machine and nozzle); Hazardous Waste worker, Level B (uses Same respirator conjunction with a chemical splash suit"; High Scaler; Laser beam Operator (to include grade checker and elevation control); Miner, Class C (to include miner, nozzleman for cncrete, laser beam operator and rigger on tunnels); Monitor Operator (air track or similar mounting); Mortar Mixer; Nozzleman for cncrete, laser beam operator and rigger on tunnels); Monitor Operator (air track or similar mounting); Mortar Mixer; Nozzleman for cncrete, laser beam operator of the mortan standard control of the propelled, sandb GROUP 6 - Powderman LABO0238J 06/01/1999 | PAIN0054C 07/01/1998 | | | |--|---|--| | PAINTERS | Rates
18.80 | Fringes
3.67 | | PAINOU340 09/01/1999 | | | | GLAZIERS | Rates
16.32 | Fringes | | PLAS0072D 06/01/1999 | | 3.17
 | | ZONE 1: | Rates | Fringes | | CEMENT MASONS Zone Differential (Add + | 20.75 | 5.24 | | Zone Differential (Add t
rate): Zone 2: \$2.00
BASE POINTS: Spokane, Pasco,
Zone 1: 0 - 45 radius miles
Zone 2: Over 45 radius miles | Moses Lake, Lewist
from the main post
s from the main pos | on
office
it office | | PLAS0072G 06/01/1994 | | | | PLASTERERS | Rates
19.02 | Fringes | | | | | | PLUMBERS AND PIPEFITTERS | Rates
28 31 | Fringes | | ROOF0189G 07/01/1998 | | 0.39 | | ROOFERS | Rates | Fringes | | SHEE0066K 06/01/1999 | 17.75 | 6.05 | | SHEET METAL WORKERS | Rates | Fringes | | SHEET METAL WORKERS | 23.10 | 6.75 | | 00/01/1999 | Rates | | | TRUCK DRIVERS:
(ANYONE WORKING ON HAZMAT JOBS | | | | GROUP 1: | 19.02 | | | GROUP 2: | 21.66 | 7.31
7.31
7.31
7.31
7.31
7.31
7.31
7.31 | | GROUP 3:
GROUP 4: | 71 77 | 7.31 | | GROUP 5: | 22.10
22.21
22.27
22.91 | 7.31 | | GROUP 6: | 22.21 | 7.31 | | GROUP 7: | 22.27 | 7.31 | | | 22.91
22.23 | 7.31 | | GROUP 8: Zone Differential (Add to rate: Zone 1 - \$2.00) ASE POINTS: Spokane, Moses L. Spokane in the strong to the spoken in | Zone 1 | 7.31 | | rate: Zone 1 - \$2.00) | Lone 1 | | | BASE POINTS: Spokane, Moses L | ake, Pasco, Lewisto | | | cone 1: 0-45 radius miles fro | m the main post off | ice | | cone 2: 45 radius miles and or | ver from the main p | ost office | | CROUP IN DRIVERS CLASSIFICATION | ONS | | | tauling for lescort Driver or Pile | ot Car; Employee Ha | ul: Power Roat | | RUCK DRIVERS CLASSIFICATION GROUP 1: Escort Driver or Pili Hauling Employees or Material GROUP 2: Fish Truck; Flat Bed GROUP 2: Escort Truck; Flat Bed Inder); Leverperson (loading ti
lydro Seeder and Mulcher; Seedi
perator; Tractor (small, rubbe
imilar equipment) | | , | | inder): Levernerson (14) | Truck, Fork Lift (| 3000 lbs. and | | lydro Seeder and wilches seed | rucks at bunkers); | Trailer Mounted | | Decator Tractor (cmall much | er o Mulcher; Stati | onary Fuel | | imilar equipment) | er-tirea, pulling t | railer or | | GROUP 3: Auto Crane (2000 lbs | | | | imilar: Bulk Cement Tanks & ce | readers burney | Mobile & | | lat Bed Truck with Hydraulic | vetom: forbide | yds & under); | | bs.); Fuel Truck Driver: Steam | rjacem, fork Lift (| 3001-16,000 | | weeper; Rubber-tired Tunnel 11 | mbo: Scissors True | rower Operated | | river; Straddle Carrier (Ross | Hyster & cimilar | Siurry Truck | | perator; Tractor (small, rubbe imilar equipment) GROUP 3: Auto Crane (2000 lbs. imilar; Bulk Cement Tanks & splat Bed Truck with Hydraulic & bs.); Fuel Truck Driver; Steam with the specific of | Concrete (3 vd to | A including 6 | | as.); Trucks, side, end, botto | m and articulated a | and dumn (3 | | | | dump () | 20.19 HOD CARRIERS yards to and including 6 yds.); warehouseperson (to include shipping & receiving); wrecker & Tow Truck GROUP 4: A-Frame; Burner, Cutter, & welder; Service Greaser; Trucks, side, end, bottom and articulated end dump (over 6 yds. to & including 12 yds.); Truck Mounted Hydro Seeder; GROUP 5: Dumptor (over 6 yds.); towboy (50 tons & under); Self-Toalier; Transit Mixers and Trucks & Trailer; Tractor with Steer Trailer; Transit Mixers and Trucks Hauling Concrete (over 6 yds.) to and including 10 yds.); Trucks, side, end, bottom and articulated end dump (over 12 yds. to & including 20 yds.); Truck-Mounted Crane (with load bearing surface either mounted or etc.) etc.) GROUP 6: Flaherty Spreader Box Driver; Flowboys; Fork Lift (over 16,000 lbs.); Dumps (Semi-end); Lowboy (over 50 tons); Mechanic (Field); Transit Mixers & Trucks Hauling Concrete (over 10 yds. to & including 20 yds.); Trucks. side, end, bottom and articulated end dump (over 20 yds. to & including 40 yds.); Truck and Pup; Tournarocker, DW's & similar with 2 or scale, whichever is greater; Water Tank Truck (8,001-14,000 gallons) Scale, whichever is greater; water lank fruck (0,001-14,000 gallons) GROUP 7: Oil Distributor Driver; Stringer Truck (cable operated trailer); Transit Mixers & Trucks Hauling Concrete (over 20 yds.); Truck, side, end, bottom and articulated end dump (over 40 yds. to & including 100 yds.); Truck Mounted Crane (with load bearing surface either mounted or pulled (16 through 25 GROUP 8: Prime Movers and Stinger Truck; Trucks, side, end, bottom and articulated end dump (over 100 yds.); Helicopter Pilot Hauling Employees or Materials Hauling Employees or Materials FOOTMOTE - Anyone working on a HAZMAT job, where HAZMAT FOOTMOTE - Anyone working on a HAZMAT job, where HAZMAT cerfification is required, shall be Compensated as a premium, in addition to the classification working in as follows: LEVEL C-D: - \$.50 PER HOUR - This level may use an air purifying respirator or additional protective clothing. LEVEL A-D: - \$1.00 PER HOUR - Uses supplied air in conjunction with a chemical splash suit or fully encapsulated suit with a self-contained breathing apparatus. NOTE: Trucks pulling equipment trailers shall receive \$.25/hour over applicable truck rate. WELDERS: Receive rate prescribed for craft performing operation to which welding is incidental. Unlisted classifications needed for work not included within the scope of the classifications listed may be added after award only as provided in the labor standards contract clauses (29 CFR 5.5(a)(1)(v)). In the listing above, the "SU" designation means that rates listed under that identifier do not reflect collectively bargained wage and fringe benefit rates. Other designations indicate unions whose rates have been determined to be prevailing. prevailing. WAGE DETERMINATION APPEALS PROCESS 1.) Has there been an initial decision in the matter? This can • an existing published wage determination • a survey underlying a wage determination • a wage and Hour Division letter setting forth a position on a wage determination matter • a conformance (additional classification and rate) ruiing on survey related matters, initial contact, including requests on survey related matters, initial contact, including requests for summaries of surveys, should be with the wage and Hour Regional Office for the area in which the survey was conducted because those Regional Offices have responsibility for the Davis-Bacon survey program. If the response from this initial contact is not satisfactory, then the process described in 2.) and 3.) should be followed. With regard to any other matter not yet ripe for the formal process described here, initial contact should be with the Branch of Construction wage beterminations. Write to: Branch of Construction wage Determinations wage and Hour Division U.S. Department of Labor 200 constitution Avenue, N. W. Washington, D. C. 20210 2.) If the answer to the question in 1.) is yes, then an interested party (those affected by the action) can request review and reconsideration from the wage and Hour Administrator (See 29 CFR Part 1.8 and 29 CFR Part 7). Write to: Wage and hour Administrator
U.S. Department of Labor 200 Constitution Avenue, N. W. Washington, D. C. 20210 The request should be accompanied by a full statement of the interested party's position and by any information (wage payment data, project description, area practice material, etc.) that the requestor considers relevant to the issue. 3.) If the decision of the Administrator is not favorable, an interested party may appeal directly to the Administrative Review Board (formerly the Wage Appeals Board). Write to: Administrative Review Board U.S. Department of Labor 200 Constitution Avenue, N. W. Washington, D. C. 20210 # **TABLE OF CONTENTS** | Section | Section Title | | | | | | | |----------------|--|--|--|--|--|--|--| | No. | DIVICIONI ONE CENEDAL DECLUDEMENTO | | | | | | | | 04004 | DIVISION ONE - GENERAL REQUIREMENTS | | | | | | | | 01001 | Supplementary Requirements | | | | | | | | 01005 | Site Specific Supplementary Requirements | | | | | | | | 01025 | Measurement and Payment | | | | | | | | 01035 | Modification Procedures | | | | | | | | 01061 | Environmental Protection and Hazardous Material Survey | | | | | | | | 01320 | Project Schedule | | | | | | | | 01330 | Submittal Procedures | | | | | | | | 01451 | Contractor Quality Control | | | | | | | | 01501 | Construction Facilities and Temporary Controls | | | | | | | | 01701 | Operations and Maintenance Manuals | | | | | | | | 01702 | As-Built Records and Drawings | | | | | | | | 01703 | Warranty of Construction | | | | | | | | 01704 | Form 1354 Checklist | | | | | | | | 01705 | Equipment-in-Place List | | | | | | | | | DIVISION TWO - SITEWORK | | | | | | | | 02090 | Lead-Based Paint (LBP) Abatement and Disposal | | | | | | | | 02120 | Transportation and Disposal of Hazardous Materials | | | | | | | | 02200 | Demolition and Removal Debris | | | | | | | | 02234 | Subbase Courses | | | | | | | | 02300 | Earthwork | | | | | | | | 02315 | Excavation, Filling & Backfilling for Buildings | | | | | | | | 02316 | Excavation, Trenching & Backfilling for Utilities Systems | | | | | | | | 02510 | Water Distribution System | | | | | | | | 02531 | Sanitary Sewers | | | | | | | | 02580 | Pavement Markings | | | | | | | | 02630 | Storm-Drainage System | | | | | | | | 02722 | Graded-Crushed Aggregate Base Course | | | | | | | | 02741 | Bituminuous Paving for Roads, Streets and Open Storage Areas | | | | | | | | 02748 | Bituminuous Tack and Prime Coats | | | | | | | | 02935 | Turf | | | | | | | | | DIVIDIONI TUDEE CONCRETE | | | | | | | | 00400 | DIVISION THREE - CONCRETE | | | | | | | | 03100 | Structural Concrete Formwork | | | | | | | | 03200 | Concrete Reinforcement | | | | | | | | 03300 | Cast-in-Place Structural Concrete | | | | | | | | 03360 | Concrete Sealers | | | | | | | | | DIVISION FOUR - MASONRY | | | | | | | | 04200 | Masonry | | | | | | | | | DIVISION FIVE METALS | | | | | | | | 05000 | DIVISION FIVE - METALS Wolding Structural | | | | | | | | 05090 | Welding, Structural Structural Steel | | | | | | | | 05120
05300 | | | | | | | | | | Steel Decking Miscellaneous Metal | | | | | | | | 05500 | IVIISCEIIAI IECUS IVIETAI | | | | | | | # **TABLE OF CONTENTS (cont'd)** | Section | Section Title | |---|--| | <u>No.</u>
06200 | DIVISION SIX - WOOD & PLASTICS Finish Carpentry | | 07210
07410
07600
07811
07900 | DIVISION SEVEN - THERMAL AND MOISTURE PROTECTION Building Insulation Preformed Metal Roofing / Metal Siding Sheet Metalwork, General Sprayed On Fireproofing Joint Sealing | | 08110
08210
08700 | DIVISION EIGHT - DOORS AND WINDOWS Steel Doors and Frames Wood Doors Builders' Hardware | | 09250
09310
09510
09650
09680
09900
09986 | DIVISION NINE - FINISHES Gypsum Wallboard Ceramic Tile Acoustical Ceilings Resilient Flooring, Base, and Transition Strips Carpet Painting, General Fiberglass Reinforced Polyester Panels | | 10100
10160
10210
10440
10505
10522
10800 | DIVISION TEN – SPECIALITIES Visual Communication Specialties Toilet Partitions Metal Wall Louvers Interior Signage Metal Lockers Fire Extinguishers, Cabinets and Accessories Toilet Accessories | | 11452 | <u>DIVISION ELEVEN - EQUIPMENT</u>
Residential Appliances | | 12490 | DIVISION TWELVE - FURNISHINGS Window Treatment | | 13082 | DIVISION THIRTEEN - SPECIAL CONSTRUCTION Seismic Protection for Architectural and Mechanical Systems and Equipment (Zone 2) | | 13112 | Cathodic Protection System (Impressed Current) for Fire Pump Suction Tank (-S) | | 13206
13280 | Steel Standpipes and Ground Storage Reservoirs Asbestos Abatement | # **TABLE OF CONTENTS (cont'd)** | Section
No. | Section Title | |----------------|---| | 13850
13920 | Fire Detection and Alarm System, Direct Current Loop Fire Pumps | | 13935 | Dry Pipe Sprinkler System, Fire Protection | | 13945 | Preaction and Deluge Sprinkler Systems, Fire Protection | | 13955 | Aqueous Film-Forming Foam (AFFF) Fire Protection System | | | DIVISION FOURTEEN (NOT USED) | | | DIVISION FIFTEEN - MECHANICAL | | 15052 | Welding Pressure Piping | | 15070 | Seismic Protection for Mechanical Equipment | | 15080 | Thermal Insulation for Mechanical Systems | | 15400 | Plumbing, General Purpose | | 15550 | Gas Fired Boilers and Infra Red Radiant Heaters, Flue Stacks & Gas Piping | | 15556 | Forced Hot Water Heating Systems | | 15653 | Air-Conditioning System (Unitary Type) | | 15895 | Air Supply, Distribution, Ventilation, and Exhaust System | | 15951 | Direct Digital Control for HVAC | | 15990 | Testing, Adjusting, and Balancing of HVAC Systems | | 15995 | Commissioning of HVAC Systems | | | DIVISION SIXTEEN - ELECTRICAL | | 16070 | Seismic Protection for Electrical Equipment | | 16375 | Electrical Distribution System, Underground | | 16415 | Electrical Work, Interior | #### **SECTION 01001** # SUPPLEMENTARY REQUIREMENTS # PART 1 GENERAL #### 1.1 DEFINITIONS The references listed below are to be defined as indicated wherever they may be used in the TECHNICAL SPECIFICATIONS. "SUPPLEMENTARY REQUIREMENTS" shall be read to pertain to any of the sections of the DIVISION 1 as required by the content of the section or paragraph containing the reference. # 1.2 CONSTRUCTION SCHEDULING The instructions for preparation and submittal of the Contractor-prepared Network Analysis System are found in SECTION 01320, PROJECT SCHEDULE. # 1.3 CORRESPONDENCE - 1.3.1 All correspondence shall be addressed to the Contracting Officer, shall be serially numbered commencing with Number 1, with no numbers missing or duplicated and shall be forwarded in quintuplicate, as directed by the authorized representative of the Contracting Officer, and shall include an additional copy forwarded to a separate designated location. All copies provided shall be legible. Enclosures attached or transmitted with the correspondence shall also be furnished with the original and each copy. Each serial letter shall make reference to the contract name, contract number and shall have only one subject. - 1.3.2 For submission of Contractor payment requests, See Section 01025, PAYMENT. # 1.4 ADVANCED NOTICE OF CONTRACTOR PERFORMED ACCEPTANCE TESTING The Contractor shall notify the Contracting Officer a minimum of 20 days prior to performing any acceptance or "buy off" testing of the following systems, (1) Fire Detection/Protection, (2) HVAC, and (3) AFFF. Advance notification is not required for testing performed as part of fabrication or installation. # 1.5 CONTRACTOR'S FILES Contractor shall maintain "Approved (Action Code "A") and "Approved Except as Noted (Action Code "B") shop drawing files in fabrication shops and at project sites for government use. #### 1.6 AUDIO-VIDEO RECORDINGS # 1.6.1 General The Contractor shall provide all equipment, materials, and trained personnel to visually and audibly record (video tape) all on site operations and maintenance (O&M) training sessions for this contract. The video technician shall be employed by a video production company that has been in business for a minimum of 2 years. The Contractor shall submit the resume of the technician and video production company. Also the Contractor shall submit for approval an agenda or an outline breakdown of the proposed presentation. Video tapes shall be produced in the VHS format. Audio shall be adjusted, filtered or otherwise controlled to insure that the trainer can be understood at all times. Each system or piece of equipment shall be covered in a single tape or set of tapes which shall be correlated with the O&M manuals provided. Video tapes and their individual storage cases shall be identified with a typewritten label showing the project, equipment or system, and contract number; this same information shall be provided as an introduction on each video tape. When two or more tapes are provided, they shall be submitted as a set in an appropriate storage container. # 1.6.2 Submittals Prior to conducting the training sessions the following shall be submitted for approval: - 1) A training plan consisting of the agenda or an outline breakdown of the proposed presentation, and - 2) The qualifications of the trainer and the video recording technician Two copies of the video taped material shall be submitted to the Contracting Officer within 10 days after completion of video taping the training sessions. # 1.7 MECHANICAL AND ELECTRICAL LAYOUT DRAWINGS The Contractor shall submit, for Contracting Officer's approval, scaled layout drawings, including appropriate elevations and sections, as required, showing the room arrangement the Contractor proposes for all pieces of mechanical and electrical equipment and
appurtenances thereto, such as but not limited to: air conditioning equipment, boilers, compressors, hot water tanks, pumps, electrical control panels, ducts and piping, and . . . that are to be located in the room. Mechanical and electrical layouts shall be coordinated to eliminate any conflicts of installed equipment. No payments will be made to the Contractor for furnishing or installing equipment until the layout drawings have been approved by the Contracting Officer. Mechanical and electrical equipment layout drawings shall be identified and submitted as specified herein. Equipment rooms shown on the drawings are of adequate size to accommodate equipment of required capacities as available from several manufacturers with sufficient space left for access, servicing, and removal. The use of equipment items with dimensions such as "to crowd the space" will not be permitted. # 1.8 COLOR BOARDS Two sets of color boards shall be submitted within 60 calendar days after receipt of Notice to Proceed. The board shall include samples of colors and finishes of every finish such as on walls, floors, and ceilings. This would include, but not be limited to, paint, floor and wall tile, acoustical panels, carpet, wall base, plastic laminate, etc. Where special finishes such as architectural concrete or prefinished metal panels are required, samples of not less than 12 inches square shall be submitted with the board. Boards shall include, where applicable, color samples of integrally colored block, brick, and prefinished metal roofing and siding. The board shall be 24 inches by 24 inches. If more space is needed, more than one board per set may be submitted. This is not meant to replace the samples called for in other portions of the specifications. The Contractor shall certify that he has reviewed the color boards in detail and that they are in strict accordance with the contract drawings and specifications, except as may be otherwise explicitly stated. # 1.9 IDENTIFICATION OF EMPLOYEES AND MILITARY REGULATIONS: - (a) The Contractor shall be responsible for compliance with all regulations and orders of the Commanding Officer of the Military Installation, respecting identification of employees, movements on installation, parking, truck entry, and all other military regulations which may affect the work. - (b) The work under this Contract is to be performed at an operating Military Installation with consequent restrictions on entry and movement of nonmilitary personnel and equipment. - 1.10 PRESERVATION OF HISTORICAL, ARCHEOLOGICAL AND CULTURAL RESOURCES (1985 JAN OCE): - (a) Known historical, archeological and cultural resources within the Contractor's work area are designated on the contract drawings. The Contractor shall install protection for these resources as shown on the drawings and shall be responsible for their preservation during the contract. - (b) If, during construction activities, the Contractor observes items that might have historical or archeological value, such observations shall be reported immediately to the Contracting Officer so that the appropriate authorities may be notified and a determination can be made as to their significance and what, if any, special disposition of the finds should be made. The Contractor shall cease all activities that may result in the destruction of these resources and shall prevent his employees from trespassing on, removing, or otherwise damaging such resources. #### 1.11 SPECIAL SAFETY REQUIREMENTS: All construction activities shall be conducted in strict compliance with the Corps of Engineers Safety and Health Requirements Manual EM 385-1-1, and Occupational Safety and Health Administration regulations, as applicable. The manual is available on line at: http://www.usace.army.mil/inlet/usace-docs/eng-manuals/em385-1-1/toc.htm - 1.11.1 In addition to Safety and Health Requirements Manual EM 385-1-1, and all applicable OSHA standards, the Contractor shall comply with the requirements listed below. Paragraph numbers refer to EM 385-1-1 or are added thereto. - (a) <u>Paragraph 01.A.12</u>: Add new paragraph: Safety Personnel. The Contractor shall designate a person on his staff to manage the Contractor's safety and accident prevention program. This person will provide a point of contact for the Contracting Officer on matters of job safety, and shall be responsible for ensuring the health and safety of on site personnel. - (b) Paragraph 01.D.02, revise as follows: - (1) Replace paragraph 01.D.02c with the following: - "c. Property damage in excess of \$2,000.00 (2) Add new paragraph d as follows: "An injury resulting in a lost workday, not including the day of injury." # 1.12 TIME EXTENSIONS FOR UNUSUALLY SEVERE WEATHER (ER 415-1-15 31 OCT 89) This Paragraph specifies the procedure for the determination of time extensions for unusually severe weather in accordance with the CONTRACT CLAUSE entitled "Default (Fixed Price Construction)". In order for the Contracting Officer to award a time extension under this clause, the following conditions must be satisfied: - 1.12.1 The weather experienced at the project site during the contract period must be found to be unusually severe, that is, more severe than the adverse weather anticipated for the project location during any given month. - 1.12.2 The unusually severe weather must actually cause a delay to the completion of the project. The delay must be beyond the control and without the fault or negligence of the contractor. - 1.12.3 The following schedule of monthly anticipated adverse weather delays is based on National Oceanic and Atmospheric Administration (NOAA) or similar data for the project location and will constitute the base line for monthly weather time evaluations. The contractor's progress schedule must reflect these anticipated adverse weather delays in all weather dependent activities. # MONTHLY ANTICIPATED ADVERSE WEATHER DELAY WORK DAYS BASED ON (5) DAY WORK WEEK | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | | | |-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|---------------|-------| | 15 | 12 | 9 | 3 | 3 | 3 | 1 | 1 | 2 | 4 | 9 | 13 | Fairchild AFE | B, WA | - 1.12.4 Upon acknowledgment of the notice to proceed (NTP) and continuing throughout the contract, the contractor will record on the daily QCQ report, the occurrence of adverse weather and resultant impact to normally scheduled work. Actual adverse weather delays must prevent work on critical activities for 50 percent or more of the contractor's scheduled work day. - 1.12.5 The number of actual adverse weather delay days shall include days impacted by actual adverse weather (even if adverse weather occurred in previous month), be calculated chronologically from the first to the last day of each month, and be recorded as full days. If the number of actual adverse weather delay days exceeds the number of days anticipated in paragraph 1.15.3, above, the Contracting Officer will convert any qualifying delays to calendar days, giving full consideration for equivalent fair weather work days, and issue a modification in accordance with the contract clause entitled "Default (Fixed Price Construction)". #### 1.13 OUTDOOR CONSTRUCTION LIMITATIONS 00029/II Repair Fuel Systems Maintenance Dock, Fairchild AFB Earthwork and paving activities are generally limited to the time from April 1 through November 15 because of freezing conditions. The contractor shall use these dates for project planning purposes. **END OF SECTION** # SECTION 01005 # SITE SPECIFIC SUPPLEMENTARY REQUIREMENTS # 1. CONDUCT OF WORK: # 1.1 DEFINITIONS # 1.1.1 Normal Business Hours Normal Business Hours are 7:30 a.m. to 4:00 p.m. daily, Monday through Friday, excluding Federal holidays. # 1.1.2 Controlled Areas The entire fenced flightline perimeter is a controlled access area. All work under this contract is within the controlled area. #### 1.1.3 Restricted Areas Restricted Areas include areas inside the fenced flightline perimeter delineated by physical barriers or pavement markings. Work areas inside restricted areas include, but are not limited to, the aircraft parking apron around Building 2050, and the aircraft parking apron along Ladder Taxiway J, and Taxiways F & G. # 1.1.4 Free Zones Free zones are designated construction areas established within restricted areas to reduce the impact of security precautions (escorts, access controls, etc.), upon Government and contractor operations. #### 1.2 COORDINATION AND ACCESS TO SITE # 1.2.1 General Area Requirements Security requirements and procedures shall be coordinated with the 92d Security Police Squadron, Fairchild AFB through the Contracting Officer. Activities of the Contractor and the Contractor's employees and subcontractors and their employees while on the base, shall be conducted in accordance with base regulations, including those of the fire marshal, as well as security directives. this includes, but is not limited to, obtaining an excavation permit before any digging and giving way to alert vehicles during alerts if located on a marked alert route. A program shall be developed to insure that authorized persons who routinely work in the security areas are briefed thoroughly on control methods and actions to take to enforce control. Follow-up briefings shall be given to all personnel throughout the Contract period. 1.2.2 When keys are required for access to facilities on this contract, they shall be obtained through the Contracting Officer. - 1.2.2.1 The Contractor shall be responsible for Government-owned keys issued for access to facilities or areas pertinent to this contract. - 1.2.2.2 Upon completion of the work in an area, or upon request of the Contracting Officer, the key or keys relevant to the completed areas shall be returned. - 1.2.2.3 Should the Contractor lose a key: - a. the Contracting Officer shall be notified, in writing, within three (3) working days after the loss is
discovered and - b. should the key not be found before final acceptance, the final contract payment shall be reduced by \$100 for each key not returned. - 1.2.2.4 Coordination with other projects. - a. During the construction associated with this project, there are several other projects underway. They are Hydrant Fueling Addition, Building 1019 and Pumphouse Construction; Airport General Runway Striping, Blast Deflector Construction, Natural Gas Line to Building 1019. The Building 1019 Pumphouse and the Gas Line Addition occupy the same area as this project. The contractor shall closely coordinate his activities through the contracting officer. - 1.2.3 Work hours in the construction area with or without escorts will be restricted to 7:30 a.m. to 4 p.m. daily, Monday through Friday, excluding holidays. Work hours and days other than as specified above shall be coordinated with and approved by the Contracting Officer. - 1.2.4 Restricted Area Requirements for Areas # 1.2.4.1 Work Plan The Contractor shall submit to security through the Contracting Officer a work plan delineating work areas, work crews, and the size of each crew. This work plan shall be submitted at least twenty-one (21) calendar days before work in the area is planned to be started. The Contractor shall plan that neither will Government escorts be available nor a free zone created within this 21 day period. The work areas shall be definitive showing their relationship to runways, taxiways, roadways, adjacent structures, and the restricted areas. The approved work plan shall be kept current. Construction shall be scheduled to proceed in a logical construction sequence and sufficient approved materials shall be on hand to complete entire segments of work as scheduled. # 1.2.4.2 Escorts, Gate Guards, and Monitors Planning for work that is outside the red line free zone shall stress the need for a minimum number of escorts by localizing each segment of work. One Air Force escort shall accompany each work activity of six people or less. Inside the pre-approved, red line free zone, no escorts are required. All contractor employees must remain within sight and reasonable distance of their escort at all times. At the preconstruction conference, the Contractor shall be prepared to discuss the number of escorts required. The Contractor shall also notify the Contracting Officer 21 days in advance of when escorts are needed. When the work requires contractor personnel to exit and reenter the area several times daily, they must be escorted between the work area and the Entry Control Point. Therefore, these activities shall be kept to a minimum. At the end of each workday, a Contractor foreman shall accompany the security police as they sweep the restricted work area, or the Construction Free Zone prior to its reversion to a security area. # 1.2.4.2.1 Free Zones When performing work inside the boundary of a Restricted Area, a construction Free Zone may be established to isolate the work operation from the rest of the Restricted Area. Escorts are not required inside a Free-Zone. However, if a Free Zone is isolated within a Restricted Area, the Contractor personnel and vehicles must be escorted through the Restricted Area to and from the free-Zone. All other restrictions under paragraphs "Restricted Area Access" and "Restricted Area Requirements" apply to free Zones. # 1.2.4.2.2 Designation The Contractor shall coordinate all Free Zones (red line) as specified above under paragraph "Work Plan". The Contractor shall physically separate a Free Zone from an adjacent Restricted Area by establishing a perimeter consisting of red rope supported or four foot runway height traffic cones or stanchions, spaced to prevent unreasonable sagging, in any case not greater than twenty-five feet apart. Traffic cones or stanchions shall be weighted to avoid overturning when exposed to seventy mile per hour winds. Escort(s) must be used when a Free-Zone is being constructed and when it is being taken down. # 1.2.4.2.3 Operation After a Free-Zone is established, Contractor personnel may be monitored by Air Force personnel while operating in the Free-Zone. When the Contractor is able to operate in a Free-Zone which is directly connected to a non-Restricted Area, the Contractor will be responsible for controlling access from the non-Restricted area into the Free Zone. # 1.2.4.2.4 Access Corridor Through the Restricted Area to a Free Zone The red line boundary of the access corridor shall be a 6-inch wide continuous red stripe, bounded by a 6-inch wide continuous white stripe on each side. The corridor between the red lines shall be 28 ft. wide. Entry points, or crossings, of the access corridor shall be placed as necessary, directed, and required for passage through the area, and shall be a 28 ft. wide white rectangular block 4 ft. long to indicate the permitted crossing point of the red line. The standard Air Force restricted area warning sign shall be painted on the pavement on a white rectangular background with red and black letters and placed every 100 ft. along the red line corridors to prevent accidental crossings where there is no entry point. # 1.2.4.3 Work Area Restrictions During Air Force Inspections, Exercises, and Investigations Contractor personnel may be required to leave the area(s) or stop working and relocate within the area during Air Force inspections and exercises. For certain Air Force actions, the Contractor will be prohibited from entering specified areas. If personnel are already in the restricted area(s), they may be allowed to relocate or may be required to exit the area(s) entirely. These actions may occur six times during a given year. During certain actual exercises and investigations, Contractor personnel will be under increased surveillance, although they are not working near the area affected. If the Contractor personnel are involved in the investigation, these personnel, along with their supervisor, will be controlled. The remaining personnel may continue with their work. # 1.2.4.4 Entry Authority Lists The Contractor shall submit a list of personnel, including subcontractors, who will work within or adjacent to the restricted area(s). This list, which shall contain the name, company represented, address, social security number, date of birth, company telephone number, and driver's license number of each employee, shall be submitted to the Corps of Engineers Fairchild AFB Project Office, no later than 1 week prior to initial start of work. This list shall be submitted on stationary with the company's letterhead and be signed by a supervisory member of that company. After the list has been submitted, the Contractor shall keep the list current. In addition to the 72-hour notification as noted below, not less than every 2 weeks, the Contractor shall submit a complete upto-date list of persons desiring access to the restricted area(s) to include any additions or deletions made to the list during the preceding 2 weeks. The name, address, and other information listed above of new employees whose names were not provided on the initial list shall be provided at least 72 hours prior to the time the new employees need access to the restricted area(s) or adjacent work areas. Employees who have terminated employment or who have been dismissed shall be identified and removed as soon as possible from the entry authority list but not later than 24 hours after termination. Only those employees with badges, whose names are on the list will be permitted entry into the restricted area(s). 1.2.4.4.1 A vehicle entry authority list shall be submitted by the Contractor to the Contracting Officer a minimum of 7 days prior to beginning of site work. This list shall include the make, model, year, color, and license number of vehicles which will enter restricted areas of Construction Free Zones. # 1.2.4.5 Pre-announcement Pre-announcement of both personnel and company or commercial vehicles will be required prior to entrance into restricted areas. The Contractor shall notify Central Security Control of all vehicles, not under his direct control, that will be delivering work materials to a restricted area. The Contractor shall submit a letter to the Fairchild AFB Project Office listing all persons authorized to preannounce these vehicles. This list shall include the authorized person's name, social security number, and identification badge number. This letter shall include a callback phone number for verification and shall be resubmitted every 90 days. This notification shall be done at least 1 hour prior to the arrival of the vehicle at the entry control point of a restricted area. The notification may be done in person or by telephone and shall include the delivery company's name, driver's name and social security number. All other previously noted entry procedures shall still apply. The Contractor shall insure that all of the Contractor's subcontracts include the above stated requirements. - 1.2.4.6 Contractor personnel will be restricted to the project construction areas within and adjacent to the restricted area(s). - 1.2.4.7 Existing lighting for security purposes shall be functional at all times during the hours of darkness. Deficiencies in security lighting or power shall be repaired or replaced prior to the end of the workday. # 1.2.4.8 Existing Power System Power outages affecting intrusion detection systems shall be arranged a minimum of 48 hours in advance with Base Security through the Contracting Officer. # 1.2.4.9 Motorized Equipment 1.2.4.9.1 Unattended vehicles inside or within 100 feet of a restricted area shall be rendered immobile by removing the keys or other suitable means. # 1.3 UTILITY OUTAGES Contractor shall coordinate utility outages with the Contracting Officer at least 21 days in advance. Outages shall be kept to a minimum and any one outage shall not last more than 2 hours, unless a longer time is coordinated with, and approved by, the
Contracting Officer. # 1.4 PROTECTION OF GOVERNMENT PROPERTY In addition to requirements of the CONTRACT CLAUSES, Contractor shall protect all Government property within the buildings in which he is working, except for such property as is required to be demolished. Property which is to be demolished shall be protected until its scheduled demolition time. Protection shall include, but not be limited to, protection from construction generated dust, debris, water, vibration, and impact. # 2. IDENTIFICATION OF EMPLOYEES The Contractor shall furnish a list of employees needing on-base access to the Corps of Engineers, Fairchild Resident Office, Building 286. The base will furnish Identification Forms 391. Employees without a badge and identification in their possession will be denied access to the base and work areas and may be detained. Personnel desiring base access will be required to present a base issued I.D. Form 391 prior to entering the gate. Those employees required to work within controlled areas shall wear the badge such that it is exposed to view while within the controlled areas. # 2.1 IDENTIFICATION CREDENTIALS All Contractor and subcontractor personnel, except those not under his direct control, such as concrete truck and material deliveries, shall obtain and fill out a Request for Issuance of Base Pass (Fairchild Form 225). The completed application, with a legible copy of the applicant's picture identification showing a date of birth and either a Driver's License Number or a Social Security Number, must be hand carried by the Prime Contractor's Superintendent (or other person as approved by the Contracting Officer's Representative) to the Corps of Engineers Office at Fairchild, Building 286, 1100 West Wainwright Boulevard (working hours 0730 to 1600, Monday through Friday). After processing of the application, a Wants and Warrants check will be processed on the applicant. Allow three (3) working days for completion of the Wants and Warrants check after receipt of the application. After the Wants and Warrants check has been completed, the applicant shall appear, in person, at the Front Gate, Security Office, at Fairchild to have a base pass issued. In addition, private vehicles requiring access to the base shall display a vehicle sticker which shall also be obtained at the Front Gate after presentation of vehicle registration and proof of insurance. Commercial and company vehicles will be allowed access to the base, provided company emblems are attached to the sides of the vehicles and operators have current base passes as noted herein. The Contractor shall notify the Security Police, through the Contracting Officer, of all losses of badges within 48 hours after the loss, by name of person, address, and pass number. Passes issued shall be recovered from employees upon termination of employment from the project and shall be turned over to the Security Police through the Contracting Officer. The pass shall not be worn or displayed off the base. The pass is valid for a period of not more than 1 year. If the contract period is over 1 year, passes will have to be revalidated using the above procedure. - 2.1.1 For vendor and delivery vehicles, such as concrete trucks and material deliveries, the Contractor shall provide a letter, on Company stationary, to the Security Police, through the Contracting Officer, designating up to three (3) Contractor employees (with valid base passes) who are authorized to verify deliveries. A telephone number at which the designated personnel can be reached also shall be included within the letter. Those personnel will be allowed to vouch deliveries onto the base, provided that the delivery vehicles have a bill of lading or a material delivery ticket. Without bills of lading or material delivery tickets, designated Contractor personnel will be required to go to the Front Gate where the shipment is held and physically verify that the shipment is for the Contractor. At that time, the driver will be issued a temporary visitor pass and will be physically escorted to the project site by the designated Contractor personnel. Note this procedure applies only for vendor and delivery vehicles, Contractors may not vouch their employees or subcontractor personnel onto the base. Those personnel must either be in possession of valid base passes or they will be denied access to the base. - 2.1.2 Contractor vehicles cannot be left parked at the Main Gate for over 30 minutes. If employees cannot drive on base for any reason such as suspended license, lack of insurance, lack of registration, vehicles can be parked at the base Back Gate (Graham Road) parking area. # 3. COORDINATION REQUIREMENTS # 3.1 WEEKLY COORDINATION MEETINGS The Contractor superintendent and key personnel shall attend weekly coordination meetings at the Contractor Project Office for the purpose of coordinating construction activities, access, security and phasing issues for the next two weeks. These meetings shall be attended by representatives from the Resident Engineer, Base Civil Engineer, Base Security, Fuels, Aircraft maintenance and Flight Operations as appropriate to the phases of construction. # 3.2 WORKING SCHEDULE The Contractor shall provide, for coordination purposes, copies of a working schedule at each coordination meeting. These working schedules shall be consistent with and expand upon scheduling data furnished under Section "CONTRACTOR PREPARED NETWORK ANALYSIS SYSTEMS" and shall indicate Contractor and required Government activities in sufficient detail to permit coordination of utility outages, aircraft movements, security and access requirements, and any other activities which may impact Base operations. This schedule shall project activities on a daily basis for at least the next two weeks. # 4. CONSTRUCTION SITE MANAGEMENT AND APPEARANCE STANDARDS # 4.1 GENERAL 4.1.1 The primary construction site at Building 1012 will be the Contractor's storage site as shown on the drawings, out of view from the general public. Contractor's trailers and storage buildings must follow the base paint standards. The Contractor shall maintain the trailers and storage Repair Fuel System Maintenance Dock, Fairchild AFB, Wa. buildings in good condition or must remove them. The Contractor is responsible for the security of his property, general housekeeping of the area(s) and any additional storage he may require. # 4.1.2 Dirt and Dust Control Plan: The Contractor shall submit truck and material haul routes along with a plan for controlling dirt, debris, and dust on base roadways. As a minimum, the plan shall identify the subcontractor and equipment for cleaning along the haul route and measures to reduce dirt, dust, and debris from roadways. # 4.2 CONTRACTOR'S TEMPORARY FACILITIES # 4.2.1 Temporary Facilities Layout Plan: Prior to starting the work, the Contractor shall submit site plan through the Contracting Officer for the Base Civil Engineer approval, showing the layout and details of all temporary facilities used for this contract. The plan shall include the location of all site trailers, equipment and material storage areas, construction entrances, trash dumpsters, temporary sanitary facilities, and worker parking areas. Site photographs prior to the start of work may be included with the plan. At completion of work, the Contractor shall remove the facilities and restore the site to its original condition. # 4.2.2 Administrative Field Offices and Material Storage Trailers: Contractor's administrative field office and storage trailers shall be in like new condition and the exterior shall be the base standard color: Federal Standard 595a Color No. X3578, "Antique Linen. Storage of materials or debris under the trailers is prohibited. # 4.2.3 Material Storage Area 4.2.3.1 Primary Storage Area (the lay-down area as noted on Plate CO-2, detail 3): Construction site storage is limited to the materials that are needed within one week at the construction site. # 4.2.4 Dumpsters Equip dumpsters with a secure cover and paint the standard base color -- Federal Standard 595a Color No. X3578 "Antique Linen". The cover shall be closed at all times, except when being loaded with trash and debris. Dumpsters shall not be permitted to overflow, and shall be emptied before reaching that condition, at least once a week, or as needed to keep the site free of debris and trash. If necessary, provide 208 liter (55 gallon) trash containers painted the standard base color - Fairchild Brown to match Sherwin-Williams color Fairchild Brown 2000 to collect debris in the construction site area. Locate the trash containers behind the construction fence or out of the public view. Empty trash containers at least once a day. Large demolition normally requires a large dumpster without lids—these are acceptable but shall not have debris higher than the sides before emptying. # 4.2.5 Temporary Sanitation Facilities All temporary sewer and sanitation facilities shall be self contained units with both urinals and stool capabilities. Ventilate the units to control odors and fumes and empty and clean them at least once a week or more often if required by the Contracting Officer. The doors shall be self-closing. The exterior color of the unit shall be the base standard: Federal Standard 595a Color No. X3578, "Antique Linen". # 4.3 GRASS CUTTING Cut grass (or annual weeds) within the construction and storage sites to a 4-inch height at least once a week during the growing season unless the grass area is not visible to the public. Trim the grass around fences at time of grass cutting. Grass or weeds on stockpiled earth shall be maintained as described above. # 5. OFFICE TRAILER # 5.1 General Contractor shall provide an office trailer for the use of the Air Force occupants of Hangar 1012 for the duration of project construction. The trailer shall be heated and air conditioned, have one interior office, be capable of supporting 10 personnel and 3 computers, be
connected to power and phone, and also conform to paragraph—3_4.2.2 above. The trailer shall be located behind Hangar 1013 where indicated on Sketch No. 1 attached at the end of this section. Prior to starting work, the Contractor shall submit trailer product literature and a utility connection plan for Government approval. Prior to connecting communications to the trailer, the Contractor shall submit AF Form 3215 work request to the Contracting Officer's Representative for approval. # 5.2 Electrical Connections Electrical power to the trailer shall originate from the existing exterior transformer <u>C682</u> shown on Sketch No. <u>1</u> 2 attached at the end of this section. <u>The Contractor shall provide the temporary power from transformer C684 in a direct buried cable conduit. Power will be provided in accordance with the National Electric Code (NEC). Point of contact for access to the transformer <u>cabinet</u> is the <u>Base Civil Engineer</u>. Contractor shall install six Class 1 Division 2 outlets in the interior steel columns which are shown in <u>the sSketch No. 2</u> to include conduit seals. The Class 1 Division 2 outlets will replace existing standard outlets. Existing outlets are located 4 ft. above the floor with conduit running into the hangar floor. The 6 new outlets shall be located as follows: 2 per each column by the aircraft wing = 4, 1 on each corner by the aircraft nose = 2.</u> AREA SEGREGATION BLDG 1013 END OF SECTION SKETCH 2 R0007 # SECTION 01025 # **PAYMENT** # PART 1 GENERAL # 1.1 GENERAL The contract price shall constitute full compensation for furnishing all plant, labor, materials, appurtenances, and incidentals and performing all operations necessary to construct and complete the item in accordance with these specifications and the applicable drawings, including surveying performed by the Contractor. Payment shall be considered as full compensation, notwithstanding that minor features may not be mentioned herein. No separate payment will be made for the work, services, or operations required by the Contractor, as specified in DIVISION 1, GENERAL REQUIREMENTS, to complete the project in accordance with these specifications; all costs thereof shall be considered as incidental to the work. # 1.2 PAYMENT #### 1.2.1 Base Item 0001 Payment will be made at the contract lump sum price for Item No. 0001, All Work for Repair Fuel Systems Maintenance Dock, Except for Items 0002, 0003, 0004, and 0005, payment of which shall constitute full compensation for Item No. 0001, complete. # 1.2.2 Base Item 0002 Payment will be made at the contract lump sum price for Item No. 0002, All Work for As-Built Drawings, payment of which shall constitute full compensation for Item No. 0002, complete. No partial or total payment will be made for this item until the as-built drawings, both marked up blue prints and electronic files are fully approved by the Government (A or B action) and all copies of approved drawings and electronic media received by the Government. # 1.2.3 Base Item 0003 Payment will be made at the contract lump sum price for Item No. 0003, All Work for O&M Manuals, payment of which shall constitute full compensation for Item No. 0003, complete. No partial or total payment will be made for this item until all O&M Manuals are fully approved by the Government (A or B action) and all copies of final manuals are received by the Government in their final binders. # 1.2.4 Base Item 0004 Payment will be made at the contract lump sum price for Item No. 0004, All Work for Form 1354 Checklist and Equipment in Place List, payment of which shall constitute full compensation for Item No. 0004, complete. No partial or total payment will be made for this item until both the 1354 Checklist and Equipment in Place List are fully approved by the Government (A or B action) and all copies of approved lists received by the Government. # 1.2.5 Optional Item 0005 Payment will be made at the contract lump sum price for Item No. 0005, Install AFFF Tank with Related Piping and Foundation, payment of which shall constitute full compensation Item 0005, complete. Work this item is shown on the drawings and in Specification Section 13206 and includes: - a) AFFF Tank and all attachments including ladders, platforms, insulation, metal jacket, painting and cathodic protection. - b) AFFF Tank foundation (Sheet 33). - c) Pipe enclosure (metal structure between Pump House and AFFF Tank), including concrete curb and slab. - d) AFFF Tank recirculating boiler, noted as BUR-4 on the drawings. Includes all 1" HWS/HWR piping from boiler to AFFF Tank and 4" stainless steel double wall flue, penetration through roof, flashing and waterproof cap. - e) 16" piping to AFFF Tank after 16" valve (right of) next to grid line 3 of pumphouse. - f) 6" make-up water piping to AFFF Tank after 6" valve (top of) next to grid line 3 of pumphouse. - g) 6" overflow pipe located on AFFF Tank. # 1.3 PROGRESS PAYMENT INVOICE Requests for payment shall be submitted in accordance with Federal Acquisition Regulations (FAR) Subpart 32.9, entitled "PROMPT PAYMENT", and Paragraphs 52.232-5 and 52.232-27, entitled "Payments Under Fixed-Price Construction Contracts", and "Prompt Payment for Construction Contracts", respectively. In addition each request shall be submitted in the number of copies and to the designated billing office as shown in the Contract. - 1.3.1 When submitting payment requests, the Contractor shall complete Blocks 1 through 12 of the "PROGRESS PAYMENT INVOICE" Form as directed by the Contracting Officer. (A sample form is attached at the end of this Technical Specification Section.) The completed form shall then become the <u>cover document</u> to which all other support data shall be attached. - 1.3.2 One additional copy of the entire request for payment, to include the "PROGRESS PAYMENT INVOICE" <u>cover document</u>, shall be forwarded to a separate address as designated by the Contracting Officer. - 1.3.3 The Contractor shall submit with each pay request, a list of subcontractors that have worked during that pay period. The listing shall be broken down into weeks, identifying each subcontractor that has worked during a particular week, and indicate the total number of employees that have worked on site for each subcontractor for each week. The prime Contractor shall also indicate the total number of employees for its on site staff for each week. # PROGRESS PAYMENT INVOICE See Federal Acquisition Regulations (FAR) 32.900, 52.232-5, & 52.232-27 | 1. PROJECT AND LOCATION | 2. DATE | | | | | |--|---|--|--|--|--| 3. CONTRACTOR NAME AND ADDRESS | 4. CONTRACT NO. | | | | | | (Must be the same as in the Contract) | | | | | | | | 5. INVOICE NO. | | | | | | | 5. INVOICE NO. | | | | | | | | | | | | | 6. DESCRIPTION OF WORK | 7. PERIOD OF PERFORMANCE | | | | | | | | | | | | | | From: | | | | | | | | | | | | | | To: | | | | | | | | | | | | | 8. DISCOUNT TERMS | | | | | | | 6. DISCOUNT TERMS | | | | | | | 9. OFFICIAL TO WHOM PAYMENT | 10. OFFICIAL TO BE NOTIFIED | | | | | | IS TO BE FORWARDED | OF DEFECTIVE INVOICE | | | | | | Name: | Name: | | | | | | Title: | Title: | | | | | | Phone: () - | Phone () - | | | | | | 11. CERTIFICATION: I hereby certify, to the best of my knowledg | | | | | | | (1) The amounts requested are only for the performance in accord | lance with the specifications, terms, and | | | | | | conditions of this contract; | | | | | | | (2) Payments to subcontractors and suppliers have been made from | | | | | | | the contract, and timely payments will be made from the proceeds | | | | | | | in accordance with subcontract agreements and the requirements of | f Chapter 39 of Title 31, United States Code; | | | | | | and | . 111.4 | | | | | | (3) This request for progress payment does not include any amountation from a subcontractor or supplied in accordance with the terms | | | | | | | retain from a subcontractor or supplier in accordance with the terms | and conditions of the subcontract. | (Signature) (Title) | (Date) | | | | | | | | | | | | | 12. OTHER INFORMATION OR | (FOR GOVERNMENT USE ONLY) | | | | | | DOCUMENTATION REQUIRED BY | | | | | | | CONTRACT. | Retainage:% | | | | | | Provide two (2) copies of each | Amt: \$ | | | | | | (check and attach if applicable): | Wall III | | | | | | Updated Progress Chart/Schedule | Withholdings: \$ | | | | | | Opdated Progress Chart/Schedule Progress Narrative | Reason: | | | | | | Certified Payrolls (submitted weekly) | | | | | | | Certified Payfolis (sublifitted weekly) Safety Exposure Report | | | | | | | Updated Submittal \register | Following items are current: | | | | | | Progress Photos | As-Builts Yes No | | | | | | Subcontractor/Employee Listings | O & M Manuals Yes No | | | | | | | 1354 Data Yes No | | | | | | | Submittal RegisterYesNo | **END OF SECTION** #### SECTION 01035 # MODIFICATION PROCEDURES PART 1 GENERAL # 1.1 PROPOSED PROJECT MODIFICATIONS: Price proposals for proposed modifications shall be submitted in accordance with the requirements of the Contract Clause MODIFICATION PROPOSALS - PRICE BREAKDOWNS. If change order work impacts or delays other unchanged contract work, the costs of such impacts or delays shall be included in the proposals and separately identified. Additional instructions for submitting price proposals can be found in NPSP-415-1-1, INSTRUCTION AND INFORMATION FOR CONTRACTORS, a copy of which will be furnished to the Contractor at the Preconstruction Conference. For information applicable to equipment rates used in contract modifications, refer to 00800 - SPECIAL CLAUSES, clause "EQUIPMENT OWNERSHIP AND OPERATING EXPENSE SCHEDULE". PART 2
PRODUCTS (NOT USED) PART 3 EXECUTION (NOT USED) **END OF SECTION** # **SECTION 01061** # ENVIRONMENTAL PROTECTION AND HAZARDOUS MATERIAL SURVEY #### PART GENERAL # 1.1 SCOPE This Section covers prevention of environmental pollution and damage as the result of construction operations under this contract. For the purpose of this specification, environmental pollution, and damage is defined as the presence of chemical, physical, or biological elements or agents which adversely affect human health or welfare; unfavorably alter ecological balances of importance to human life; affect other species of importance to man; or degrade the utility of the environment for esthetic, cultural, and/or historical purposes. The control of environment pollution and damage requires consideration of air, water, and land, and includes management of visual esthetics, noise, and solid waste, as well as other pollutants. # 1.2 QUALITY CONTROL The Contractor shall establish and maintain quality control for environmental protection of all items set forth herein. The Contractor shall record any problems in complying with laws, regulations, and ordinances, and corrective action taken. # 1.2.1 Subcontractors Assurance of compliance with this Section by subcontractors will be the responsibility of the Contractor. # 1.3 NOTIFICATION When the Contracting Officer notifies the Contractor in writing of any observed noncompliance with Federal, state, or local laws, regulations, or permits, the Contractor shall, after receipt of such notice, inform the Contracting Officer of proposed corrective action and take such action as may be approved. If the Contractor fails to comply promptly, the Contracting Officer may issue an order stopping all or part of the work until satisfactory corrective action has been taken. No time extensions will be granted or costs or damage allowed to the Contractor for any such suspension. # 1.4 PROTECTION OF ENVIRONMENTAL RESOURCES The environmental resources within the project boundaries and those affected outside the limits of permanent work under this contract shall be protected during the entire period of this contract. The Contractor shall confine his activities to areas defined by the drawings and specifications. Environmental protection shall be as stated in the following subparagraphs: # 1.4.1 Protection of Land Resources The Contractor shall not remove, cut, deface, injure, or destroy land resources including trees, shrubs, vines, grasses, topsoil, and land forms without special permission from the Contracting Officer except as otherwise specified or indicated. See Paragraph 1.5 for additional requirements relating to protection of trees during excavation in the vicinity of a tree. # 1.4.2 Disposal of Garbage Garbage shall be placed in containers which are emptied on a regular schedule. All handling and disposal shall be conducted to prevent contamination. # 1.4.3 Refuse Disposal and Cleanup Refuse shall be defined as debris other than such organic materials as brush or tree stumps. # 1.4.3.1 Refuse Disposal The cost of refuse disposal, such as transportation, handling, dumping fees as applicable, and similar cost, shall be included in the contract price. Refuse shall be disposed of off site, in accordance with all local, state, and Federal rules and regulations, at the Contractor's expense. #### 1.4.3.2 Fire Hazard Cloths, cotton waste, and other combustible materials that might constitute a fire hazard shall be placed in closed metal containers and placed outside or destroyed at the end of each day. #### 1.4.4 Restrictions The Contractor will not be permitted to deposit refuse in existing garbage cans or refuse dumpsters. Cleaners shall not be poured, drained, or washed into plumbing fixtures or sanitary or storm sewers. Debris, dirt, dust, and stains attributable to or resulting from the work effort shall be removed, cleaned, or effaced by the Contractor to the satisfaction of the Contracting Officer prior to acceptance of the job. Refuse shall not be burned. Burning of vegetation or tree stumps will not be allowed unless the worksite is in an area approved for burning. # 1.4.5 Disposal of Chemical or Hazardous Waste Chemical or hazardous waste shall be stored in corrosion-resistant containers, removed from the work area, and disposed of in accordance with Federal, State, and local regulations. # 1.4.6 Disposal of Discarded Materials Discarded materials, other than those which can be included in the solid waste category, shall be handled as directed. # 1.4.7 Protection of Water Resources The Contractor shall keep construction activities under surveillance, management, and control to avoid pollution of surface and ground waters. # 1.4.8 Particulates Dust particles, aerosols, and gaseous byproducts from construction activities, processing, and preparation of materials shall be controlled at all times, including weekends, holidays, and hours when work is not in progress. Hydrocarbons and carbon monoxide emissions from equipment shall be controlled to Federal and state allowable limits at all times. #### 1.4.9 AFFF Testing All materials including the water used in testing the AFFF system shall be collected on site and shall not be allowed to flow to adjacent ground or any sanitary or storm sewer system. #### 1.5 MAINTENANCE OF POLLUTION CONTROL FACILITIES The Contractor shall maintain all constructed facilities and portable pollution control devices for the duration of the contract or for that length of time construction activities create the particular pollutant. # 1.6 RESTORATION OF LANDSCAPE (VEGETATION - SUCH AS TREES, PLANTS, AND GRASS) DAMAGE All landscape features (vegetation - such as trees, plants, and grass) damaged or destroyed during Contractor operations outside and within the work areas shall be restored to a condition similar to that which existed prior to construction activities unless otherwise indicated on the drawings or in the specifications. This restoration shall be done at no additional cost to the Government. If the Contractor fails or refuses to repair the damage promptly, the Contracting Officer may have the necessary work performed and charge the cost to the Contractor. All plant material shall meet specifications outlined in ANSI Z60.1 - current publication, "American Standard for Nursery Stock." Grass areas shall be replaced in kind by sodding or seeding. Sod shall be required in all regularly maintained lawn areas and shall be installed according to American Sod Producers Association Guideline Specifications to Sodding. Grass seeding shall be installed on a minimum 2-inch topsoil and as recommended by the local county extension service. Hazardous Material Survey Building 1012 Fairchild Air Force Base Spokane, Washington Prepared for HNTB November 10, 1998 J-7060 | CONTENTS | <u>Page</u> | |---|----------------------| | 1.0 SUMMARY | 1 | | 2.0 BACKGROUND AND REGULATIONS | 1 | | 2.1 Asbestos-Containing Materials (ACM)
2.2 Lead-Based Paint
2.3 Other Hazardous Building Materials | 1
3
4 | | 3.0 SURVEY METHODOLOGIES | 5 | | 3.1 Asbestos Survey
3.2 Lead-Based Paint Survey
3.3 Hazardous Material Inventory | 5
8
8 | | 4.0 RESULTS OF SAMPLE ANALYSIS | 9 | | 4.1 ACM Analytical Results
4.2 LBP Analytical Results
4.3 Hazardous Material Inventory | 9
9
10 | | 5.0 RECOMMENDATIONS | 11 | | 5.1 Asbestos 5.2 Lead-Based Paint 5.3 Other Hazardous Materials 6.0 LIMITATIONS | 11
11
12 | | REFERENCES | 12 | | REFERENCES | 14 | | TABLES | | | Results of Asbestos Survey Results of Lead-Based Paint Survey Hazardous Building Component Survey Hazardous Product Inventory | 15
16
19
20 | #### **FIGURES** | 1A | Building Plan and | Asbestos Sample Results, | Building 1012 | . First Floor | |----|-------------------|--------------------------|---------------------------------------|-----------------------------------| | | | , | · · · · · · · · · · · · · · · · · · · | , , ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, | - 1B Building Plan and Asbestos Sample Results, Building 1012, Mezzanine-1 and -2 - 2A Building Plan and Lead Sample Results, Building 1012, First Floor - 2B Building Plan and Lead Sample Results, Building 1012, Mezzanine-1 and -2 APPENDIX A SITE PHOTOGRAPHS APPENDIX B SUSPECT ASBESTOS BULK SAMPLING FORMS APPENDIX C BULK ASBESTOS FIBER AND TOTAL LEAD ANALYSIS NVL LABORATORIES, INC. AND PREZANT ASSOCIATES, INC. HAZARDOUS MATERIAL SURVEY BUILDING 1012 FAIRCHILD AIR FORCE BASE SPOKANE, WASHINGTON #### 1.0 SUMMARY This report presents the findings of the hazardous material survey of Fairchild Air Force Base Building 1012, located near Spokane, Washington. The survey was conducted by Hart Crowser under contract to HNTB for the U.S. Army Corps of Engineers Contract DACA67-98-D-1003, Delivery Order No. 6. The Fuel Cell Nosedock is scheduled to be renovated. The purpose of the survey was to identify hazardous materials, including asbestos-containing materials (ACM), lead-based paint (LBP), and other potentially hazardous building materials prior to renovation activities. The asbestos survey of Building 1019 confirmed the presence of asbestos-containing pipe insulation and pipe fittings in the building. In addition, gaskets, fire doors, and cement-asbestos board were assumed to contain asbestos. Lead-based paint was detected on interior floor and stair components; and on exterior stair and door components. Additional hazardous building materials were noted, including potential PCB-containing fluorescent light ballasts, mercury vapor-containing fluorescent bulbs, refrigeration equipment, petroleum products, and other commercial chemical products. Hart Crowser recommends encapsulation or removal and proper disposal of hazardous materials that will be disturbed during renovation activities to upgrade the Fuel Cell Nosedock. Hazardous materials that will
not be disturbed during renovation should be inspected and maintained to avoid future releases. ## 2.0 BACKGROUND AND REGULATIONS # 2.1 Asbestos-Containing Materials (ACM) #### 2.1.1 Asbestos Asbestos is a class of magnesium-silicate minerals that naturally occur in fibrous form. The most common type of asbestos used in building materials is chrysotile. Crocidolite and amosite make up most of the remainder. Other forms, rarely encountered in building materials, include anthophyllite, tremolite, and actinolite. The potential for an asbestos-containing product to release fibers depends largely on its degree of friability (the ability to be reduced to powder or dust by application of hand pressure). Because of its high thermal resistance, tensile strength, stability, and non-combustible nature, asbestos was widely used for many years as insulating material on pipes, boilers, ventilation ducts, tanks, and as a fireproofing material on structural steel beams and roofing decks. Asbestos was also applied extensively to control acoustics inside buildings prior to the 1970s. Asbestos can also be found in materials such as floor and ceiling tile, linoleum, cement asbestos boards, gaskets, woven fireproof cloths and blankets, transite, wallboard, wallboard joint compounds, plasters (particularly textured wall and ceiling finishes), caulking, mortar (i.e., fireplaces, boiler rooms, and fire walls), roofing felts, shingles, and window putty. Inhalation of asbestos fibers has been shown to cause disease in humans, including lung cancer, mesothelioma (cancer of the lung lining), and asbestosis (scarring of the lung tissue). The symptoms of these diseases may not appear for up to 20 years following exposure. Products that contain more than 1 percent asbestos are regulated as ACM. Quantification of asbestos in materials is typically performed by polarized light microscopy (PLM). Point counting (PCT) is a more accurate determination of asbestos content made by counting fibers in specific fields of a prepared microscope slide. An extremely accurate method involves use of transmission electron microscopy (TEM), but this method is not typically used because the regulations do not specify its use for bulk asbestos analysis. ## 2.1.2 Federal Asbestos Regulations Hazardous air pollutants, including asbestos, are regulated by the Environmental Protection Agency (EPA), under the Clean Air Act (CAA) (40 CFR Part 61, Subpart M). As authorized by the CAA, the National Emission Standards for Hazardous Air Pollutants (NESHAPs) regulation addresses emissions of asbestos from renovation and demolition activities. In essence, NESHAPs prohibits the emission of any asbestos-containing dust to the environment. Under NESHAPs, a survey to identify ACM is required before beginning demolition or renovation projects. Section 118 of the CAA states that the federal government is subject to all federal, state, interstate, and local requirements in the same manner and to the same extent as any non-governmental entity. "Renovation" means altering a facility or one or more facility components in any way, including the stripping or removal of regulated asbestos-containing material (RACM) from a facility component. Facility renovation includes individual non- Hart Crowser 1-7060 scheduled renovation operations, planned operations involving individual nonscheduled operations, or emergency renovation operations. If a facility or part of a facility is being renovated, it must be inspected prior to renovation to determine if RACM is present. #### 2.2 Lead-Based Paint #### 2.2.1 Lead Lead is a metal element that is ubiquitous in the human environment as a result of industrialization and automotive transportation. It was commonly added to paints to enhance its durability. Lead poisoning is one of the most common and preventable pediatric health problems today. New data indicate significant adverse effects of lead exposure in children at blood lead levels previously believed to have been safe. Of greatest concern are changes in the brain that cause reductions in intelligence and attention span, reading and learning disabilities, hyperactivity, and behavior problems. Adult exposed to lead in residential or industrial environments may suffer a variety of health problems. Pregnant women and their fetuses are at special risk from lead. Buildings that were built in the United States and painted prior to 1960 represent potential sources of LBP. Buildings constructed after 1960 are not necessarily free of LBP because the voluntary standard for limiting lead content in interior paint to less than 1 percent was only adopted in 1966; and, until very recently, exterior paint contained significant amounts of lead. Although current (1977) federal regulations have limited the lead content of most paints to 0.06 percent, it is still important to consider most older painted surfaces (e.g., walls, windows, trim, floors, eaves, banisters, etc.) as potential sources of lead. The principal lead-related issues for existing structures for which renovations are planned include the risk of direct lead exposure to the building occupants and renovation workers. Workers performing renovation or routine maintenance may inadvertently bring lead into their homes or cars, resulting in secondary exposure to their children. #### 2.2.2 Lead-Based Paint Regulations Federal regulations or guidelines regarding lead-based paint include: ▶ Title X of Public Law 102-550, Residential Lead-Based Paint Hazard Reduction Act of 1992. The purpose of Title X is to develop a national strategy to eliminate lead-based paint hazards in housing as expeditiously as possible. Regulations providing the requirements for implementing Title X Hart Crowser I-7060 are presented in EPA regulation 40 CFR Part 745. This regulation defines Lead-Based Paint as "paint or other surface coatings that contain lead equal to or in excess of 1.0 milligram per square centimeter or 0.5 percent by weight"; - ▶ Guidelines for the Evaluation and Control of Lead-Based Paint Hazards in Housing (HUD, 1995). This guideline addresses lead hazards posed by paint, dust, and soil in the residential environment. Topics covered in the guideline include childhood lead poisoning, LBP risk assessment, residential protection, work site preparation, interim controls, abatement, routine building maintenance, and LBP hazard control; and - The Occupational Safety and Health Administration (OSHA) standard for lead in construction (29 CFR 1926.62). This standard defines the Permissible Exposure Limit (PEL) for lead (50 μg/m³), exposure assessment requirements, protective equipment, and recordkeeping for construction projects where an employee may be occupationally exposed to lead; State regulations include the following requirements: - The State of Washington regulations for occupational health and environmental control of lead in construction are presented in Washington Administrative Code (WAC) 296-155-176. The WAC regulation closely parallels the Federal regulation (29 CFR 1926.62) for construction projects where an employee may be occupationally exposed to lead; and - In the event that demolition debris containing high levels of lead-based paint is generated during renovation-activities, the state requires testing of the waste to determine hazardous waste characteristics (WAC 173-303-090). State designated dangerous waste must be disposed of in a facility permitted to accept such wastes in accordance with WAC 173-303-070. # 2.3 Other Hazardous Building Materials Buildings may contain a variety of other materials that are potentially hazardous to workers during renovation or if disposed of improperly. Examples include polychlorinated biphenyls (PCBs) in electrical equipment, such as transformers or fluorescent light ballasts. PCBs are regulated by the Toxic Substance Control Act (TSCA) of 1976, 40 CFR 761. This law phased out production and distribution of items containing PCBs by 1979. Articles containing PCBs must be disposed of at facilities specially licensed by the EPA to handle such items. Other potentially hazardous building materials contain heavy metals, such as those found in fixed storage batteries, thermostats, and fluorescent lighting. Storage batteries may contain lead or cadmium. Mercury liquid may be found in thermostats; and mercury vapor may be found in fluorescent light builbs. Building systems may contain petroleum products for fuel or lubrication. Elevators and lifts may contain hydraulic fluids. Older heating systems may include heating oil or fuel tanks. Petroleum product disposal may be regulated by RCRA, as defined in 40 CFR 260-268. Although not directly hazardous to human health, ozone-depleting substances, such as chlorofluorocarbons (CFCs) found in air conditioning or refrigeration equipment, are hazardous based on their reactivity with atmospheric ozone. Depletion of stratospheric ozone has been linked to increased skin cancers in humans. Collection and disposal of ozone-depleting substances are regulated by 40 CFR 82. Finally, lighted exit signs and smoke detectors may contain sensor elements with low-level radiation. Disposal of items with low-level radiation is regulated under 10 CFR 61. #### 3.0 SURVEY METHODOLOGIES ## 3.1 Asbestos Survey Hart Crowser conducted the asbestos survey of Building 1012 on October 5, 1998. A complete list of suspect asbestos-containing materials identified by Hart Crowser is provided in Table 1. Existing floor plans were field-modified, as necessary, to reflect actual building characteristics and sample locations (Figures 1-A and 1-B). Photographs taken of select sampled materials are included in Appendix A. # 3.1.1 ACM Sampling Procedures Hart Crowser used the sampling and analytical procedures contained in Asbestos Hazard Emergency Reduction Act (AHERA) regulations (40 CFR 763.86). Samples of suspect materials were collected in the field by D. Joseph Grojean, an AHERA-certified Building
Inspector (Certification Number 980935). Prior to sampling, Hart Crowser systematically inspected the interior and exterior of the building to identify the location of suspect ACM. Sampling locations were plotted on floor plans provided by HNTB, and sample data were recorded on Suspect Asbestos Bulk Sample Data forms (Appendix B). Prior to and during sample collection, we maintained a wetted surface with amended water (i.e., water to which a surfactant was added to decrease the surface tension) to reduce the potential for fiber release. Where necessary, we repaired sampling locations prior to leaving the building to minimize fiber release and maintain the visual integrity of the material sampled. Hart Crowser marked each sample location on the floor plans with a unique number corresponding to the sample number to identify the material from which the sample was collected. Sample bags were labeled at the time of sample collection with the following information: - Sample ID number; - Date of collection; and - Inspector's initials. The labeled samples were then placed in a larger ZiplocTM-type bag and sealed for additional protection during handling and shipment. Samples were recorded on a Chain of Custody for eventual delivery to the laboratory for analysis. All sampling tools were thoroughly sprayed with amended water prior to collecting each new sample. Wipes or other towels used during decontamination were placed in a ZiplocTM-type bag for later disposal. # 3.1.2 ACM Sample Selection The number of samples collected was dependent on the material type and the amount of material present. The number of samples of surfacing material collected for this survey was based on "Asbestos in Buildings: Simplified Sampling Scheme for Friable Surfacing Materials" (EPA, 1985). Wallboard throughout the building and fiber insulation board in the hangar were the only surfacing materials identified in this survey. The EPA sampling guidelines recommend collection of five samples of homogenous surfacing materials that measure between 1,000 square feet and 5,000 square feet; and collection of seven samples of homogenous surfacing materials that measure more than 5,000 feet. An estimated 1,900 square feet of wallboard material were identified during this survey and five samples of this material were collected for analysis. More than 40,000 square feet of fiber board insulation were noted in the hangar and seven bulk samples of this material were collected for analysis. One additional sample of fiber board insulation was collected for laboratory quality control procedures. We collected two samples of thermal system insulation (TSI) from pipes and pipe fittings in Building 1012. Hart Crowser collected only one sample of each type of material to maintain the integrity of the thermal system and to minimize potential asbestos exposures to inspectors and building occupants. Since both samples were positive for asbestos, additional samples are not necessary. Hart Crowser collected single samples of additional suspect miscellaneous materials, including cove base mastic and stair mastic. Finally, some materials were assumed to be ACM, and thus were not sampled. Materials may be assumed to contain asbestos if the material is known to typically contain asbestos; or if sampling of the material would severely damage or destroy the building component. For this survey, assumed ACM included fire doors, gaskets, and cement-asbestos board (CAB). Materials noted as "assumed" are included in Table 1 with the designation "AS" as part of the Sample ID. #### 3.1.3 ACM Quality Control The building inspector collected two QC samples as part of the asbestos survey by field-splitting a regular sample. The QC sample was labeled with the same sample number as the regular sample, except the QC sample number ends with the letter Q (e.g., 1012-01Q). QC samples have their own chain of custody form. # 3.1.4 ACM Analytical Procedures Suspect asbestos samples and chain of custody were picked up from Hart Crowser by NVL Laboratory for analysis. QC samples were delivered to Prezant Associates, Inc. under chain of custody protocol for analysis. Suspect ACM bulk samples were analyzed by NVL Laboratories and Prezant Associates using polarized light microscopy (PLM) by the Interim Method for Determination of Asbestos in Bulk Insulation Samples (EPA Method 600/M4-82-020). NVL is accredited for asbestos analysis by the National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP). Materials were considered to be positive for asbestos if they contained more than one percent asbestos in accordance with the definition provided in 40 CFR 763. #### 3.2 Lead-Based Paint Survey Hart Crowser conducted the LBP survey of Fairchild Air Force Base Building 1012 on October 6, 1998. The LBP survey consisted of testing painted surfaces using a Niton X-ray Fluorescence (XRF) Spectrum Analyzer. Bulk paint chip samples were collected from select XRF test locations for laboratory verification. A complete list of painted surfaces analyzed by XRF and paint chip analysis is provided in Table 2. Existing floor plans were field-modified, as necessary, to reflect actual building characteristics and sample locations (Figures 2-A and 2-B). #### 3.2.1 XRF Analysis Procedures The LBP survey was conducted by EPA-certified Lead Inspector William Damon of Hart Crowser. The survey began with a visual inspection of interior and exterior painted surfaces. The lead content of representative painted surfaces was measured with a Niton XL 309 X-Ray Fluorescence (XRF) Spectrum Analyzer. XRF analysis locations were plotted on floor plans provided by HNTB. Use of the XRF entails recording the painted surface location, component, substrate, color, and condition. Lead hazards on painted surfaces are defined as lead in excess of 1.0 mg/cm², as measured by an XRF. #### 3.2,2 Quality Control Paint Chip Sample Procedures Paint chip samples were also collected and analyzed to provide quality control of XRF values. During this survey, two paint chips were collected for QC from undamaged portions of painted surfaces using a 1-inch chisel and hammer. Each sample contained approximately one square inch of paint and substrate. Efforts were made to obtain the paint chip from an inconspicuous location. Sample areas were subsequently repaired to minimize physical damage to the component. Dust generated during sampling was carefully cleaned after the repair process. LBP bulk paint chip samples and chain of custody were picked up by NVL Laboratory for analysis. Paint chip samples were analyzed by NVL Laboratories, Inc. according to the methods for total lead analysis using EPA SW-846 Method 7420 (Flame Atomic Absorption Spectroscopy [FAAS]). Materials were considered to be positive for lead-based paint if they contain more than 1 mg/cm² lead in accordance with the definition provided in 40 CFR 745. # 3.3 Hazardous Material Inventory Hart Crowser inspector D. Joseph Grojean conducted an inventory of other hazardous materials in the building. The inventory included potentially hazardous building materials and products stored on the site. A list of the noted building materials is provided in Table 3. Aside from ACM and LBP sample locations, hazardous material locations are not provided on figures with this report. # 4.0 RESULTS OF SAMPLE ANALYSIS The results of the hazardous material surveys and inventory are summarized in this section. Laboratory certificates of analysis and custody forms are included in Appendix C. ### 4.1 ACM Analytical Results Table 1 summarizes analytical results for 17 suspect asbestos bulk samples collected by Hart Crowser for analysis. These samples represent seven distinct building materials, including fiber insulation board, wallboard systems, two types of cove mastic, stair tread mastic, pipe insulation, and pipe fittings. Three additional materials, gaskets, fire doors, and cement asbestos board, were assumed to contain asbestos. The materials were in good condition and were not sampled to maintain their function and structural integrity. Only two of the seven building materials sampled were confirmed to contain asbestos above the regulatory limit. These materials are pipe insulation (Sample 1012-15) and pipe fittings (Sample 1012-16), as shown in Appendix A, Photo 3. Approximately 1,250 feet of pipe insulation and 80 pipe fittings were noted along the south and east walls of the hangar. Pipe insulation contains 15 percent chrysotile and 15 percent amosite asbestos. Pipe fittings contain 70 percent amosite asbestos. The observed insulation was in good condition. Additional thermal system insulation which may exist behind walls in the building were not accessible for sampling or quantification during this survey. Table 1 also contains the analytical results for the two laboratory quality control samples collected (1012-01Q and 1012-17Q). Analyses from NVL Laboratories and Prezant Associates, Inc. were in agreement for both QC samples. Both samples were non-detect for asbestos. ## 4.2 LBP Analytical Results Table 2 summarizes the XRF and paint chip sample results. In total, 61 XRF readings were taken during the survey and two bulk paint chip samples were collected. The XRF was used to assess 45 painted surfaces on interior building components and 16 exterior surfaces. One bulk paint chip sample was collected Hart Crowser J-7060 Page 9 from an interior component and one was collected from an exterior component. Painted components tested included walls, floors, beams, doors, stairs, windows, and utility structures. The XRF results ranged from 0 to >5.0 mg/cm². The XRF survey found that nine of the 61 surfaces tested, or 15 percent, contain lead at concentrations greater than 1 mg/cm². Only two of the 45 interior surfaces tested, or less than five percent, were positive for lead. Of the two interior components with LBP above regulatory criteria, one
was a riser on Stair-2 and one was paint on the hangar floor. For exterior surfaces, seven of the 16, or 44 percent, had LBP above regulatory criteria. The positive exterior surfaces were on door and stair components. Table 2 also contains the analytical results for the two laboratory quality control samples collected (46 Q and 50 Q). Sample 50 Q and XRF Sample 50 indicate a negative result for lead. For XRF- 46 and 46 Q, the instrument and laboratory results differed by an order of magnitude, with the XRF providing a positive reading for lead versus negative laboratory results according to regulatory criteria. The disparity in results is explained by the fact that the XRF often detects lead in the metal substrate underlying the paint. For the purposes of this survey, the stair stringer should be assumed to be painted with non-lead paint, based on the laboratory analytical result for the paint chip. #### 4.3 Hazardous Material Inventory Table 3 provides an inventory of additional potentially hazardous materials found in Building 1012 at the time of the survey on October 6, 1998. Table 3A lists building components which may have a hazardous component. Table 3B provides a list of potentially hazardous chemical products stored on site at the time of the survey. To summarize, hazardous building materials noted during the inventory include: - Approximately 80 fluorescent light bulbs which may contain mercury vapors; - Approximately 40 fluorescent light ballasts without "no PCBs" labeling; - Portable fuel storage containers with capacity to hold 400 gallons of JP-8; - ► A 500-gallon oil/water separator; and - Four refrigerators with CFC-12 coolant. Additional hazardous building materials were not detected, as listed below. - No thermostats were observed to contain liquid mercury. - ► According to Brian Bohrtz, Engineering Command, all electrical transformers at Fairchild Air Force Base were replaced with non-PCB containing units three years ago. - Mr. Bohrtz also indicated that no radioactive sources, including those typically found in exit signs and smoke detectors, are present in the building. - According to David Ransier, Engineering Command, the building has steam heat. Rick Rosa (92 CES/CEV) indicated that there are no underground fuel storage tanks associated with Building 1012. #### 5.0 RECOMMENDATIONS #### 5.1 Asbestos Pipe insulation and pipe fittings were confirmed to contain regulated quantities of asbestos; and fire doors, gaskets, and cement asbestos board are assumed to contain asbestos. If renovation activity is likely to impact the pipe insulation, fittings, fire doors, gaskets, or cement asbestos board, they should be removed by a Washington-certified asbestos abatement contractor. If the ACM is left inplace, the material should be inspected periodically and maintained to minimize the potential for asbestos release. Hart Crowser recommends labeling the ACM to warn maintenance workers of the potential presence of asbestos in the components. #### 5.2 Lead-Based Paint Positive interior components included metal stair risers on Stair-2 and paint on the hangar floor. Exterior surfaces which tested positive included Stair-1 and assorted door components. Painted components tested were observed to be in good condition. If any of the components which tested positive for lead are to be disturbed or removed during upcoming renovation activities, Hart Crowser recommends the following remedial or abatement actions: All work which will disturb components found to contain LBP shall be conducted in accordance with 29 CFR 1926.62 and WAC 296-155-176 to minimize the potential for employee exposure to lead from this source. Worker exposure may be minimized by using non-abrasive and non-destructive methods of removing lead-bearing components. For example, removal of an entire component with lead-based paint reduces potential lead exposure compared to removal of the paint by sanding. Exposures may be further reduced with the use of engineering controls, exposure monitoring, and protective equipment. - Removed painted components should be tested using the Toxicity Characteristic Leaching Procedure (TCLP) for lead to determine if they require disposal as hazardous lead-containing materials; and - ▶ LBP-containing structures that will not be disturbed during upcoming renovation activities should be periodically inspected and maintained in good condition to reduce the potential for future lead release from these sources. #### 5.3 Other Hazardous Materials Hazardous building components and hazardous products were observed on site at the time of the inventory. Hazardous materials should be removed from the renovation area to minimize the potential for release. Where removal of the materials is not an option, special care should be taken to avoid a release from specific components. During renovation activities, Hart Crowser recommends that fluorescent light ballasts be removed and replaced with non-PCB ballasts. PCB ballasts should be properly disposed of as PCB wastes, in accordance with applicable regulations. #### 6.0 LIMITATIONS Work for this project was performed, and this report prepared, in accordance with generally accepted professional practices for the nature and conditions of the work completed in the same or similar localities, at the time the work was performed. It is intended for the exclusive use of HNTB, the U.S. Army Corps of Engineers, the U.S. Air Force, and its contractors for specific application to the referenced structure. No other warranty, express or implied, is made. It should be noted that Hart Crowser relied on information provided by the individuals indicated above. Hart Crowser can only relay this information and cannot be responsible for its accuracy nor completeness. If you have any questions about the report, please call the undersigned. Sincerely, HART CROWSER, INC. ELISABETH BLACK Project Environmental Scientist Elisabeth Block 7060\1012report.doc DAVID CHAWES, CIH Senior Associate Industrial Hygienist ## REFERENCES Environmental Protection Agency, 1985. Asbestos in Buildings: Simplified Sampling Scheme for Friable Surfacing Materials. HUD, 1995. Guidelines for the Evaluation and Control of Lead-Based Paint Hazards in Housing, U.S. Department of Housing and Urban Development. Hart Crowser J-7060 Table 2 - Results of Lead-Based Paint Survey Building 1012 Fairchild Air Force Base | 2 | | |---|-------| | , | _ | | 5 | 2 | | = | _ | | 3 | 5 | | | 5 | | 5 | - 04 | | ` | - | | - | -= | | 2 | | | 7 | Vash | | | 100 | | - | _ | | | Ş | | į | ~ | | , | - | | • | - | | | | | } | okane | | • | • | | • | 3 | | 2 | - | | | | | : | - | | | • | | | Spoka | | | .= | | | • | | | | | | | | | | | | _ | | | | XRF Lead | AAS Lead | | | | |-----------|--------------------------|----------------|------------------|--------------|------------|------------|------------|----------|---------| | | | | | | Results in | Results in | | | | | Sample ID | Room | Structure | Substrate | Condition | mg/cm2 | mg/cm2 | Evaluation | mspector | Date | | 89 | Vestibule | Dogr | Meta | Poog | 0.05 | | Negative | OH.M. | 86/9/01 | | 6 | Vestbule | M.A. | Metal | Good | 0,1 | | Negative | MHD | 10/6/98 | | 5 | Vestibule | Wall | Fiber Insulation | Cood | 10.0 | | Negative | OH/M | 86/9/01 | | | Vestibule | Door | Metal | P 883 | 0.03 | | Negative | WHD | 10/6/98 | | 12 | Vestibule | Door lamb | Metal | Good | 60'0 | | Negative | QH/M | 10/9/98 | | 2 | | Wall | Wallboard | Good | 0 | | Negative | QHW. | 10/6/98 | | | Vestibule | Hoor | Concrete | poog | 100 | | Negative | OH.M | 10/6/98 | | | | Beam | Metal | Cood | 0,16 | | Negative | MHD | 86/9/01 | | 16 | Women's Lating Door Jamb | Door Jamb | Metal | Poog. | 0.02 | | Negative | QHM | 86/9/01 | | | Women's Latrin | Foilet Stall | Metal | Cood | 60'0 | | Negative | WHD | 86/9/01 | | 18 | 5 | Wali | Wallboard | Good | 0.02 | | Negative | WHD | 86/9/01 | | 61 | Men's Lahme | Door | Metal | Good | 0.02 | | Negative | WHD | 10/6/98 | | 02 | | Wall | Wallboard | Good | 20.0 | | Negative | WHD | 10/9/88 | | | Latrine | Door | Metal | ,
200g | 0.11 | | Negative | WHO | 10/6/98 | | | | Door | Metal | Good | 0.1 | | Negative | WHD | 86/9/01 | | | Stair-2 | Wall | Metal | Good | 0.13 | | Negative | MHD | 86/9/01 | | | | Stair Riser | Metal | Sod | 25.0 | | Positive | WHD | 10/6/98 | | | | Star Handrail | Metal | Good | 0.04 | | Negative | WHD | 10/9/98 | | | | Stair Stringer | Metal | Good | 0.11 | | Negative | WHD | 86/9/01 | | | | Floor | Concrete | Good | 0.02 | | Negative | MHD | 10/9/01 | | | ĺ | Door | Metal | Good | 0 | | Negative | MHD | 10/6/98 | | 29 | | Beam | Metal | Cood | 0.11 | | Negative | QHM | 10/6/98 | | | E G | Door | Metal | Good | 600 | | Negative | WHD | 10/6/98 | | | | Window Mulion | Metal | Good | 0.05 | | Negative | Q: IM | 10/6/98 | | | | Wall | Wallboard | Good | 0 | | Negative | MHD. | 10/6/98 | | | | Wall | Metal | Good | 0.02 | | Negative | MHD | 86/9/01 | | | | Door | Metal | Good | 2.71 | | Positive | WHD | 86/9/01 | | 35 | Exterior | | Metal | Good | 0.01 | | Negative | CHM | 86/9/01 | Table 2 - Results of Lead-Based Paint Survey Building 1012 Fairchild Air Force Base Spokane, Washington | | | | | | XPFlead | AAS Load | | | | |-----------------|-------------|----------------|------------------|----------------|------------|----------------|--------------|-----------|-----------| | 1 | | •• | | | Results in | Results in | | | | | Sample LD | Room | Shructure | Substrate | Condition | шк/ст2 | | Evaluation | Inchestor | 946 | | 36 | Exterior | Door | Metal | Good | 0.88 | Н | Northite | MALIN | 101/2/201 | | 37 | Exterior | Door | Metal | ر المحادث | 000 | | DAMES X DATE | | 05/0/01 | | 8 | Exterior | Duor | Motof | | 6,5 | | Vegalive | WHID | 96/9/01 | | Γ | Evtarior | - Part - | rencial | 2000 | 2.13 | | Positive | WHD | 10/6/98 | | T | | Lauder | Metal | 2000 | 0 | | Negative | GHM | 10/6/98 | | Ţ | | D004 | Metal | Good | 1.45 | |
Positive | WHD. | 10/6/98 | | | | Door lamb | Metal | Good | 2,27 | | Positive | CH-FW | 10/6/98 | | T | | Door | Metal | Cood | 0.83 | | Negative | QH.W | 10/6/98 | | T | | Deor | Metal | Good | 6.0 | | Position | MHD | 10/6/06 | | | 5 | Wall | Metal | Cood | 0.05 | | Negative | QH/M | 10/6/da | | Ţ | | Stair Riser | Metal | 900G | 0.05 | | Negative | CHW. | 0/2/01 | | 46 | Stair-I | Stair Stringer | Metal | 200 | - | | 10/2012 | | 02/0/01 | | Q 91 |]·#215 | Stair Stringer | Metal | 1 | ? | 101.0 | - Company | OHA! | 96/9/01 | | 44 | Stair-1 | Stair Handrail | Metal | 200 | 17.0 | 60.5 | Negalive | OLW. | BK/9/01 | | 848 |

 - | Page | 1000 | 300 | 5 | | POSITIVE | OHM | 10/6/98 | | | | | Metal | 5005 | 0.14 | | Negalive | WHD | 10/6/98 | | | | 1,00gr | Meta | Coad | 0.04 | | Negative | MHD | 10/6/98 | | | | Door Support | Metal | Good | 0.2 | | Negative | WHD | 10/6/9R | | | | Door Support | Metal | Good | | <0.002 | Negative | MHD. | 86/9/01 | | | | Hoor | Concrete | Good | 0.03 | | Nexalive | GHM | 10/6/98 | | | | Walt | Masonry | Good | 10'0 | | Negative | OH.A | 10/6/98 | | Ţ | | Beam | Metal | Good | 0.1 | | Negative | WHD | 86/9/01 | | ** | | M.M. | Fiber Insulation | Cood | 0.03 | | Negative | MHD | 10/6/98 | | | | Daor | Metal | Good | 0 | | Negative | WHD | 10/6/98 | | | | Floor | Concrete | Sog | X,
0.27 | | Positive | WHD. | 10/K/WR | | 1 | | Stair Riser | Metal | Pood | 800 | | Negative | | 00/0/01 | | 58 | Stair-3 | Stair Stringer | Metal | Cood | ĩ | - | Negativo | | 0/0/2/0 | | | Slair-3 | ir Handrai | Metal | Piego
Diago | 1 | | Morralian | 204 | 06/0/01 | | 09 | Hangar | E | Vietal | Post | 200 | | Neganie | CLAN. | 25/9/01 | | 19 | E S | | Aletai | | 100 | + | -Acidem | MATO. | 10/0/18 | | | | | | 0000 | COLO | | Negative | MHD | 86/9/01 | Table 1 - Results of Asbestos Survey **Building 1012** Fairchild Air Force Base Spokane, Washington | 1 | | -· . | Estimated | Asbestos Percent & | Material | | | |-------------|--------------------------|---------------|----------------|--------------------|-----------|-----------|----------| | Sample 1D | —,r | Room | Quantity | Туре | Condition | Inspector | Date | | 1012-01 | 7 | Hangar | | S | Good | טוט | 10/5/9R | | 1012-01Q | ┪ | Hangar | | S | Poor | סוט | 10/5/08 | | 1012-02 | Fiber Insulation Board | Hangar | , | CZ | 000 | ט ב
מ | 10/5/30 | | 1012-03 | Fiber Insulation Board | Stair-3 | 44,500 sg. ft. | | 7000 | 2 2 | 10/2/20 | | 1012-04 | Fiber Insulation Board | Storage-1 | | | 2000 | | 06/0/101 | | 1012-05 | Fiber Insulation Board | Hangar | | CZ | 7000 | טונים ב | 10/5/98 | | 1012-06 | Fiber Insulation Board | Hangar | | CX | 200 | | 10/5/98 | | 1012-07 | Fiber Insulation Board | Hangar | . | CZ | 300 | | 10/2/30 | | | Wallboard, Tape, & Joint | | | | 2000 | 2/0 | 96/5/01 | | 1012-08 | Compound | Vestibule | | Š | 000 | ij. | 00/1/01 | | | Wallboard, Tape, & Joint | - | | | | 25 | 06/2/01 | | 1012-09 | Compound | Men's Latrine | | Š | ,,,,,, | Ç | 107 | | | Wallboard, Tape, & Joint | | | | 2000 | | 86/5/01 | | 1012-10 | Compound | Stair-2 | 1,900 sq. ft. | Ç Z | - | 0 | 10/11/00 | | | Wallboard, Tape, & Joint | | | | 3000 | 2 | 10/2/20 | | 1012-11 | Compound | Closet-1 | | S | 7000 | Ų | 0,0 | | | Wallboard, Tape, & Joint | | | | 3005 | מומ | 10/5/98 | | 1012-12 | Compound | Office-1 | | Q | 7000 | ייי | 10/5/00 | | 1012-13 | Cove Mastic-Off White | Breakroom | 150 ft. | GN | 2000 | 200 | 10/5/00 | | 1012-14 | Cove Mastic-Brown | Closet-1 | 15 ft. | G | 200 | 2 0 | 10/3/90 | | 1012.15 | , T | | | 15% Chrysotile, | 300 | 20 | 06/6/01 | | 101016 | ripe insulation | Hangar | 1,250 ft. | 15% Amosite | Good | DIC | 10/5/98 | | 1012-10 | Pipe Filling | Hangar | 80 each | 70% Amosite | Good | DIG | 10/5/98 | | 1012170 | _ | Stair-2 | | QN | Poog | DÍG | 10/5/98 | | J | | Stair-2 | 125 sq. ft. | QN | - poog | DIG | 10/5/98 | | F | Caskets | Building | 4 each | AA | Good | DIC | 10/05/98 | | 1012-AS2 | | Building | 12 each | AN | Good | 200 | 10/5/98 | | | estos Board | | | | | 2 | 06/5/01 | | 2-AS3 | | Hangar | 230 sq. ft. | - X | Cood | - | 10/5/00 | | 2 | ained loce than | 1 | 1 | | 7000 | מות | 06/6/01 | Sample contained less than one percent asbestos. Not Sampled Q ¥ Q Sample collected for laboratory quality control απαγρως. Samples are considered positive for asbestos if they contain more than 1 percent asbestos. Table 2 - Results of Lead-Based Paint Survey Fairchild Air Force Base **Building 1012** Spokane, Washington | | | | | | XRF Lead AAS Lead | AAS Lead | | | | |-----------|-------------|-----------|-----------|-----------|---------------------|------------|------------|-----------|----------| | Sample ID | Room | Structure | Substrate | | Results in | Results in | | | | | 69 | Tool Dogg | | anostrate | Condition | mg/cm2 | mg/cm2 | Evaluation | Inspector | Date | | | TOOY POOL | Coor Jamp | Metal | 7000 | 200 | | | | 2 | | 63 | Tool Room | 0.00 | | 333 | 0.02 | | Negative | MHD | 10/6/98 | | | I IOON IOO1 | Loool | Metal | 200 | 0.10 | | | | 27.75 | | 64 | Tool Room | Dogue | | , | 71.7 | | Negative | ΩH.X | 10/6/98 | | | 1000 | בימווו | Mera | | 000 | | | | 22/2 | | 65 | Mechanical | 7.2.1 | | 3 | 70.0 | | Negative | MHD | 10/6/98 | | | | I dilk | Metal | | 0.06 | | | | | | 99 | Mechanical | Tank | Adotal | | 200.5 | | Negative | MHD | 10/6/98 | | | | | weldi | 500 | 0.21 | | Negative | (4/0) | 00/ 2/01 | | 0 | Mechanical | Dooor | Metal | 7.0 | 3 | | - Ceany | CILA | 96/q/n1 | | 89 | Adoctor | 4 | ייירנמי | 0000 | 0.02 | | Negative | WHD | 10/8/00 | | 200 | MECHANICAL | beam | Metal | 7000 | | | | | 06/0/01 | | | | | | Cood | 91.0 | _ | Negative | CH
≥ | 10/8/08 | Paint chip sample analyzed for quality control purposes. X-ray Fluorescence Spectrum Analyzer a AAS (a) Atomic Absorption Spectroscopy Positive result may be false positive, based on instrument detecting lead in underlying metal substrate. Samples are considered positive for lead-based paint if they contain more than 1 mg/cm2 lead. Table 3A - Hazardous Building Component Survey Building 1012 ĺ * Fairchild Air Force Base Spokane, Washington | : | | Estimated | | | | | |---|-------------------------------|-----------|-------|--|-----------|---------| | · Building Material | Potential Hazardous Component | Quantity | Units | Location | Inspector | Date | | Fluorescent Light Rallaste | Drav | | | н | 1010000 | Date | | ייביי ביסיור ביסיור ביסיור | rces | 40 | each | Buildine | יב | 10/5/08 | | Fluorescent Light Tuhes | Monorari | - | | 0 | 2 | 06/6/01 | | COCKET FIGURE 1 (1907) | werchy vapor | 08 | each | Building | יי
כ | 10/2/08 | | Friel Tanks - Portable | Detacle | | | 0 | S. | 06/6/01 | | or terms in Orthonic | Jretroleum Froduct (JP-8) | 400 | 62 | Hangar | יייי | 10/5/00 | | Mil Mater Separator | Date | | | | מלמ | 06/6/01 | | | remolecting waste | 200 | ga. | Hangar Fact cirla | 2 | 10/5/00 | | Refrigeratore | 750 40 | | | ייייטייין יייטיי יייטיי | 2 | 06/6/01 | | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | 71:21.7 | 4 | Pach | Tool Crib & Breakroom | עכ | 10/5/00 | | | | | | TION WEST OF THE PROPERTY T | 2 | 07/0/01 | Table 3B - Hazardous Product Inventory Building 1012 171 Fairchild Air Force Base Spokane, Washington | : | | Estimated | | | | | |--|---|-----------|--------|---------------------------------------|-----------|---------| | Hazardous Material | National Stock # | Quantity | Units | Location | Inspector | Date | | 3-Part Sealing Compound | 8040-00-200-6415 | 3 | kits | Refrigerator in Tool Crib | DIC | 10/5/98 | | ABC Ory Chemical Fire Extinguisher | KT-336954 | 5 to 10 | each | Hangar | Dic | 10/5/98 | | Annydrous Ammonia | 6810-00-222-9643 | 3 | gal. | Ammonia Cabinet | SIG | 10/5/98 | | Calibration Cas, Hydrogen | 6830-01-360-1866 | 1 | cyl. | Calibration
Gas Box | Did | 10/5/98 | | Calloration Cas. Methane | 6830-01-370-8166 | 1 | cyl. | Calibration Gas Box | DIG | 10/5/98 | | Calibration Cas, Propane | 6665-01-181-9823 | 1 | cyl. | Calibration Gas Box | DIC | 10/5/98 | | Cetalon City | 6850-01-378-0886 | 1 | gal. | Flammable Cabinet | DÍG | 10/2/98 | | Lulylette Ciycol | 6810-00-F00-1514 | 55 | gal. | Equipment Stand | ρία | 10/5/98 | | Life 1911 P | 9150-00-141-4481 | - | pt. | Flammable Cabinet | рſа | 10/5/98 | | inaidi 12.11, bromochlorodillouromethane | unknown | | | Hangar | DIC | 10/2/98 | | Isopiopyi Alconoi | 6810-00-855-6160 | ĺ | gal. | Flammable Cabinet | рſа | 10/5/98 | | ion of the | 9130-00-256-8613 | 2,000 | gal. | Hangar | Sia | 10/5/98 | | Leak Detection Fluid | 6850-00-935-4068 | 18 | oz. | Tool Crib | DIC | 10/5/98 | | Adoptive Education Oil, 10/10 | 9150-00-273-2388 | | qt. | Flammable Cabinet | DIC | 10/5/98 | | Mielityi Etilyi Netone | 6810-00-281-2785 | 2 | gal. | Flammable Cabinet | DIC | 10/5/98 | | Oylitte Stilk Gas and Oil Leak Sealer | 8030-01-265-2895 | | 4. | Tool Crib | Did | 10/5/98 | | raich Kit | 8040-01-107-3981 | 2 | kits | Tool Crib | bla | 10/5/98 | | renetrating Oil | 9150-00-261-7899 | 1 | gal. F | Flammable Cabinet | DIC | 10/5/98 | | retrolatum, lechnical | 9150-00-250-0926 | 12 | | Tool Crib | Did | 10/5/98 | | Fhenophthalein | 6810-00-223-7612 | 8 | 0z. | Tool Crib |) O | 10/5/98 | | rig Kepair Putty | 8030-01-265-2895 | 9 | J .zo | Tool Crib | | 10/5/08 | | Sensor, O2 "R" Cell | 51-7348 | | cells | Tool Crib | | 10/5/08 | | Silane solution PR-1826 Primer | 8030-01-290-5139 | 24 | oz. | Refrigerator in Tool Crib | | 10/5/00 | | Silicone Compound | 6850-00-886-7616 | | | Flammahla Cabinat | | 10/2/30 | | Simple Green | 7930-01-342-4145 | | | Tool Crib | מומ | 86/5/01 | | Soda Bleach | 6810-00-598-7316 | | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | מוֹמ | 10/5/98 | | | 100000000000000000000000000000000000000 | 3 | Bat. D | battiroom | DJC | 10/5/98 | # Building Plan and Asbestos Sample Results Building 1012 Fairchild Air Force Base Spokane, Washington # Building Plan and Lead Sample Results Building 1012 Fairchild Air Force Base Spokane, Washington # Building Plan and Asbestos Sample Results Building 1012 Fairchild Air Force Base Spokane, Washington HARTCROWSER J-7060-00 10/98 Figure 1-B # Building Plan and Lead Sample Results Building 1012 Fairchild Air Force Base Spokane, Washington $\frac{\text{MEZZANINE} - 2 \quad \text{PLAN}}{\text{SCALE: 1"} = 6'}$ HARTCROWSER J-7060-00 10/98 Figure 2-B 712400m 9-1 80/86/01 1MX # APPENDIX A SITE PHOTOGRAPHS Photograph 1 - Looking southwest at Building 1012, Fairchild Air Force Base. Photograph 2 - Looking south at fiber insulation board (sample 1012-01) in Building 1012, Fairchild Air Force Base. 01061-30 Photograph 3 - Looking southeast at pipe insulation (sample 1012-15) and pipe fittings (sample 1012-16) in Building 1012, Fairchild Air Force Base. Photograph 4 - Looking east at transite board (sample 1012-AS3) in Building 1012, Fairchild Air Force Base. # APPENDIX B SUSPECT ASBESTOS BULK SAMPLING FORMS | 1. Building/Unit No: 1012, FAFB | | |---|---| | 3. Sample No: 1012-01 1. Room No.: Hangar | 15. Hamogeneous To: /0/2-0/9,-02,03,04,05,06,67 | | S. Mareria, Code and Description: | 16. Photo No.: 17. Friable: Y | | 6. Exact Location of Sample: 36' 5.07 NE corner; | 18. Location/Area Utilization: | | 21' W; 6' UD | Potential for Air Erosion: (f) M L | | 7. Outer Color: Silve Beige 8. Inner Color: Yellow | Potential for Contact: (H) M L | | 9. Pattern/Shape: Danse Fiber Panels | Potential for Vibration: H M L | | 10. Estimated Material Quantity (Building Total): 44,500-ft | Building System: HVAC Water Steam | | 11. Material Condition Assessment (1) 2 3 4 5 | Electrical Other None | | 12. Is Damage Localized: Y N | 19. Emergency Nonfication Required: Y N | | 13. Location and Percent of Localized Damage: | | | 14 Comments: Found on upper hange | walls, exact N. Loull. All Hanger ter lings | | 3. Sample No.: 1012-010 1. Room No.: Hangar | 15. Homogeneous To: 1012-01, -02, -03,04-05,-64-07 | | 5. Material Code and Description: See 1012-01 | 16. Photo No.: 17. Friable: Y (N) | | 6. Exact Location of Sample: Some as | 18. Location/Area Utilization: | | 10-2101 | Potential for Air Erosion: A M L | | 7. Quier Color: 8. Inner Color: | Potential for Contact: (H) M. L | | 9. Pattern/Shape: | Potential for Vibration: H M L | | 10. Estimated Material Quantity (Building Total): | Building System: HVAC Water Steam | | 11. Material Condition Assessment: 1 2 3 4 5 | Electrical Other None | | 12. Is Damage Localized: Y N | 19. Emergency Notification Required: Y | | 13. Location and Percent of Localized Damage: | | | 14. Comments: Sac (012-0) | | | 1. Sample No.: 10 12-02 4. Room No.: 4. 100 | 15. Homogeneous To: 1012-01, -010, -03, -04, -05 -04, -05 | | 5. Material Code and Description: MI-1 | (6. Photo No.: 17. Friable: Y | | 6. Exact Location of Sample: Outside Sw corner | 18. Location/Area Utilization: | | of tool room; w up walk | Potential for Air Erosion: (E) M L | | 7. Outer Color: See (012-0) 8, inner Color: | Potential for Contact: (4) M L | | 9. Pattern/Shape: | Potential for Vibration: H M L | | 10. Estimated Material Quantity (Building Total): | Building System; HVAC Water Steam | | 11. Material Condition Assessment: (1) 2 3 4 5 | Ejectrical Other None | | 12. Is Damage Localized: Y N | 19. Emergency Modification Required: Y | | 13. Location and Percent of Localized Damage: | | | 14. Comments: Sax (012-D) | of Custody | | Chain | a canaly | | Sampled Bv: | Laboratory: | | Relinquished By: | Received By: (Print) | | Hart Crowser COC Tape No.: | Received Bv: (Signamre) | | Date: Time: | Date: Time: | | | | 1018 | 1. Building/Unit No:/D/2, FAFB | 2. Dáie:1D-D5-98 | |---|---| | J. Sample Ma: 10/2-03 4. Room No.: . 5+qic-3 | 15. Hamagedeaus To: /D/2-D/,-D/Q,-D2, -D4/-D5,-D4,-D | | 5. Material Code and Description: HI-1 | 16. Photo No.: 17. Friable: Y | | 6. Exact Location of Sample: 11 'N. 045W-Mast | 18. Location/Area Utilization: | | Corner | Potential for Air Erosion: (H) M L | | 7. Outer Color: 8. Inner Color: | Potential for Contact: H M L | | 9. Pamern/Shape: Sua 1012-01 | Potential for Vibration: H M L | | 10. Estimated Material Quantity (Building Total): | Building System: HVAC Water Steam | | 11. Material Condition Assessment: 1 2 3 4 5 | Electrical Other None | | 12. Is Damage Localized: Y N | 19. Emergency Notification Required: Y | | 13. Location and Percent of Localized Damage: | | | 14. Comments: See /0/2-0/ | | | 3. Sample No .: 10/2-04 4. Room No .: 5to rage-1 | 15. Homogeneous To: (D12-D1, -D10, -D2, -D3, -D5 -D4 - D- | | 5. Material Code and Description: | 16. Photo No.: 17. Friable: Y N | | 6. Exact Location of Sample: 13' W. of 5E | 18. Location/Area Utilization: | | corner; 4'up | Potential for Air Erosion: (H) M L | | 7. Outer Color: 8, Inner Color: | Potential for Contact: H M. L | | 9. Pattern/Shape: | Potential for Vibration: H M L | | 10. Estimated Material Quantity (Building Total): | Building System: HVAC Water Steam | | 11. Material Condition Assessment: 1 2 3 4 5 | Electrical Other None | | 12. Is Damage Localized: Y N | 19. Emergency Nonfication Required: Y | | 13. Location and Percent of Locatized Damage: | | | 14. Comments: See 1012-01 | | | 3. Sample No.: / 5/2-05 4. Room No.: Haugan | 15. Homogeneous To: /D/2-D/, -D/D, -DZ, -D3-64 -Db - 07 | | 5. Material Code and Description: MI-/ | 16. Phoen No.: 17. Friable: Y | | 6. Exact Location of Sample: 30'N. of SW Corne | | | of S. Hanga, Plans door; 5'UD. | Potential for Air Erosion: (Ħ) M L | | 7. Ouær Color: 8. Inner Color: | Potential for Contact: (A) M L | | 9. Pattern/Shape: | Potential for Vibration: H M L | | 10. Estimated Material Quantity (Building Total); | Building System: HVAC Water Steam | | 11. Material Condition Assessment: 1 2 3 4 5 | Electrical Other .None | | 12. Is Damage Localized: Y N | 19. Emergency Notification Required: Y | | 13. Location and Percent of Localized Damage; | | | 14. Comments: See 1012-01 | | | Chain o | (Custoay | | Sampled Bv: | Laboratory: | | Relinquished By: | Received By: (Print) | | Hart Crowser COC Tabe No.; | Received By: (Signature) | | Date: Time: | Date: Time: | | Revised 11/21/94 | | 01061-34 2 8 | 1. Building/Unit No: | 2. Date: | |---|---| | 3. Sample No: 1012-06 4. Room No .: Haugar | 15. Somogeneous To: 1017 - D1 - D1 - D2 - D3 - D4 | | 5. Material Code and Description: HT-1 | 16. Photo No.: 17. Friable: Y | | 6. Exact Location of Sample: 36 N. of SE corner | 18. Location/Area Utilization: | | of S. Hangar Plane door; 7'un | Potentizi for Air Erosion: (H) M L | | 7. Outer Color: 8. Inner Color: | Potential for Contact: (E) M L | | 9. Pattern/Shape: | Potential for Vibration: H M L | | 10. Estimated Material Quantity (Building Total): | Building System: HVAC Water Steam | | 11. Material Condition Assessment: 1 2 3 4 5 | Electrical Other None | | 12. Is Damage Localized: Y N | 19. Emergency Notification Required: Y | | 13. Location and Percent of Localized Damage: | | | 14. Comments: See 1012-01 | | | 3. Sample No.: 1012-07 4. Room No.: Hangar | 14 T | | 5. Material Code and Description: MI I - I | | | 6. Exact Location of Sample: 113' W. of SE Most | 16. Photo No.: 17. Friable: Y | | Corner; F'us on wall | Personal for the Frank | | 7. Outer Color: 8. Iruner Color: | Potential for Air Erosion: (A) M L Potential for Contact: (H) M. I. | | 9. Pattern/Shape: | | | 10. Estimated Material Quantity (Building Total): | | | | | | 11. Material Condition Assessment: 1 2 3 4 5 | | | 13. Location and Percent of Localized Damage: |
19. Emergency Notification Required: Y | | 14. Comments: See (0/2-0) | - | | | | | 3. Sample No.: 10/2-08 4. Room No.: Vestibul | 15. Homogeneous To: 1012-09,-10,-11,-12 | | 5. Mazerial Code and Description: WB-1 | 16. Photo No.: 17. Friable: Y | | 6. Exact Location of Sample: Bo Hom W. of Usstilou | 18. Location/Area Utilization: | | Hangar Door. | Potential for Air Erosion: H 🗑 L | | 7. Outer Color: White 8. Inner Color: White | Potential for Contact: (f) M L | | 9. Parent/Shape: Wallboard, joint comp, tage | Potential for Vibration: H M | | 10. Estimated Material Quantity (Building Total): 1, 900 42 | Building System: HVAC Water (Steam | | 11. Mazerial Condition Assessment: (1) 2 3 4 5 | Electrical Other Yone | | 12. Is Damage Localized: Y | 19. Emergency Notification Required; Y | | 13. Location and Percent of Localized Damage: | | | 14. Comments: Stair 2 Defice 1 4 - 7 d by | theregre/ DEGree -1+ -2 common wall | | Chang of | Custody) Common wall | | Sampled By: | Laboratory: | | | | | Refinguished By: | Received By: (Print) | | Refinguished By: Hart Crowser COC Tage No.: | Received By: (Print) Received By: (Signanire) | 3 98 | 1. Building/Unit No: 1012, FAFB | 2. Date://> / 45/98 | |---|---| | 3. Sample No: 1012-09 4. Room No.: Bath | | | 5. Materia, Code and Description: 'WB-) | 16. Photo No.: 17. Friable: Y | | 6. Exact Location of Sample: Immed. 5. of | 18. Location/Area Utilization: | | mens Bosh-1 door; 8' up | Potential for Air Erosion: H | | 7. Outer Color: 8. Inner Color: | Potential for Contact: (A) M L | | 9. Pattern/Shape: | Potential for Vibration: H M (L) | | 10. Estimated Material Quantity (Building Total): | Building System: HVAC Water Steam | | 11. Material Condition Assessment: 1 2 3 4 5 | Electrical Other None | | 12. Is Damage Localized: Y N | 19. Emergency Monification Required: Y | | 13. Location and Percent of Localized Damage: | | | 14. Comments: See 1012-08 | | | 3. Sample No.: /0/2-10 4. Room No.: Stair-2. 15. Homogeneous To: /D/2-08-09-11-17 | | | 5. Material Code and Description: WB-1 | | | 6. Exact Location of Sample: Beneath Steller | 16. Phom No.: 17. Friable: Y (N) | | landing on U. wall; 5'Up. | | | i ' | Potential for Air Erosion: H M | | 7. Outer Color: 8. Inner Color: | Potential for Contact: (H) M. L | | 9. Pattern/Shape: | Potential for Vibration: H M (1) | | 10. Estimated Material Quantity (Building Total): | Building System: HVAC Water Steam | | 11. Material Condition Assessment 1 2 3 4 5 | Electrical Other (None) | | 12. Is Damage Localized: Y N 13. Location and Percent of Localized Damage: | 19. Emergency Notification Required: Y | | 14. Commens: See 10/2-08 | | | | | | 3. Sample No.: (0/2-1/ 4. Room No.: Close+- | 1 15. Homogeneous To: /b/2-08,-09,-10,-/2 | | 5. Material Code and Description: 10 B-1 | 16. Photo No.: 17. Friable: Y | | 6. Exact Location of Sample: Bo Hom E. Corne | | | of door way | Potential for Air Erosion: H | | 7. Outer Color: 8. Inner Color: | Potential for Contact: (H) M L | | 9. Pattern/Shape: | Potential for Vibration: H M | | 10. Estimated Material Quantity (Building Total): | Building System: HVAC Water Steam | | 11. Material Condition Assessment: 1 2 3 4 5 | Electrical Other Yone | | 12. Is Damage Localized: Y N | 19. Emergency Notification Required: Y | | 13. Location and Percent of Localized Damage: | | | 14. Comments: 522 10/2-08 | | | Chain of Custody | | | Samoled Bv: | Laboratory: | | Relinquished By: | Received By: (Print) | | Hart Crowser COC Tape No.: | Received Bv: (Signature) | | Date: Time: | Date: Time: | | Revised 11/21/94 | i une; | 498 | 1. Building/Unit No: 1012, FAFB | 2. Date: <u>/0/05/98</u> | | | | |--|--|--|--|--| | 3. Sample No: 1012-12 4. Room No.: 6-fice-1 | 15. Homogeneous To: /b/Z-D8,-D9,-10,-// | | | | | 5. Material Code and Description: (1) 73 - 1 | 16. Photo No.: 17. Friable: Y (Y) | | | | | 6. Exact Location of Sample: 4' N. 04 SE | 18. Locarion/Area Utilization: | | | | | corner; bottom | Potential for Air Erosion: H 🐼 L | | | | | 7. Outer Color: 8. Inner Color: | Potential for Contact (f) M L | | | | | 9. Pattern/Shaoe: | Potential for Vibration: H M (L) | | | | | 10. Estimated Material Quantity (Building Total): | Building System: HVAC Water Steam | | | | | 11. Material Condition Assessment: 1 2 3 4 5 | Electrical Other None | | | | | 12. Is Damage Localized: Y N | 19. Emergency Notification Required: Y | | | | | 13. Location and Percent of Localized Damage: | | | | | | 14. Comments: See 1012-08 | | | | | | 3. Sample No.: 17/2-13 4. Room No.: Breakroom | h 15. Homogeneous To: None | | | | | 5. Material Code and Description: CM -1 | 16. Phom No.: 17. Friable: Y N | | | | | 6. Exact Location of Sample: 6'5. D. WE Corney | 18. Locanon/Area Unitzation: | | | | | wall/floor intentace | Potential for Air Erusion: H M | | | | | 7. Outer Color: Off-White 8. Inner Color: Same | | | | | | 9. Pattern/Shape: Cove mastic | Potential for Contact: H M. C. Potential for Vibration: H M C. | | | | | 10, Estimated Material Quantity (Building Total): 150f4 | Building System: HVAC Water Steam | | | | | 11. Material Condition Assessment: (1) 2 3 4 5 | Electrical Other (None) | | | | | (2. Is Damage Localized: Y N | 19. Emergency Notification Required: Y (Ñ) | | | | | 13. Location and Percent of Localized Damage: | | | | | | 14 Comments: Found in Office-1,-2, | + Stair-2 | | | | | | · · | | | | | 3. Sample No.: 16/2-14 4. Room No.: (1884-1 | 15. Homogeneous To: U o ve | | | | | | 16, Phom No.: 17. Friable: Y | | | | | 6. Exact Location of Sample: 1'5. of bottom E. Corner of door | 18. Location/Area Utilization: | | | | | | Potential for Air Erosion: H M | | | | | 7. Outer Color: Brown 3. Inner Color: 9. Pattern/Shape: 19 Cove mastic | Potential for Contact: H M (L) Potential for Vibration: H M (L) | | | | | 12 C1 | Building System: HVAC Water Steam | | | | | _ | Electrical Other None | | | | | 11. Material Condition Assessment: (1) 2 3 4 5 | <u> </u> | | | | | 12. Is Damage Localized: Y | 19. Emergency Notification Required: Y | | | | | 13. Location and Percent of Localized Damage: | | | | | | 14. Comments: Found in Clost -/ | Custody | | | | | Complet 200 | 1 | | | | | Sampled By: | Received By: (Print) | | | | | | | | | | | Hart Crowser COC Tage No.: | Received By: (Signature) | | | | | Date: Time: | Date: Time: | | | | 5 88 | 1. Building/Unit No: IDIZ, FAFE | 3 2. Date: 10/05/98 | |--|--| | 3. Sample No: 1012-15 4. Room No.: Hangan | 15. Homogeneous To: Done | | 5. Material Code and Description: PI-1 | 16. Photo No.: 17. Friable: 🔘 N | | Intersection of W. | 18. Location/Area Utilization: | | to from wall + S. Hougar wall; 26 | Potential for Air Erosion: H (M) L | | 7. Outer Color: White 8. Inner Color: Dk. Gra | , Potential for Contact: H M L | | 9. Pattern/Shape: Crurchy / fr brows | Potendal for Vibration: H M 👰 | | 10. Estimated Material Quantity (Building Total): /250 F.L. | Building System: HVAC Water Steam | | 11. Material Condition Assessment (2 3 4 5 | Electrical Other None | | 12. Is Damage Localized: Y | 19. Emergency Notification Required: Y | | 13. Location and Percent of Localized Damage: | trans and days that is less a | | 14. Comments: riser's running 110 675. | trong E. and to w. end, w I some | | 3, Sample No.: 1012-16 1. Room No.: Hanger | 15. Homogeneous To: Novel | | 5. Material Code and Description: PF-1 | 16. Photo No.: 17. Friable: Y | | 6. Exact Location of Sample: Intersection of W. | 18. Location/Area Utilization: | | 19 DE From floor | Potential for Air Erosion: H M L | | 7. Ourer Color: White 8. Inner Color: White | Potential for Contact: H M. (1) | | 9. Pattern/Shape: 90° 1/bow-Pipe titting |
Pomential for Vibration: H | | 10. Estimated Material Quantity (Building Total): 80 | Building System: HVAC Water Steam | | 11. Material Condition Assessment () 2 3 4 5 | Electrical Other None | | 12. Is Damage Localized: Y N | 19. Emergency Nonfication Required: Y | | 13. Location and Percent of Localized Damage: Found a long 5. Wall of the land lan | fanc . & us 1 12. sun 4 on mo tal | | 14. Comments: Supports (2) 5. end of He | now i transcript F. coiling. | | 3. Sample No.: 10/2-17 4. Room No.: Stair - 2 | 15. Homogeneous To: 10/2-0176 | | 5. Material Code and Description: MA-/ | 16. Photo No.: 17. Friable: Y N | | 6. Exact Location of Sample: HU COY NOV OF | 18. Location/Area Utilization: | | bottom Stepof Stair-2 | Potential for Air Erosion: H M (L) | | 7. Outer Color: Grey 8. Inner Color: Grey | Potential for Contact: H M 🔊 | | 9. Pattern/Shape: Stair tread mastic | Potential for Vibration: H M | | 10. Estimated Material Quantity (Building Total): 175 ft2 | Building System: HVAC Water Steam | | 11. Material Condition Assessment: (1) 2 3 4 5 | Electrical Other (one) | | 12. Is Damage Localized: Y | 19. Emergency Nodification Required: Y | | 13. Location and Percent of Localized Damage: | | | 14. Comments: Stair-Z | Custody | | | 1 | | Samoled Bv: | Laboratory: | | Relinquished By: | Received By: (Pring) | | Hart Crowser COC Tane No.: | Received By: (Signature) | | Date: Time: | Date: Time: | | 2. Date: 15/98 | |---| | 15. Homogeneous To: /0/2-/7 | | 16, Photo No.; 17. Friable: Y | | 18. Location/Area Utilization: Potential for Air Erosion: H M L | | Potential for Contact: H M (L) | | Potential for Vibration: H. M. C | | Building System: HVAC Water Steam | | Electrical Other (Your | | 19. Emergency Notification Required: Y | | | | | | 15. Hamogeneous To: Nove | | 16. Photo No.: 17. Friable: Y | | 18. Location/Area Utilization: | | Potential for Air Erosion: (18) M L | | Potential for Contact: H M L | | Potential for Vibration: H M L | | Building System: HVAC Water Steam | | Electrical Other None | | 19. Emergency Notification Required: Y | | | | ydag | | 15. Homogeneous To: Nove | | 16. Photo No.: 17. Friable: Y | | 18. Location/Area Utilization: | | Potential for Air Erosion: H M | | Potential for Contact H M | | Potential for Vibration: H M | | Building System: HVAC Water Steam | | Stectrical Other (None) | | 19. Emergency Nourication Required: Y | | | | augoted | | r Custbay | | Laboratory: | | Received By: (Print) | | Received By: (Signature) | | Date: Time: | | | | | 012, FAFIS | | Date: 10 | 100/48 | |---|--|--|-------------------|------------------------------| | 3. Samole No.: 11) 12-45 | 4. Room No.: Havear | 15. Homogeneous To: | Dove | | | 5. Materia Code and Description: | MT-3 | 16. Photo No.: | 17. Friable: N | | | 6. Exact Location of Sample: 0 | n Partitionwall | 18. Location/Area Utilization: | | | | N. of Too / Room | | Potential for Air Erosion: | H M | /L) | | 7. Outer Color: Beige | 8. Inner Color: Grey | Potential for Contact: | H (M) | L | | 9. Pattern/Shave: Cement Aslor Stos Board | | Potential for Vibration: | H CM | L, | | 10. Estimated Material Quantity (Building Total): 230 Ft | | Building System: HVAC | Water | Steam | | 11. Material Condition Assessment: (1) 2 3 4 5 | | Евесці | cal Other | None | | 12. Is Damage Localized: | у и | 19. Emergency Nonfication Requ | ired: Y | (N) | | 13. Location and Percent of Locali | | | | | | 14. Comments: ASSL | runed, Not Sur | mplea | | | | 3. Sample No.: | 4. Room No.: | 15. Homogeneous To: | | | | 5. Material Code and Description: | | 16. Photo No.: | 17. Friable: | Y N | | 6. Exact Location of Sample: | | 18. Location/Area Utilization: | | | | | | Potential for Air Erosion: | * H M | L. | | 7. Outer Color: | 8. Inner Color: | Potential for Contact: | H M. | L | | 9. Pattern/Shape: | · | Potential for Vibration: | н м | L | | 10. Estimated Material Quantity (E | 10. Estimated Material Quantity (Building Total): | | Water | Steam | | 11. Material Condition Assessmen | 11. Manerial Condition Assessment 1 2 3 4 5 | | ical Other | None | | 12. Is Damage Localized: Y N | | 19. Emergency Nonification Requ | uired: Y | N | | 13. Location and Percent of Local | | | | | | 14. Comments: | · | | | | | | | | | | | 3. Sample No.: | 4. Room No.: | 15. Homogeneous To: | | | | | | | T | | | 5. Material Code and Description: | | 16, Photo No.: | 17. Friable: | у и | | Material Code and Description: 6. Exact Location of Sample: | | 16, Photo No.: 18. Location/Area Utilization: | | | | 6. Exact Location of Sample: | | 16. Photo No.: 18. Location/Area Utilization: Potential for Air Erosion: | н н | L | | 6. Exact Location of Sample: 7. Outer Color: | | 16, Photo No.: 18. Location/Area Utilization: Potential for Air Erosion: Potential for Contact: | M H | Ľ
Ľ | | 6. Exact Location of Sample: 7. Outer Color: 9. Pattern/Shape: | 8. Inner Color: | 16. Photo No.: 18. Location/Area Utilization: Potential for Air Erosion: Potential for Contact: Potential for Vibration: | H M
H M
H M | Ľ
L
L | | 6. Exact Location of Sample: 7. Outer Color: 9. Pattern/Shape: 10. Estimated Material Quantity (1) | 8. Inner Color: | 16, Photo No.: 18. Location/Area Utilization: Potential for Air Erosion: Potential for Contact: Potential for Vibration: Building System: HVA | H M
H M
H M | L
L
L
Steam | | 6. Exact Location of Sample: 7. Outer Color: 9. Pattern/Shape: 10. Estimated Material Quantity (1) 11. Material Condition Assessment | 8. Inner Color: Building Total): at: 1 2 3 4 5 | 16. Photo No.: 18. Location/Area Utilization: Potential for Air Erosion: Potential for Contact: Potential for Vibration: Building System: HVAO | H M H M C Water | L
L
L
Steam
None | | 6. Exact Location of Sample: 7. Outer Color: 9. Pattern/Shape: 10. Estimated Material Quantity (1) 11. Material Condition Assessment 12. Is Damage Localized: | 8. Inner Color: Building Total): no: 1 2 3 4 5 Y N | 16, Photo No.: 18. Location/Area Utilization: Potential for Air Erosion: Potential for Contact: Potential for Vibration: Building System: HVA | H M H M C Water | L
L
L
Steam | | 6. Exact Location of Sample: 7. Outer Color: 9. Pattern/Shape: 10. Estimated Material Quantity (1) 11. Material Condition Assessment 12. Is Damage Localized: 13. Location and Percent of Local | 8. Inner Color: Building Total): no: 1 2 3 4 5 Y N | 16. Photo No.: 18. Location/Area Utilization: Potential for Air Erosion: Potential for Contact: Potential for Vibration: Building System: HVAO | H M H M C Water | L
L
L
Steam
None | | 6. Exact Location of Sample: 7. Outer Color: 9. Pattern/Shape: 10. Estimated Material Quantity (1) 11. Material Condition Assessment 12. Is Damage Localized: | 8. Inner Color: Building Total): at: 1 2 3 4 5 Y N | 16. Photo No.: 18. Location/Area Utilization: Potential for Air Erosion: Potential for Contact: Potential for Vibration: Building System: HVAO | H M H M C Water | L
L
L
Steam
None | | 6. Exact Location of Sample: 7. Outer Color: 9. Pattern/Shape: 10. Estimated Material Quantity (1) 11. Material Condition Assessment 12. Is Damage Localized: 13. Location and Percent of Local | 8. Inner Color: Building Total): at: 1 2 3 4 5 Y N | 16. Photo No.: 18. Location/Area Utilization: Potential for Air Erosion: Potential for Contact: Potential for Vibration: Building System: HVAO Sieco 19. Emergency Notification Req | H M H M C Water | L
L
L
Steam
None | | 6. Exact Location of Sample: 7. Outer Color: 9.
Pattern/Shape: 10. Estimated Material Quantity (1) 11. Material Condition Assessment 12. Is Damage Localized: 13. Location and Percent of Local 14. Comments: | 8. Inner Color: Building Total): at: 1 2 3 4 5 Y N | 16. Photo No.: 18. Location/Area Utilization: Potential for Air Erosion: Potential for Contact: Potential for Vibration: Building System: HVAC Sleep 19. Emergency Notification Required to the state of s | H M H M C Water | L
L
L
Steam
None | | 6. Exact Location of Sample: 7. Outer Color: 9. Pattern/Shape: 10. Estimated Material Quantity (1) 11. Material Condition Assessment 12. Is Damage Localized: 13. Location and Percent of Local 14. Comments: Sampled 3v: Relinquished 8v: | 8. Inner Color: Building Total): at: 1 2 3 4 5 Y N | 16, Photo No.: 18. Location/Area Utilization: Potential for Air Erosion: Potential for Contact: Potential for Vibration: Building System: HVAG Sleece 19. Emergency Notification Required Custody (Laboratory: Received By: (Print) | H M H M C Water | L
L
L
Steam
None | | 6. Exact Location of Sample: 7. Outer Color: 9. Pattern/Shape: 10. Estimated Material Quantity (1) 11. Material Condition Assessment 12. Is Damage Localized: 13. Location and Percent of Local 14. Comments: Sampled By: | 8. Inner Color: Building Total): at: 1 2 3 4 5 Y N | 16. Photo No.: 18. Location/Area Utilization: Potential for Air Erosion: Potential for Contact: Potential for Vibration: Building System: HVAC Sleep 19. Emergency Notification Required to the state of s | H M H M C Water | L
L
L
Steam
None | 8 48 APPENDIX C BULK ASBESTOS FIBER AND TOTAL LEAD ANALYSIS NVL LABORATORIES, INC. AND PREZANT ASSOCIATES, INC. 4708 Aurora Ave. N., Seattle, WA 98103 Tel: 206.547.0100 Fax: 206.634.1936 NVLAP #102063 # Bulk Asbestos Fiber Analysis Client: Hart Crowser, Inc. Address: 1910 Fairview Ave. East Seattle, WA 98102-3699 Project: Fairchild, Building 1012 NVL Batch Number: 98-8778 Client Project #: J-7060-00 Number of samples: 17 Lab ID #: 98102731 Client Sample #: 1012-01 Sample Location: Fairchild, Building 1012 Description: Yellow fibrous material with paint OTHER FIBROUS MATERIALS: Mineral wool 80% NON-FIBROUS MATERIALS: Paint, Glass beads, Glue/binder PERCENT ASBESTOS TYPE: *None detected ND Lab ID #: 98102732 Client Sample #: 1012-02 Sample Location: Fairchild, Building 1012 Description: Yellow fibrous material with paint OTHER FIBROUS MATERIALS: Mineral wool 80% NON-FIBROUS MATERIALS: Paint, Glass beads, Glue/binder ASBESTOS TYPE: *None detected PERCENT ND Lab ID #: 98102733 Client Sample #: 1012-03 Sample Location: Fairchild, Building 1012 Description: Yellow fibrous material with paint OTHER FIBROUS MATERIALS: Mineral wool 80% NON-FIBROUS MATERIALS: Paint, Glass beads, Glue/binder ASBESTOS TYPE: *None detected PERCENT ND (Sample results are continued on the next page.) Sampled by: Client Analyzed by: Marina Lee Reviewed by: Munaf Khan Date: 10/15/1998 Date: 10/15/1998 Munaf Khan, Laboratory Director Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using EPA 600/R-93/116 Method with the following measurement uncertainties for the reported % Asbestos (1%=>0-3%, 5%=>1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). If samples were not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the U.S. Government. 01061-42 4708 Aurora Ave. N., Seattle, WA 98103 Tel: 206.547.0100 Fax: 206.634.1936 # Bulk Asbestos Fiber Analysis NVLAP #102063 Client: Hart Crowser, Inc. Address: 1910 Fairview Ave. East Seattle, WA 98102-3699 Project: Fairchild, Building 1012 NVL Batch Number: 98-8778 Client Project #: J-7060-00 Number of samples: 17 Lab ID #: 98102734 Client Sample #: 1012-04 Sample Location: Fairchild, Building 1012 Description: Yellow/black fibrous material with paint OTHER FIBROUS MATERIALS: Mineral wool 80% NON-FIBROUS MATERIALS: Paint, Glass beads, Glue/binder ASBESTOS TYPE: *None detected PERCENT ND Lab ID #: 98102735 Client Sample #: 1012-05 Sample Location: Fairchild, Building 1012 Description: Yellow fibrous material with paint OTHER FIBROUS MATERIALS: Mineral wool 80% NON-FIBROUS MATERIALS: Paint, Glass beads, Glue/binder ASBESTOS TYPE: *None detected PERCENT ND Lab ID#: 98102736 Client Sample #: 1012-06 Sample Location: Fairchild, Building 1012 Description: Yellow fibrous material with paint OTHER FIBROUS MATERIALS: Mineral wool 80% NON-FIBROUS MATERIALS: Paint, Glass beads, Glue/binder ASBESTOS TYPE: *None detected PERCENT ND (Sample results are continued on the next page.) Sampled by: Client Analyzed by: Marina Lee Reviewed by: Munaf Khan Date: 10/15/1998 Date: 10/15/1998 Munaf Khan, Laboratory Director Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using EPA 600/R-93/116 Method with the following measurement uncertainties for the reported % Asbestos (1%=>0-3%, 5%=>1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). If samples were not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the U.S. Government, 4708 Aurora Ave. N., Seattle, WA 98103 rax: 206.6 Tel: 206.547.0100 Fax: 206.634.1936 # Bulk Asbestos Fiber Analysis **NVLAP** #102063 Client: Hart Crowser, Inc. Address: 1910 Fairview Ave. East Seattle, WA 98102-3699 Project: Fairchild, Building 1012 NVL Batch Number: 98-8778 Client Project #: J-7060-00 Number of samples: 17 Lab ID#: 98102737 Client Sample #: 1012-07 Sample Location: Fairchild, Building 1012 Description: Yellow fibrous material with paint OTHER FIBROUS MATERIALS: Mineral wool 80% NON-FIBROUS MATERIALS: Paint, Glass beads, Glue/binder ASBESTOS TYPE: *None detected PERCENT ND Lab ID#: 98102738 Client Sample #: 1012-08 Sample Location: Fairchild, Building 1012 Description: White chalky material with paper and paint OTHER FIBROUS MATERIALS: Cellulose 15%, Glass fiber 2% NON-FIBROUS MATERIALS: Gypsum/binder, Fine grains, Mica, Paint ASBESTOS TYPE: *None detected PERCENT ND Lab ID #: 98102739 Client Sample #: 1012-09 Sample Location: Fairchild, Building 1012 Description: LAYER 1: Muddy material with paint LAYER 2: Chalky material with paper OTHER FIBROUS MATERIALS: LAYER 1: Cellulose 1% LAYER 2: Cellulose 10%, Glass fiber 1% NON-FIBROUS MATERIALS: LAYER 1: Fine grains, Mica, Paint LAYER 2: Gypsum/binder, Fine grains ASBESTOS TYPE: PERCENT LAYER 1: *None detected ND LAYER 2: *None detected ND (Sample results are continued on the next page.) Sampled by: Client Analyzed by: Marina Lee Reviewed by: Munaf Khan Date: 10/15/1998 Date: 10/15/1998 Munaf Khan, Laboratory Director Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using EPA 600/R-93/116 Method with the following measurement uncertainties for the reported % Asbestos (1%=>0-3%, 5%=>1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). If samples were not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the U.S. Government. 4708 Aurora Ave. N., Seattle, WA 98103 Tel: 206.547.0100 Fax: 206.634.1936 **NVLAP** # Bulk Asbestos Fiber Analysis #102063 Client: Hart Crowser, Inc. Address: 1910 Fairview Ave. East Seattle, WA 98102-3699 Project: Fairchild, Building 1012 NVL Batch Number: 98-8778 Client Project #: J-7060-00 Number of samples: 17 Lab ID #: 98102740 Client Sample #: 1012-10 Sample Location: Fairchild, Building 1012 Description: LAYER 1: Muddy material with paint LAYER 2: Chalky material with paper OTHER FIBROUS MATERIALS: LAYER 1: Cellulose 1% LAYER 2: Cellulose 10%, Glass fiber 1% NON-FIBROUS MATERIALS: LAYER 1: Fine grains, Mica, Paint LAYER 2: Gypsum/binder, Fine grains ASBESTOS TYPE: LAYER 1: *None detected ND PERCENT LAYER 2: *None detected ND Lab ID#: 98102741 Client Sample #: 1012-11 Sample Location: Fairchild, Building 1012 Description: White chalky material with paper and paint OTHER FIBROUS MATERIALS: Cellulose 15%, Glass fiber 1% NON-FIBROUS MATERIALS: Gypsum/binder, Fine grains, Mica, Paint ASBESTOS TYPE: *None detected PERCENT ND Lab ID #: 98102742 Client Sample #: 1012-12 Sample Location: Fairchild, Building 1012 Description: White chalky material with paper and paint OTHER FIBROUS MATERIALS: Cellulose 15%, Glass fiber 1% NON-FIBROUS MATERIALS: Gypsum/binder, Fine grains, Mica, Paint ASBESTOS TYPE: **PERCENT** *None detected ND (Sample results are continued on the next page.) Sampled by: Client Analyzed by: Marina Lee Reviewed by: Munaf Khan Date: 10/15/1998 Date: 10/15/1998 Munaf Khan, Laboratory Director Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using EPA 600/R-93/116 Method with the following measurement uncertainties for the reported % Asbestos (1%=>0-3%, 5%=>1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). If samples were not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the U.S. Government. 4708 Aurora Ave. N., Seattle, WA 98103 Bulk Asbestos Fiber Analysis Tel:
206.547.0100 Fax: 206.634.1936 > NVLAP #102063 Client: Hart Crowser, Inc. Address: 1910 Fairview Ave. East Seattle, WA 98102-3699 Project: Fairchild, Building 1012 NVL Batch Number: 98-8778 Client Project #: J-7060-00 Number of samples: 17 Lab ID#: 98102743 Client Sample #: 1012-13 Sample Location: Fairchild, Building 1012 Description: Tan mastic OTHER FIBROUS MATERIALS: Cellulose 1% NON-FIBROUS MATERIALS: Adhesive/binder, Calcite ASBESTOS TYPE: *None detected PERCENT ND Lab ID #: 98102744 Client Sample #: 1012-14 Sample Location: Fairchild, Building 1012 Description: Brown/tan mastic OTHER FIBROUS MATERIALS: Cellulose 1%, Wollastonite 1% NON-FIBROUS MATERIALS: Adhesive/binder, Calcite, Fine grains ASBESTOS TYPE: *None detected PERCENT ND Lab ID#: 98102745 Client Sample #: 1012-15 Sample Location: Fairchild, Building 1012 Description: Soft lumpy material OTHER FIBROUS MATERIALS: Cellulose 10% NON-FIBROUS MATERIALS: Gypsum/binder, Clay, Mineral grains ASBESTOS TYPE: Chrysotile 15% PERCENT Amosite 15% (Sample results are continued on the next page.) Sampled by: Client Analyzed by: Marina Lee Reviewed by: Munaf Khan Date: 10/15/1998 Date: 10/15/1998 Munaf Khan, Laboratory Director Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using EPA 600/R-93/116 Method with the following measurement uncertainties for the reported % Asbestos (1%=>0-3%, 5%=>1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). If samples were not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the U.S. Government. 4708 Aurora Ave. N., Seattle, WA 98103 Tel: 206.547.0100 Fax: 206.634.1936 Bulk Asbestos Fiber Analysis NVLAP #102063 Client: Hart Crowser, Inc. Address: 1910 Fairview Ave. East Seattle, WA 98102-3699 Project: Fairchild, Building 1012 **NVL Batch Number: 98-8778** Client Project #: J-7060-00 Number of samples: 17 Lab ID#: 98102746 Client Sample #: 1012-16 Sample Location: Fairchild, Building 1012 Description: Compressed fibrous material OTHER FIBROUS MATERIALS: Cellulose 10% NON-FIBROUS MATERIALS: Cement/binder, Paint, Fine grains ASBESTOS TYPE: Amosite PERCENT 70% Lab ID #: 98102747 Client Sample #: 1012-17 Sample Location: Fairchild, Building 1012 Description: Tan/black soft matrix OTHER FIBROUS MATERIALS: Cellulose 1% **NON-FIBROUS MATERIALS:** Adhesive/binder, Calcite, Mica, Fine grains ASBESTOS TYPE: *None detected PERCENT ND Sampled by: Client Analyzed by: Marina Lee Reviewed by: Munaf Khan Date: 10/15/1998 Date: 10/15/1998 Munaf Khan, Laboratory Director Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using EPA 600/R-93/116 Method with the following measurement uncertainties for the reported % Asbestos (1%=>0-3%, 5%=>1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). If samples were not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the U.S. Government, 6 4708 Aurora Ave. N., Seattle, WA 98103 Tel: 206.634.1879 • Fax: 206.634.1936 AIHA ELLAP #11559 Batch #:98-8779 ## ANALYSIS REPORT Total Lead (Pb) Client: Hart Crowser, Inc. 1910 Fairview Ave. East Seattle, WA 98102-3699 Matrix: Paint Chip (area) Method: EPA 7420 Attention: Ms. Elisabeth Black Total samples: 2 Project #: J-7060-00 Location: Fairchild, Building 1012 | Sample # | Lab ID | Sample
area (in2) | LoD in
mg/cm2 | Results in
mg/cm2 | | |-----------|----------|----------------------|------------------|----------------------|--| | 1012-046Q | 98104198 | 1.000 | 0.0021 | 0.1030 | | | 1012-050Q | 98104199 | 1.000 | 0.0021 | < 0.0021 | | Instrument/Bench Run: 98101511 mg/cm2 = milligrams per square centimeter LoD = Limit of detection '< =Below the detection limit NOTES: All standard and spike values are reported for quality control purposes. Results for QC samples represent Percent Recovery. Analyst: Anubha Cook Date Analyzed: October 15, 1998 Reviewed by: Munaf Khan, Laboratory Director 01061-48 8118 Sample Custody Record DATE 10-01-98 PAGE 0F/ 1910 Fairview Avenue East Seattle, Washington 98102-3699 Hart Crowser, Inc. HARTCROWSER COMPOSITING INSTRUCTIONS OBSERVATIONS/COMMENTS/ Physique accountments METHOD OF SHIPMENT 3. L'ABORATORY TO FILL IN SAMPLE NUMBER AND SIGN FOR RECEIPT 4. LABORATORY TO RETURN WHITE COPY TO HART CROWSER 1. PROVIDE WHITE AND YELLOW COPIES TO LABORATORY my lems NO. OF CONTAINERS 2 2. RETURN PINK COPY TO PROJECT MANAGER. <u>5</u> SPECIAL SHIPMENT/HANDLING OR STORAGE REQUIREMENTS TESTING 100 152 to OF CONTAINERS TOTAL NUMBER DISTRIBUTION: DATE 6/01 $\frac{1}{2}$ TIME DATE TIME MATRIX RECEIVED BY RECEIVED BY JOB NUMBER T-70 60.00 LAB NUMBER ナロル STATION TIME RINTED NAME SIGNATURE 1.50 hill COMPANY 1000 DATE TIME DATE TIME ELINATION PRACE 19 TIME 1000 Sabyth Rode Yourshy PROJECT MANAGER _____ RELINQUISHED BY RELINQUISHED BY 27321012-02 >0-Z/// 27361012-124 2735/10/205 27 34 1012-08 1740/012-10 C1-21011Chro SAMPLE 1012.04 10-210112 11-21011 11-11 10/2:01 2-27/1/22-D PROJECT NAME SAMPLED BY 73734 5/00/2 0733 LAB NO. PRINTED NAME SIGNATURE COMPANY D. Ce Phinted On Recycled Paper 40/14/04 ≥ Z 01061-49 98-8/18 Sample Custody Record DATE 10-09-9% PAGE 2 OF 2 1910 Fairview Avenue East Seattle, Washington 98102-3699 **HARTCROWSER** Hart Crowser, Inc. COMPOSITING INSTRUCTIONS OBSERVATIONS/COMMENTS/ The legs a stors to samplio by layer METHOD OF SHIPMENT 3. LABORATORY TO FILL IN SAMPLE NUMBER AND SIGN FOR RECEIPT 4. LABORATORY TO RETURN WHITE COPY TO HART CROWSER 1. PROVIDE WHITE AND YELLOW COPIES TO LABORATORY in often 2 NO OF CONTAINERS 2. RETURN PINK COPY TO PROJECT MANAGER Σ SPECIAL SHIPMENT / HANDLING OR STORAGE REQUIREMENTS I Lad Cosal K TESTING OF CONTAINERS TOTAL NUMBER **DISTRIBUTION:** DATE DATE TIME TIME 9 MATRIX Black RECEIVED BY RECEIVED BY Go a Par LAB NUMBER STATION THEO PRINTED NAME RINTED NAME SIGNATURE SIGNATURE 15aboth JOB NUMBER T- 7000-00 Elin WHI Black 199 SIGNATURE Hart Chaoser 1000 DATE TIME. TIME PROJECT MANAGER RELINQUISHED BY RELINQUISHED BY 98102743/101Z-10 11- 210/ htt. 2746/1012-16 1012-17 21-2/01/5/16 LAB NO. SAMPLE F 150 LOP 41 PROJECT NAME_ SAMPLED BY: 2747 PRINTED NAME SIGNATURE COMPANY Printed On Recycled Paper 330 6th Ave. North, Suite 200, Seattle, WA 98109 OFFICE: (206) 281-8858 FAX: (206) 281-8922 ## **BULK ASBESTOS FIBER ANALYSIS** Client: Hart Crowser, Inc. Elisabeth Black Address: 1910 Fairview Avenue East Seattle WA 98102-3699 PAI Batch Number: 98 - 3580.00 Number of samples: 4 Regular Project: Fairchild Project #: Fairchild 1012/1019 Client Sample #: 1012-01Q Client: Hart Crowser, Inc. Batch #: 3580 Lab #: 98054107 Sample Location: Fairchild Sample Description: Yellow paint on yellow fibrous material NON-FIBROUS COMPONENTS 25 % Paint NON-ASBESTOS FIBROUS COMPONENTS 75% Mineral wool **ASBESTOS FIBROUS** No detectable asbestos Comment: Client Sample #: 1012-17Q Client: Hart Crowser, Inc. 3atch #: 3580 Lab #: 98054108 Sample Location: Fairchild Sample Description: White pliable material NON-FIBROUS COMPONENTS 100% Filler/binder NON-ASBESTOS FIBROUS COMPONENTS Not Present **ASBESTOS FIBROUS** No detectable asbestos Comment: Sampled By: Client Reviewed By: George G. McCaslin Date: 10/13/98 Analyzed By: Crystal Wright 1 July TIME Sample Custody Record DATE 10-109-98 PAGE / OF / HARTCROWSER 1910 Fairview Avenue East Seattle, Washington 98102-3699 Hart Crowser, Inc. COMPOSITING INSTRUCTIONS OBSERVATIONS/COMMENTS/ astorstos samples by layer. METHOD OF SHIPMENT 3. LABORATORY TO FILL IN SAMPLE NUMBER AND SIGN FOR RECEIPT 4. LABORATORY TO RETURN WHITE COPY TO HART CROWSER 1. PROVIDE WHITE AND YELLOW COPIES TO LABORATORY NO. OF CONTAINERS 2. RETURN PINK COPY TO PROJECT MANAGER SPECIAL SHIPMENT/HANDLING OR STORAGE REQUIREMENTS **TESTING** - Amaly 38 10/9/9/ OF CONTAINERS TOTAL NUMBER DISTRIBUTION: 43 DATE TIME DATE HE H MATRIX PROJECT NAME FOUR CALL 1012/1019 FISCULT Black TIME DIANNE (HUR) 11:30 Drayant 1485. JOB NUMBER J- 70 LOD- DO LAB NUMBER PROJECT MANAGER ELISALISMY PROJECTO RECEIVED BY RECEIVED BY STATION Danion/Grojean PHINTED NAME SIGNATURE 1 5/071 DATE DATE TIME 012-010 1012-1FD 010-5101 080-630 Hort Chowsel RELINQUISHED BY RELINQUISHED BY SAMPLE SAMPLED BY: SIGNATURE SIGNATURE LAB NO. COMPANY 0106 52 Printed On Recycled Paper ## SECTION 01320 ## PROJECT SCHEDULE #### PART 1 GENERAL #### 1.1 SPECIAL SCHEDULING REQUIREMENTS ## 1.1.1 Building 1012 Repair fuel systems maintenance is a continuous function at the Base. There are two areas within this construction contract where this work may take place. One are is within Building 1012; the other area is the outdoor aircraft parking location immediately west of Building 1012. Additional maintenance work will be occurring in Building 1013 by others. The contractor shall schedule his work so that one of the two areas is available for maintenance work at all times. This requirement shall be detailed in the project schedule required by this specification section. Availability of contractor work areas shall be coordinated with the Contracting Officer and the Air Force User. ## 1.1.2 Taxiway J The removal and replacement of the two 25'x25' Taxiway "J" Portland cement concrete panels shall be done using high early strength concrete. The contractor's specific schedule for the 160 feet sleeved length of AFFF pipe and the replacement panels shall be shown separately in the construction from the remainder of the line and shall be approved by the Contracting Officer. A period of time no greater than three weeks shall be used to
accomplish the Taxiway construction. Additional information on concrete mix options may be obtained from the American Concrete Products Association at (360) 956-7080 in Olympia, Washington. ## 1.1.3 Transformer Replacement In this project, there is an existing transformer, C-674, that is being replaced. The transformer currently feeds Building 1012 and is also tapped to feed cathodic protection equipment adjacent to the transformer. The outage for the cathodic protection equipment must not exceed 3 days; the contractor will be required to re-energize the cathodic protection equipment within this time frame to prevent damage to underground piping. ## 1.2 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01330 SUBMITTALS: Schedules GA Preliminary project schedule, two (2) copies. GA Initial project schedule, two (2) copies Activity No. Sort Predecessor/successor listing Cost Schedule Floppy Disk (SDEF Format) Activity Code Dictionary. FIO Periodic schedules updates, monthly updates two (2) copies. Floppy Disks (SDEF Format) Narrative Activity No. Sort Cost Schedule Statements Qualifications; GA. Documentation showing qualifications of personnel preparing schedule reports. ## 1.3 QUALIFICATIONS The Contractor shall designate an authorized representative who shall be responsible for the preparation of all required project schedule reports. This person shall have previously created and reviewed computerized schedules. Qualifications of this individual shall be submitted to the Contracting Officer for review with the Preliminary Project Schedule submission. ## PART 2 EXECUTION ## 2.1 GENERAL Pursuant to the Contract Clause, SCHEDULE FOR CONSTRUCTION CONTRACTS a Project Schedule as described below shall be prepared. The scheduling of construction shall be the responsibility of the Contractor. Contractor management personnel shall actively participate in its development. Subcontractors and suppliers working on the project should also contribute in developing and maintaining an accurate Project Schedule. The approved Project Schedule shall be used to measure the progress of the work, to aid in evaluating time extensions, and to provide the basis of all progress payments. #### 2.2 BASIS FOR PAYMENT The schedule shall be the basis for measuring Contractor progress. Lack of an approved schedule or scheduling personnel shall result in an inability of the Contracting Officer to evaluate Contractor progress for the purposes of payment. Failure of the Contractor to provide all information, as specified below, shall result in the disapproval of the entire Project Schedule submission and the inability of the Contracting Officer to evaluate Contractor progress for payment purposes. In the case where Project Schedule revisions have been directed by the Contracting Officer and those revisions have not been included in the Project Schedule, then the Contracting Officer may hold retainage up to the maximum allowed by contract, each payment period, until revisions to the Project Schedule have been made. #### 2.3 PROJECT SCHEDULE The computer software system utilized by the Contractor to produce the Project Schedule shall be capable of providing all requirements of this specification including the SDEF (Standard Data Exchange Format). Failure of the Contractor to meet the requirements of this specification shall result in the disapproval of the schedule. Manual methods used to produce any required information shall require approval by the Contracting Officer. ## 2.3.1 Use of the Critical Path Method The Critical Path Method (CPM) of network calculation shall be used to generate the Project Schedule. The Contractor shall provide the Project Schedule in Precedence Diagram Method (PDM) ## 2.3.2 Level of Detail Required With the exception of the initial and preliminary schedule submission, the Project Schedule shall include an appropriate level of detail. Failure to develop or update the Project Schedule or provide data to the Contracting Officer at the appropriate level of detail, as specified by the Contracting Officer, shall result in the disapproval of the schedule. The Contracting Officer will use, but is not limited to, the following conditions to determine the appropriate level of detail to be used in the Project Schedule. ## 2.3.2.1 Activity Durations Contractor submissions shall be required to follow the direction of the Contracting Officer regarding reasonable activity durations. Reasonable durations are those that allow the progress of activities to be accurately determined between payment periods. A rule of thumb, that the Contractor should use, is that less than 2 percent of all non-procurement activities' Original Durations shall be greater than 20 days. #### 2.3.2.2 Procurement Activities Tasks related to the procurement of long lead materials or equipment shall be included as separate activities in the project schedule. Long lead materials and equipment are those materials that have a procurement cycle of over 90 days. Examples of procurement process activities include, but are not limited to: submittals, approvals, procurement, fabrication, delivery, installation, start-up, and testing. #### 2.3.2.3 Government Activities Government and other agency activities that could impact progress shall be shown. These activities include, but are not limited to: approvals, inspections, utility tie-in, Government Furnished Equipment (GFE) and notice to proceed for phasing requirements. #### 2.3.2.4 Responsibility All activities shall be identified in the project schedule by the party responsible to perform the work. Responsibility includes, but is not limited to, the subcontracting firm, (at the lowest tier), Contractor work force, or Government agency performing a given task. Activities shall not belong to more than one responsible party. The responsible party for each activity shall be identified by the Responsibility Code. #### 2.3.2.5 Work Areas All activities shall be identified in the project schedule by the work area in which the activity occurs. Activities shall not be allowed to cover more than one work area. The work area of each activity shall be identified by the Work Area Code. #### 2.3.2.6 Modification or Claim Number Any activity that is added or changed by contract modification or used to justify claimed time shall be identified by a mod or claim code that changed the activity. Activities shall not belong to more than one modification or claim item. The modification or claim number of each activity shall be identified by the Mod or Claim Number. #### 2.3.2.7 Bid Item All activities shall be identified in the project schedule by the Bid Item to which the activity belongs. An activity shall not contain work in more than one bid item. The bid item for each appropriate activity shall be identified by the Bid Item Code. ## 2.3.2.8 Category of Work All Activities shall be identified in the project schedule according to the category of work which best describes the activity. Category of work refers, but is not limited to, to the procurement chain of activities including such items as submittals, approvals, procurement, fabrication, delivery, installation, start-up, and testing. The category of work for each activity shall be identified by the Category of Work Code. #### 2.3.2.9 Feature of Work All activities shall be identified in the project schedule according to the feature of work to which the activity belongs. Feature of work refers, but is not limited to a work breakdown structure for the project. The feature of work for each activity shall be identified by the Feature of Work Code. #### 2.3.3 Scheduled Project Completion The schedule interval shall extend from notice-to-proceed to the contract completion date. ## 2.3.3.1 Project Start Date The schedule shall start no earlier than the date that the Notice to Proceed (NTP) was acknowledged. The Contractor shall include as the first activity in the project schedule an activity called "Start Project". The "Start Project" activity shall have: a "ES" constraint, a constraint date equal to the date that the NTP was acknowledged, and a zero day duration. ## 2.3.3.2 Constraint of Last Activity Completion of the last activity in the schedule shall be constrained by the contract completion date. Calculation on project updates shall be such that if the early finish of the last activity falls after the contract completion date, then the float calculation shall reflect a negative float on the critical path. The Contractor shall include as the last activity in the project schedule an activity call "End Project". The "End Project" activity shall have: a "LF" constraint, a constraint date equal to the completion date for the project, and a zero day duration. ## 2.3.3.3 Early Project Completion In the event the project schedule shows completion, the project prior to the contract completion date, the Contractor shall identify those activities that have been accelerated and/or those activities that are scheduled in parallel to support the Contractor's "early" completion. Contractor shall specifically address each of the activities noted at every project schedule update period to assist the Contracting Officer to evaluate the Contractor's ability to actually complete prior to the contract period. ## 2.3.4 Interim Completion Dates Contractually specified interim completion dates shall also be constrained to show negative float if the early finish date of the last activity in that phase falls after the interim completion date. ## 2.3.5 Default Progress Data Disallowed Actual Start and Finish dates shall not be automatically updated by default mechanisms that may be included in CPM scheduling software systems. Actual Start and Finish dates on the CPM schedule shall match those dates provided from Contractor Quality Control Reports.
Failure of the Contractor to document the Actual Start and Finish dates on the Daily Quality Control report for every in progress or completed activity and insure that the data contained on the Daily Quality Control reports is the sole basis for schedule updating shall result in the disapproval of the Contractor's schedule and the inability of the Contracting Officer to evaluate Contractor progress for payment purposes. ## 2.3.6 Out-of-Sequence Progress Activities that have posted progress without predecessors being completed (Out-of-Sequence Progress) shall be allowed only by the case-by-case approval of the Contracting Officer. The Contracting Officer may direct that changes in schedule logic be made to correct any or all out-of-sequence work. ## 2.3.7 Negative Lags Lag durations contained in the project schedule shall not have a negative value. ## 2.4 PROJECT SCHEDULE SUBMISSIONS The Contractor shall provide the submissions as described below. The data disk, reports, and network diagrams required for each submission are contained in paragraph SUBMISSION REQUIREMENTS. ## 2.4.1 Preliminary Project Schedule Submission The Preliminary Project Schedule, defining the Contractor's planned operations for the first 60 calendar days shall be submitted for approval within 10 calendar days after Notice to Proceed is acknowledged. The approved preliminary schedule shall be used for payment purposes not to exceed 60 calendar days after Notice to Proceed. ## 2.4.2 Initial Project Schedule Submission The Initial Project Schedule shall be submitted for approval within 40 calendar days after Notice to Proceed. The schedule shall provide a reasonable sequence of activities which represent work through the entire project and shall be at a reasonable level of detail. ## 2.4.3 Periodic Schedule Updates Based on the result of progress meetings, specified in "Periodic Progress Meetings," the Contractor shall submit periodic schedule updates. These submissions shall enable the Contracting Officer or to assess Contractor's progress. If the Contractor fails or refuses to furnish the information and project schedule data, which in the judgment of the Contracting Officer or authorized representative, is necessary for verifying the contractor's progress, the Contractor shall be deemed not to have provided an estimate upon which progress payment may be made. ## 2.4.4 Standard Activity Coding Dictionary The Contractor shall submit, with the Initial Project Schedule, a coding scheme that shall be used throughout the project for all activity codes contained in the schedule. The coding scheme submitted shall list the values for each activity code category and translate those values into project specific designations. For example, a Responsibility Code Value, "ELE", may be identified as "Electrical Subcontractor." Activity code values shall represent the same information throughout the duration of the contract. Once approved with the Initial Project Schedule submission, changes to the activity coding scheme must be approved by the Contracting Officer. #### 2.5 SUBMISSION REQUIREMENTS The as noted in paragraph 1.1 items shall be submitted by the Contractor for the initial submission, and every periodic project schedule update throughout the life of the project: #### 2.5.1 Data Disks Two data disks containing the project schedule shall be provided. Data on the disks shall be in the format specified in paragraph 3.10 NAS DATA. ## 2.5.1.1 File Medium Required data shall be submitted on 3.5 inch disks, formatted to hold 1.44 MB of data, under the MS-DOS Version 5.0 operating system. #### 2.5.1.2 Disk Label A permanent exterior label shall be affixed to each disk submitted. The label shall indicate the type of schedule (Initial, Update, or Change), full contract number, project name, project location, data date, name and telephone number or person responsible for the schedule, and the MS-DOS version used to format the disk. #### 2.5.1.3 File Name Each file submitted shall have a name related to either the schedule data date, project name, or contract number. The Contractor shall develop a naming convention that will insure that the names of the files submitted are unique. The Contractor shall submit the file naming convention to the Contracting Officer for approval. ## 2.5.2 Narrative Report A Narrative Report shall be provided with each update of the project schedule. This report shall be provided as the basis of the Contractor's progress payment request. The Narrative Report shall include: a description of activities along the critical path, a description of current and anticipated problem areas or delaying factors and their impact, and an explanation of corrective actions taken. ## 2.5.3 Approved Changes Verification Only project schedule changes that have been previously approved by the Contracting Officer shall be included in the schedule submission. The Narrative Report shall specifically reference, on an activity by activity basis, all changes made since the previous period and relate each change to documented, approved schedule changes. ### 2.5.4 Schedule Reports The format for each activity for the schedule reports listed below shall contain: Activity Numbers, Activity Description, Original Duration, Remaining Duration, Early Start Date, Early Finish Date, Late Start Date, Late Finish Date, Total Float. Actual Start and Actual Finish Dates shall be printed for those activities in-progress or completed. ## 2.5.4.1 Activity Report A list of all activities sorted according to activity number. For completed activities the Actual Start Date shall be used as the secondary sort. ## 2.5.4.2 Logic Report A list of Preceding and Succeeding activities for every activity in ascending order by activity number and then sorted according to Early Start Date. For completed activities the Actual Start Date shall be used as the secondary sort. ## 2.5.4.3 Total Float Report A list of all activities sorted in ascending order of total float. Activities which have the same amount of total float shall be listed in ascending order of Early Start Dates. ## 2.5.4.4 Earnings Report A compilation of the Contractor's Total Earnings on the project from the Notice to Proceed until the most recent Monthly Progress Meeting. This report shall reflect the Earnings of specific activities based on the agreements made in the field and approved between the Contractor and Contracting Officer at the most recent Monthly Progress Meeting. Provided that the Contractor has provided a complete schedule update, this report shall serve as the basis of determining Contractor Payment. Activities shall be grouped by bid item and sorted by activity numbers. This report shall: sum all activities in a bid item and provide a bid item percent; complete and sum all bid items to provide a total project percent complete. The printed report shall contain, for each activity: Activity Number, Activity Description, Original Budgeted Amount, Total Quantity, Quantity to Date, Percent Complete (based on cost), Earnings to Date. ## 2.5.5 Network Diagram The network diagram shall be required on the initial schedule submission and on quarterly update submissions. The network diagram shall depict and display the order and interdependence of activities and the sequence in which the work is to be accomplished. The Contracting Officer will use, but is not limited to, the following conditions to review compliance with this paragraph: #### 2.5.5.1 Continuous Flow Diagrams shall show a continuous flow from left to right with no arrows from right to left. The activity or event number, description, duration, and estimated earned value shall be shown on the diagram. ## 2.5.5.2 Project Milestone Dates Dates shall be shown on the diagram for start of project, any contract required interim completion dates, and contract completion dates. #### 2.5.5.3 Critical Path The critical path shall be clearly shown. ## 2.5.5.4 Banding Activities shall be grouped to assist in the understanding of the activity sequence. Typically, this flow will group activities by category of work, work area and/or responsibility. ## 2.5.5.5 S-Curves Earnings curves shall be provided showing projected early and late earnings and earnings to date. ## 2.6 PERIODIC PROGRESS MEETINGS Progress meetings to discuss payment shall include a monthly on-site meeting or other regular intervals mutually agreed to at the preconstruction conference. During this meeting the Contractor will describe, on an activity by activity basis, all proposed revisions and adjustments to the project schedule required to reflect the current status of the project. The Contracting Officer will approve activity progress, proposed revisions, and adjustments as appropriate. ## 2.6.1 Meeting Attendance The Contractor's Project Manager and Scheduler shall attend the regular progress meeting. ## 2.6.2 Update Submission Following Progress Meeting A complete update of the project schedule containing all approved progress, revisions, and adjustments, based on the regular progress meeting, shall be submitted not later than 4 working days after the monthly progress meeting. ## 2.6.3 Progress Meeting Contents Update information, including Actual Start Dates, Actual Finish Dates, Remaining Durations, and Cost to Date shall be subject to the approval of the Contracting Officer. The following minimum set of items which the Contractor shall address, on an activity by activity basis, during each progress meeting. ## 2.6.2.12.6.3.1 Start and Finish Dates The Actual Start and Actual Finish dates for each activity currently in-progress or completed activities. ## 2.6.2.2 Time Completion The estimated Remaining Duration for each activity in-progress. Time-based progress calculations must be based on Remaining Duration for each activity. ## 2.6.2.3 Cost Completion The earnings for each activity started. Payment shall be based on earnings for each in-progress or completed activity. Payment for
individual activities shall not be made for work that contains quality defects. A portion of the overall project amount may be retained based on delays of activities. ## 2.6.2.42.6.3.4 Logic Changes All logic changes pertaining to Notice to Proceed on change orders, change orders to be incorporated into the schedule, contractor proposed changes in work sequence, corrections to schedule logic for out-of-sequence progress, lag durations, and other changes that have been made pursuant to contract provisions shall be specifically identified and discussed. ## 2.6.2.52.6.3.5 Other Changes Other changes required due to delays in completion of any activity or group of activities are those delays beyond the Contractors control such as strikes and unusual weather. Also included are delays encountered due to submittals, Government Activities, deliveries or work stoppage which makes re-planning the work necessary, and when the schedule does not represent the actual prosecution and progress of the work. ## 2.7 REQUESTS FOR TIME EXTENSIONS In the event the Contractor requests an extension of the contract completion date, he shall furnish such justification, project schedule data and supporting evidence as the Contracting Officer may deem necessary for a determination as to whether or not the Contractor is entitled to an extension of time under the provisions of the contract. Submission of proof of delay, based on revised activity logic, duration, and costs (updated to the specific date that the delay occurred) is obligatory to any approvals. ## 2.7.1 Justification of Delay The project schedule must clearly display that the Contractor has used, in full, all the float time available for the work involved with this request. The Contracting Officer's determination as to the number of allowable days of contract extension, shall be based upon the project schedule updates in effect for the time period in question and other factual information. Actual delays that are found to be caused by the Contractor's own actions, which result in the extension of the schedule, shall not be a cause for a time extension to the contract completion date. ## 2.7.2 Submission Requirements The Contractor shall submit a justification for each request for a change in the contract completion date of under two weeks based upon the most recent schedule update at the time of the Notice to Proceed or constructive direction issued for the change. Such a request shall be in accordance with the requirements of other appropriate Contract Clauses and shall include, as a minimum: - a. A list of affected activities, with their associated project schedule activity number. - b. A brief explanation of the causes of the change. - c. An analysis of the overall impact of the changes proposed. - d. A sub-network of the affected area. Activities impacted in each justification for change shall be identified by a unique activity code contained in the required data file. ## 2.7.3 Additional Submission Requirements For any request for time extension for over 2 weeks, the Contracting Officer may request an interim update with revised activities for a specific change request. The Contractor shall provide this disk within 4 days of the Contracting Officer's request. #### 2.8 DIRECTED CHANGES If Notice to Proceed (NTP) is issued for changes prior to settlement of price and/or time, the Contractor shall submit proposed schedule revisions to the Contracting Officer within 2 weeks of the NTP being issued. The proposed revisions to the schedule will be approved by the Contracting Officer prior to inclusion of those changes within the project schedule. If the Contractor fails to submit the proposed revisions, the Contracting Officer may furnish the Contractor suggested revisions to the project schedule. The Contractor shall include these revisions in the project schedule until the Contractor submits revisions, and final changes and impacts have been negotiated. If the Contractor has any objections to the revisions furnished by the Contracting Officer, then the Contractor shall advise the Contractor Officer within 2 weeks of receipt of the revisions. Regardless of the objections, the Contractor will continue to update their schedule with the Contractor fails to submit alternative revisions within 2 weeks of receipt of the Contractor fails to submit alternative revisions within 2 weeks of receipt of the Contracting Officer's proposed revisions, the Contractor will be deemed to have concurred with the Contracting Officer's proposed revisions. The proposed revisions will then be the basis for an equitable adjustment for performance of the work. #### 2.9 OWNERSHIP OF FLOAT Float available in the schedule, at any time, shall not be considered for the exclusive use of either the Government or the Contractor. #### 2.10 NAS DATA The Contractor shall provide the Government with the means to electronically transfer all required NAS data into its ADP equipment and schedule software, such that it can independently obtain and process the information. The Contractor may use network analysis software different from that used by the Contracting Officer in the Resident Office. Under this alternative, the Contractor shall furnish the following: NAS data that complies with the Scheduling System Data Exchange Format (SDEF). This is a standard ASCII format for exchanging scheduling data and is compatible with our resident management system. Many software developers are using SDEF. The SDEF specifications are in a separate publication, available from the Internet WWW.CECER.AARMY.MIL/PL/SDEF. **END OF SECTION** #### SECTION 01330 #### SUBMITTAL PROCEDURES #### PART 1 GENERAL ## 1.1 CONTROL AND SCHEDULING OF SUBMITTALS ## 1.1.1 Submittal Coordination Meeting After the preconstruction conference and before any submittals are sent to the Contracting Officer's Representative (COR), with the exception of Division 1 submittals, the Contractor shall meet with the COR and provide and further develop an approved preliminary submittal register, ENG Form 4288. During the meeting all required items will be identified and grouped into three categories: ## Government Approved (GA) Government approval is required for extensions of design, critical materials, variations/deviations, an "or equal" decision, equipment whose compatibility with the entire system must be checked, architectural items such as Color Charts/Patterns/Textures, and other items as designated by the COR. Within the terms of the Contract Clause entitled "Specifications and Drawings for Construction," these submittals will be acted on as "shop drawings." ## For Information Only (FIO) Submittals not requiring Government approval will be for information only. These are items such as Installation Procedures, Certificates of compliance, Samples, Qualifications, etc. Within the terms of the Contract Clause entitled "Specifications and Drawings for Construction," these submittals will not be acted on as "shop drawings." Those items that can be visually inspected by the Contractor's Quality Control Representative (CQC) on site or are provided to the Government other than with an ENG Form 4025: The items that fall into this category shall remain on the register but shall not be submitted to the COR. For these items, the "Classification" column on the submittal register shall remain blank. #### 1.1.2 Final Submittal Register The final submittal register shall be coordinated with the progress schedule and submitted within 15 days of Notice to Proceed. In preparing the final submittal register, adequate time (minimum of 30 days) shall be allowed for review and approval of each item on the register. ## 1.1.3 Submittal Register Updates The Contractor's quality control representative shall review the listing at least every 30 days and take appropriate action to maintain an effective system. Copies of updated or corrected listings shall be submitted to the COR at least every 30 days in the quantity specified. ## 1.2 SUBMITTAL TYPES Throughout these specifications submittals may be identified with the prefix "SD" (submittal data) followed by a number (category, i.e., data, drawings, reports, etc.). This is for bookkeeping and record sorting in the system: #### Data Submittals which provide calculations, descriptions, or documentation regarding the work. ## **Drawings** Submittals which graphically show relationship of various components of the work, schematic diagrams of systems, details of fabrication, layouts of particular elements, connections, and other relational aspects of the work. #### Instructions Preprinted material describing installation of a product, system or material, including special notices and material safety data sheets, if any, concerning impedances, hazards, and safety precautions. #### **Schedules** Tabular lists showing location, features, or other pertinent information regarding products, materials, equipment, or components to be used n the work. #### Statements A document, required of the Contractor, or through the Contractor from a subcontractor, supplier, installer, or manufacturer to confirm the quality or orderly progression of a portion of the work by documenting procedures, acceptability of methods or personnel, qualifications, or other quality verifications. ## Reports Reports of inspections or tests, including analyses and interpretation of test results. Each report shall be properly identified. Test methods used shall be identified and test results shall be recorded. #### Certificates Statement signed by an official authorized to certify on behalf of the manufacturer that a product, system or material meets specified requirements. The statement must be dated after the award of this contract and state the Contractor's name and address, project and location, and list specific requirements which are being certified. ## Samples Fabricated and/or unfabricated physical examples of materials, products, and/or units of work as
complete units or as portions of units. #### Records Documentation to record compliance with technical or administrative requirements. Operation and Maintenance Manuals Data which forms a part of an operation and maintenance manual. Submittals required by the Contract Clauses and other non-technical parts of the contract are not necessarily included in this section. These type of submittals can be added to the register before or during the submittal coordination meeting. #### 1.3 APPROVED SUBMITTALS The approval of submittals by the COR shall not be construed as a complete check, but will indicate only that the general method of construction, materials, detailing and other information are satisfactory. Approval will not relieve the Contractor of the responsibility for any error which may exist. The Contractor, under the CQC requirements of this contract, is responsible for the dimensions and design of adequate connections, details, and satisfactory construction of all work. After submittals have been approved by the COR, no resubmittal for the purpose of substituting materials or equipment will be given consideration. #### 1.4 DISAPPROVED SUBMITTALS The Contractor shall make all corrections required by the COR and promptly furnish a corrected submittal in the format and number of copies specified for the initial submittal. If the Contractor considers any correction indicated on the submittals to constitute a change to the contract, written notice, as required under the Contract Clause entitled "Changes," shall be given to the COR. #### 1.5 PAYMENT Separate payment will not be made for submittals, and all costs associated therein shall be included in the applicable unit prices or lump sum prices contained in the schedule. Payment will not be made for any material or equipment which does not comply with contract requirements. PART 2 PRODUCTS (Not Applicable) PART 3 EXECUTION #### 3.1 GENERAL Prior to submittal, all items shall be checked and approved by the Contractor's CQC and each item of the submittal shall be stamped, signed, and dated. Each respective transmittal form (ENG Form 4025) shall be signed and dated by the CQC certifying that the accompanying submittal complies with the contract requirements. This procedure applies to all submittals. Submittals shall include items such as: Contractor's, manufacturer's, or fabricator's drawings; descriptive literature including, but not limited to, catalog cuts, diagrams; operating charts or curves; test reports; test cylinders; samples; O&M manuals including parts lists; certifications; warranties and other such required items. Units of weights and measures used on all submittals shall be the same as the contract drawings. Each submittal shall be complete and in sufficient detail to allow ready determination of compliance with contract requirements. GA submittals shall be scheduled and made prior to the acquisition of the material or equipment covered thereby. The COR may request submittals in addition to those listed when deemed necessary to adequately describe the work covered in the respective sections. The Contractor shall maintain a complete and up-to-date file of all submittals/items on site for use by both the Contractor and the Government. ## 3.2 SUBMITTAL REGISTER (ENG Form 4288) The submittal register - ENG Form 4288 - for Divisions 1 through 16 shall be developed by the Contractor prior to the submittal coordination meeting and list each item of equipment and material for which submittals are required in the Technical Specifications (See paragraph SUBMITTALS at the beginning of each specification section. A blank form ENG 4288 is attached at the end of this specification section). The Contractor shall approve all items listed on the submittal register. During the submittal coordination meeting, a preliminary submittal register will be created by annotating this Form 4288. When the final submittal register is submitted for approval, the Contractor shall complete the column entitled "Item No." and all data under "Contractor Schedule Dates" and return five completed copies to the COR for approval. The Contractor shall review the list to ensure its completeness and may expand general category listings to show individual entries for each item. The numbers in column "Item No." are to be assigned sequentially starting with "1" for each specification section. DO NOT preassign transmittal numbers when preparing the submittal register. When a conflict exists between the submittal register and a submittal requirement in the technical sections, other than those submittals referenced in Paragraph 3.9: Field Test Reports, the approved submittal register shall govern. The preliminary, and then the final approved submittal register, will become the scheduling documents and will be updated monthly and used to control submittals throughout the life of the contract. Names and titles of individuals authorized by the Contractor to approve shop drawings shall be submitted to COR with the final 4288 form. Supplier or subcontractors certifications are not acceptable as meeting this requirement. #### 3.3 SCHEDULING Submittals covering component items forming a system, or items that are interrelated, shall be coordinated and submitted concurrently. Certifications shall be submitted together with other pertinent information and/or drawings. Additional processing time beyond 30 days, or number of copies, may be shown by the COR on the submittal register attached in the "Remarks" column, or may be added by the COR during the coordination meeting. No delays damages or time extensions will be allowed for time lost due to the Contractor not properly scheduling and providing submittals. ## 3.4 TRANSMITTAL FORM (ENG Form 4025) Transmittal Form 4025 (sample at end of this section) shall be used for submitting both GA and FIO submittals in accordance with the instructions on the reverse side of the form. Transmittal numbers shall be assigned sequentially. Electronic generated 4025 forms shall be printed on carbonless paper and be a reasonable facsimile of the original 4025. If electronic forms are not used, the original 4025 forms shall be used (do not photo copy) and will be furnished by the COR. These forms shall be filled in completely prior to submittal. Special care shall be exercised to ensure proper listing of the specification paragraph and/or sheet number of the contract drawings pertinent to the data submitted for each item.. Each submittal item shall be listed separately on the form, naming subcontractor, supplier, or manufacturer, applicable specification paragraph number(s), drawing/sheet number, pay item number, and any other information needed to identify the item, define its use, and locate it in the work. One or more 4025 forms may be used per specification section, however, DO NOT include more than one specification section per transmittal. ## 3.5 CROSS-REFERENCE (ENG FORM 4288/ENG FORM 4025) To provide a cross-reference between the approved submittal register and transmittal forms, the Contractor shall record the "transmittal numbers" assigned when submitting items in column "Transmittal No." of the ENG FORM 4288. The item numbers in column "Item No." of submittal register shall correspond to the item numbers on ENG Form 4025. ## 3.6 SUBMITTAL PROCEDURE ## 3.6.1 General Shop drawings with 4025 forms shall be submitted in the number of copies specified in subparagraphs "Government Approved Submittals" and "Information Only Submittals," or as indicated on the submittal register in the "Remarks" column. Submit a complete collated "reviewers copy" with one 4025 form and attachments (not originals). The remaining copies (4 for GA, 2 for FIO) of 4025 forms and attachments shall not be collated. This would not apply to a series of drawings. ## 3.6.2 Approval of Submittals by the Contractor Before submittal to the COR, the Contractor shall review and correct shop drawings prepared by subcontractors, suppliers, and itself, for completeness and compliance with plans and specifications. The Contractor shall not use red markings for correcting material to be submitted. Red markings are reserved for COR's use. Approval by the Contractor shall be indicated on each shop drawing by an approval stamp containing information as shown in this section. Submittals not conforming to the requirements of this section will be returned to the Contractor for correction and resubmittal. #### 3.6.3 Variations For submittals which include proposed variations requested by the Contractor, column "h" of ENG Form 4025 shall be checked and the submittal shall be classified as GA, and submitted accordingly. The Contractor shall set forth in writing the justification for any variations and annotate such variations on the transmittal form in the REMARKS block. Variations are not approved unless there is an advantage to the Government. The Government reserves the right to rescind inadvertent approval of submittals containing unnoted variations. #### 3.6.4 Drawings Each drawing shall be not more than 28 inches high by 40 inches wide, with a title block in lower right hand corner and a 75 mm by 100 mm (3 by 4 inch) clear area adjacent. The title block shall contain the subcontractor's or fabricator's name, contract number, description of item(s), bid item number, and a revision block. Provide a blank margin of 20 mm (3/4 inch) at bottom, 50 mm (2 inches) at left, and 10 mm (1/2 inch) at top and right. Where drawings are submitted for assemblies of more than one piece of equipment or systems of components dependent on each other for compatible characteristics, complete information shall be submitted on all such related components at the same time. The Contractor shall ensure that information is complete and that sequence of drawing submittal is such that all information is available for reviewing each drawing. Drawings for all items and equipment, of special manufacture or fabrication, shall consist of
complete assembly and detail drawings. All revisions after initial submittal shall be shown by number, date, and subject in revision block. ## 3.6.4.1 Submittals Containing Drawings Larger than 11 inch by 17 inch For GA submittals containing drawings larger than 11 inch by 17 inch, one reproducible and one blue line copy will be required to be submitted with five copies of the ENG Form 4025. The marked-up reproducible (and/or any review comments contained on the page-size comment sheet(s) at the Government's option) will be returned to the Contractor upon review. The Contractor shall provide three copies of blue line drawings (generated from the reviewed reproducible) to the Government within 10 days of Contractor's receipt of the reviewed reproducible. The Contractor shall not incorporate approved work into the project until the Government has received the three blue line copies. The Contractor shall use the marked-up reproducible to make any additional copies as needed. For FIO submittals, one reproducible and two blue line copies shall be submitted with the appropriate number of copies of ENG Form 4025. ## 3.6.5 Printed Material All requirements for shop drawings shall apply to catalog cuts, illustrations, printed specifications, or other data submitted, except that the 75 mm by 100 mm (3 inch by 4 inch) clear area adjacent to the title block is not mandatory. Inapplicable portions shall be marked out and applicable items such as model numbers, sizes, and accessories shall be indicated by arrow or highlighted. ## 3.7 SAMPLES REQUIRING LABORATORY ANALYSIS See Section 01451CONTRACTOR QUALITY CONTROL for procedures and address for samples requiring Government testing. ### 3.8 SAMPLES REQUIRING VISUAL INSPECTION Samples requiring only physical inspection for appearance and suitability shall be coordinated with the on-site Government quality assurance representative (QAR). ## 3.9 FIELD TEST REPORTS Routine tests such as soil density, concrete deliveries, repetitive pressure testing shall be delivered to the QAR with the daily Quality Control reports. See SECTION: 01451 CONTRACTOR QUALITY CONTROL. ## 3.10 CONTROL OF SUBMITTALS The Contractor shall carefully control his procurement operations to ensure that each individual submittal is made on or before the Contractor scheduled submittal date shown on the approved "Submittal Register." ## 3.11 GOVERNMENT APPROVED SUBMITTALS (GA) The Contractor shall submit 5 copies of GA submittals with 5 corresponding 4025 forms. Upon completion of GA submittal review, copies as specified below will be marked with an action code, dated, and returned to the Contractor. See "Drawings" above for special instructions if drawings larger than size A3 (11 inch by 17 inch) are used. ## 3.11.1 Processing of GA Submittals Submittals will be reviewed and processed as follows: - a. Approved as Submitted (Action Code "A"): Shop drawings which can be approved without correction will be stamped "Approved" and two copies will be returned to the Contractor. No resubmittal required. - b. Approved Except as Noted (Action Code "B"): Shop drawings which have only minor discrepancies will be annotated in red to indicate necessary corrections. Marked material will be stamped "Approved Except as Noted" and two copies returned to the Contractor for correction. No resubmittal required. - c. Approved Except as Noted (Action Code "C"): Shop drawings which are incomplete or require more than minor corrections will be annotated in red to indicate necessary corrections. Marked material will be stamped "Approved Except as Noted Resubmission Required" and two copies returned to the Contractor for correction. Resubmittal of only those items needing correction required. - d. Disapproved (Action Code "E"): Shop drawings which are fundamentally in error, cover wrong equipment or construction, or require extensive corrections, will be returned to the Contractor stamped "Disapproved." An explanation will be furnished on the submitted material or on ENG Form 4025 indicating reason for disapproval. Complete resubmittal required. - e. Resubmittal will not be required for shop drawings stamped "A" or "B" unless subsequent changes are made by Contractor or a contract modification. For shop drawings stamped "C" or "E," Contractor shall make corrections required, note any changes by dating the revisions to correspond with the change request date, and promptly resubmit the corrected material. Resubmittals shall be associated with the "parent" by use of sequential alpha characters (for example, resubmittal of transmittal 8 will be 8A, 8B, etc). Government costs incurred after the first resubmittal may be charged to the Contractor. ## 3.12 INFORMATION ONLY SUBMITTALS (FIO) The Contractor shall submit three copies of data and four copies of ENG Form 4025. FIO submittals will not be returned. Government approval is not required on FIO submittals. These submittals will be used for information purposes. The Government reserves the right to require the Contractor to resubmit any item found not to comply with the Contract. This does not relieve the Contractor from the obligation to furnish material conforming to the plans and specifications and will not prevent the COR from requiring removal and replacement if nonconforming material is incorporated in the work. This does not relieve the Contractor of the requirement to furnish samples for testing by the Government laboratory or check testing by the Government in those instances where the technical specifications so prescribe. ## 3.12.1 Processing of FIO Submittals FIO submittals shall be submitted prior to delivery of the material or equipment to the job site. ENG Form 4025 shall be marked with the words "contractor approved - information copy only" in the REMARKS block of the form. Submittals will be monitored and spot checks made. When such checks indicate noncompliance, the Contractor will be notified by the same method used for GA submittals. Resubmittal of nonconforming FIO submittals shall be reclassified GA and shall be in five copies. ## 3.13 CONTRACTOR APPROVAL STAMP The stamp used by the Contractor on the submittal data to certify that the submittal meets contract requirements shall be similar to the following: | _ | | |------|----------------------------| | | CONTRACTORS REVIEW STAMP | | - | CONTRACTORS REVIEW STAINIF | | | MAXIMUM SIZE: | | | | | | 3 INCHES BY 3 INCHES | DATE | | | | | | | | | | DATE | | OLLOWING ITEMS This section will be intrinsed by the controctory CONTRACT NO. CONTRACT NO. CONTRACT NO. CONTRACT NO. CONTRACT NO. CONTRACTOR CO | TRAK | TRANSMITTAL OF SHOP DRAWINGS, EQUIPMENT DATA, MATERIAL SAMPLES, OR MANUTAULRER'S CIPTIFICATES OF COMPLIANCE (Read instructions on the reverse side prior to initiating this form) | NE SHOP DRAWINGS, EQUIPMENT DATA, MATERIAI MANUFACTURER'S CENTIFICATES OF COMPUANCE (Read instructions on the reverse side prior to initiating this form) | ATERIAL SA
LIANCE
vis form) | MPLES, OR | DATE | | | TRANSMITTAL NO | o
Z | | |--
--|--|---|-----------------------------------|------------------------------|-----------|--|--|--|---|--| | FFOM: FFOLECT TITLE AND LOCATION MIG OR CONTR. NO. CONTRACT REFERENCE DIAMWING OR DIAMMING DIAMM | | SECTION I - REQUES | STFOR APPROVAL OF | THE FOLLO | WING ITEMS (TW) | section u | will be initiated | by the contra | se tex! | | | | ### OBCONTRACT REFERENCE 15ta_ noadb sumbarista PROJECT TITLE AND LOCATION 15ta_ noadb sumbarista CAT., CUIVE 15ta_ noadb sumbarista sumb | ö | | FROM: | | | CONTRA | CT NO. | | CHECK ONE: THIS IS A THIS IS A THIS IS A | NEW TRANS
RESUBMITT | MITTAL
AL OF | | SECTION II - APPROVAL ACTION SERVICE AND SIGNATURE OF SERVING OR CONTR. SECTION II - APPROVAL ACTION SHAFF F. 10) | PECIFICATION SOCIETA CONTRACTOR C | ON SEC. NO. (Cover anly one section with 19) | | CATION | | | | | CHECK DNE: T | HIS TRANSMIN | TAL IS
PROVAL | | boxwind on Governments with the second of th | TEM
NO. | DESCRIPTION OF ITEN
(Type size, medsfin | M SUBMITTED
sumbar/ate.) | | MFG OR CONTR.
CAT., CURVE | Š Ģ | CONTRACT | REFERENCE
MENT | FOR | <u> </u> | ğ # | | SECTION II - APPROVAL ACTION SECTION II - APPROVAL ACTION NAME, TITLE AND SIGNATURE OF APPROVING SEA415-7-10) EDITION OF SEP 93 IS DESDLETE. SHOW THE PROVINGER AND SIGNATURE OF APPROVINGER AND SIGNATURE OF APPROVINGER AND SIGNATURE | | | | | DRAWING OR
BROCHURE NO. | COPIES | SPEC. | DRAWING
SHEET NO | nse cope | instruction
No. 6) | 36
COE | | SECTION II - APPROVAL ACTION NAME, TITLE AND SIGNATUTE OF APPROVING ESA415-1-10) SECTION II - APPROVAL ACTION NAME, TITLE AND SIGNATUTE OF APPROVING | 4 | Ą | | | 2 | ъ | el el | 7 | si. | .jr | 2 | | SECTION II - APPROVAL ACTION NAME, TITLE AND SIGNATURE OF APPROVING ESTION OF SEP 93 IS DESOLETE. SH | | | | | | | | | | | | | SECTION II - APPROVAL ACTION NAME, TITLE AND SIGNATURE OF APPROVING EDITION OF SEP 93 IS DESOLETE. SH | | | | | | | | | | | | | SECTION II - APPROVAL ACTION NAME, TITLE AND SIGNATURE OF APPROVING IERASE + 10) EDITION 0F SEP 93 IS DREDUTE. SH | | | | | | | | | | | | | SECTION II - APPROVAL ACTION NAME, TITLE AND SIGNATURE OF APPROVING EDITION 0F SEP 93 IS DREDLETE. SH | | | | | | | | | | | | | SECTION II - APPROVAL ACTION NAME, TITLE AND SIGNATURE OF APPROVING 168 415 + 10) EDITION 05 SEP 93 IS DREDUTE. SH | | | | | | | | | | | | | SECTION II - APPROVAL ACTION NAME, TITLE AND SIGNATURE OF APPROVING 168 415 + 10) EDITION 05 SEP 93 IS DREDLETE. SH | | | | | | | | | | | | | SECTION II - APPROVAL ACTION NAME, TITLE AND SIGNATURE OF APPROVING 168 415 1-10 | | | | | | | | | | | | | SECTION II - APPROVAL ACTION NAME, TITLE AND SIGNATURE OF APPROVING 168 415 1-101 | | | | | | | | | | | | | SECTION II - APPROVAL ACTION NAME, TITLE AND SIGNATURE OF APPROVING 168 415 1-10) EDITION 0F SEP 93 IS DREDLETE. | | | | | | | | | | | | | SECTION II - APPROVAL ACTION NAME, TITLE AND SIGNATURE OF APPROVING 168 415 1-101 | | | | | | | | | | | | | SECTION II - APPROVAL ACTION NAME, TITLE AND SIGNATURE OF APPROVING AUTHOR 168 415 1-10) EDITION OF SEP 93 IS DESDLETE. SHEET | MARKS | | | | | - | l certify that in detail and a contract draw stated. | the above sub
re correct and
rings and speci | mitted items h
din striot confo
ifications excel | ave been revi
rmance with
pt as other w | o the second sec | | SECTION II - APPROVAL ACTION NAME, TITLE AND SIGNATURE OF AFFROVING AUTHORITY (ER 415 1-10) EDITION OF SEP 9.3 IS DRSOLETE. SHEET OF | | | | | | | NAN | AE AND SIGN, | ATURE OF CON | TRACTOR | | | NAME, TITLE AND SIGNATURE OF APPROVING AUTHORITY E8455+10 EDITION OF SEP 93 IS DESDLETE. SHEET OF | | | SECTIO | N II - APPR | OVAL ACTION | | | | | | | | (SP 415 1-10) EDITION DF SEP 93 IS OBSOLETE. SHEET | CLOSURES | RETURNED (List by Item No.) | , N | AME, TITLE AN | ID SIGNATURE OF API | PROVING | АЛТНОВІТУ | | DATE | | | | | IG FORM . | 83) | | 6 43S 30 MOLLIQ | (3 IS DBSDLETE. | F. | | | | Procession CEMPCE | EMPCE | ## INSTRUCTIONS - Section I will be initiated by the Contractor in the required number of copies. - Each transmittal shall be numbered consecutively in the space provided for "Transmittal No.". This number, in addition to the contract number, will form a serial number for identifying each submittal. For new submittals or resubmittals mark the appropriate box; on resubmittals, insert transmittal number of last submission as well as the new submittal number - The "Item No." will be the same "Item No." as indicated on ENG FORM 4288-R for each entry on this form. - Submittals requiring expeditious handling will be submitted on a separate form. - Separate transmittal form will be used for submittals under separate sections of the specifications - A check shall be placed in the "Variation" column when a submittal is not in accordance with the plans and specifications-also, a written statement to that effect shall be included in the space provided for "Remarks" ø - 7. Form is self-transmittal, letter of transmittal is not required - When a sample of material or Manufacturer's Certificate of Compliance is transmitted, indicate "Sample" or "Certificate" in columnic, Section ω - The Contractor will assign action codes as indicated below U.S. Army Corps of Engineers approving authority will assign action codes as indicated below in space provided in Section I, column i to each item submitted. addition they will ensure
enclosures are indicated and attached to the form prior to return to the contractor. in Section L column g. to each item submitted. ன் # THE FOLLOWING ACTION CODES ARE GIVEN TO ITEMS SUBMITTED - Disapproved (See attached) Receipt acknowledged ł ł ш ш Approved, except as noted on drawings Approved as submitted ł ∢ ω - Approved, except as noted on drawings. Refer to attached sheet resubmission required. - Will be returned by separate correspondence. - G -- Other (Specify) Receipt acknowledged, does not comply as noted with contract requirements. ł X Approval of items does not relieve the contractor from complying with all the requirements of the contract plans and specifications. ö (Reverse of ENG Form 4025-R) #### SECTION 01451 #### CONTRACTOR QUALITY CONTROL #### PART 1 GENERAL #### 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. #### AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) ASTM D 3740 (1996) Minimum Requirements for Agencies Engaged in the Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction ASTM E 329 (1995b) Agencies Engaged in the Testing and/or Inspection of Materials Used in Construction #### 1.2 PAYMENT Separate payment will not be made for providing and maintaining an effective Quality Control program, and all costs associated therewith shall be included in the applicable unit prices or lump-sum prices contained in the Bidding Schedule. #### PART 2 PRODUCTS (NOT APPLICABLE) #### PART 3 EXECUTION #### 3.1 GENERAL The Contractor is responsible for quality control and shall establish and maintain an effective quality control system in compliance with the Contract Clause titled "Inspection of Construction." The quality control system shall consist of plans, procedures, and organization necessary to produce an end product, which complies with the contract requirements. The system shall cover all construction operations, both onsite and offsite, and shall be keyed to the proposed construction sequence. The project superintendent will be held responsible for the quality of work on the job and is subject to removal by the Contracting Officer for non-compliance with quality requirements specified in the contract. #### 3.2 QUALITY CONTROL PLAN #### 3.2.1 General The Contractor shall furnish for review by the Government, not later than 10 days after receipt of notice to proceed, the Contractor Quality Control (CQC) Plan proposed to implement the requirements of the Contract Clause titled "Inspection of Construction." The plan shall identify personnel, procedures, control, instructions, test, records, and forms to be used. The Government will consider an interim plan for the first 60 days of operation. Construction will be permitted to begin only after acceptance of the CQC Plan or acceptance of an interim plan applicable to the particular feature of work to be started. Work outside of the features of work included in an accepted interim plan will not be permitted to begin until acceptance of a CQC Plan or another interim plan containing the additional features of work to be started. #### 3.2.2 Content of the CQC Plan The CQC Plan shall include, as a minimum, the following to cover all construction operations, both onsite and offsite, including work by subcontractors, fabricators, suppliers, and purchasing agents: - a. A description of the quality control organization, including a chart showing lines of authority and acknowledgment that the CQC staff shall implement the three phase control system for all aspects of the work specified. The staff shall include a CQC System Manager who shall report to the project manager. If the project manager and project superintendent are the same person, the CQC System Manager shall report to someone higher in the Contractor's organization than the project manager. - b. The name, qualifications (in resume format), duties, responsibilities, and authorities of each person assigned a CQC function. - c. A copy of the letter to the CQC System Manager signed by an authorized official of the firm which describes the responsibilities and delegates sufficient authorities to adequately perform the functions of the CQC System Manager, including authority to stop work which is not in compliance with the contract. The CQC System Manager shall issue letters of direction to all other various quality control representatives outlining duties, authorities, and responsibilities. Copies of these letters shall also be furnished to the Government. - d. Procedures for scheduling, reviewing, certifying, and managing submittals, including those of subcontractors, offsite fabricators, suppliers, and purchasing agents. These procedures shall be in accordance with Section 01330 SUBMITTAL PROCEDURES. - e. Control, verification, and acceptance testing procedures for each specific test to include the test name, specification paragraph requiring test, feature of work to be tested, test frequency, and person responsible for each test. (Laboratory facilities will be approved by the Contracting Officer.) - f. Procedures for tracking preparatory, initial, and follow-up control phases and control, verification, and acceptance tests including documentation. - g. Procedures for tracking construction deficiencies from identification through acceptable corrective action. These procedures shall establish verification that identified deficiencies have been corrected. - h. Reporting procedures, including proposed reporting formats. i. A list of the definable features of work. A definable feature of work is a task which is separate and distinct from other tasks, has separate control requirements, and may be identified by different trades or disciplines, or it may be work by the same trade in a different environment. Although each section of the specifications may generally be considered as a definable feature of work, there are frequently more than one definable feature under a particular section. This list will be agreed upon during the coordination meeting. #### 3.2.3 Acceptance of Plan Acceptance of the Contractor's plan is required prior to the start of construction. Acceptance is conditional and will be predicated on satisfactory performance during the construction. The Government reserves the right to require the Contractor to make changes in his CQC Plan and operations including removal of personnel, as necessary, to obtain the quality specified. #### 3.2.4 Notification of Changes After acceptance of the CQC Plan, the Contractor shall notify the Contracting Officer in writing of any proposed change. Proposed changes are subject to acceptance by the Contracting Officer. #### 3.3 COORDINATION MEETING After the Preconstruction Conference, before start of construction, and prior to acceptance by the Government of the CQC Plan, the Contractor shall meet with the Contracting Officer or Authorized Representative and discuss the Contractor's quality control system. The CQC Plan shall be submitted for review a minimum of 5 calendar days prior to the Coordination Meeting. During the meeting, a mutual understanding of the system details shall be developed, including the forms for recording the CQC operations, control activities, testing, administration of the system for both onsite and offsite work, and the interrelationship of Contractor's Management and control with the Government's Quality Assurance. Minutes of the meeting shall be prepared by the Government and signed by both the Contractor and the Contracting Officer. The minutes shall become a part of the contract file. There may be occasions when subsequent conferences will be called by either party to reconfirm mutual understandings and/or address deficiencies in the CQC system or procedures which may require corrective action by the Contractor. #### 3.4 QUALITY CONTROL ORGANIZATION #### 3.4.1 General The requirements for the CQC organization are a CQC System Manager and sufficient number of additional qualified personnel to ensure contract compliance. The Contractor shall provide a CQC organization that shall be at the site at all times during progress of the work and with complete authority to take any action necessary to ensure compliance with the contract. All CQC staff members shall be subject to acceptance by the Contracting Officer. #### 3.4.2 CQC System Manager The Contractor shall identify as CQC System Manager an individual within the onsite work organization who shall be responsible for overall management of CQC and have the authority to act in all CQC matters for the Contractor. The CQC System Manager shall be a graduate engineer, graduate architect, or a graduate of construction management, with a minimum of 5 years construction experience on construction similar to this contract or a construction person with a minimum of 10 years in related work. This CQC System Manager shall be on the site at all times during construction and shall be employed by the prime Contractor. The CQC System Manager shall be assigned no other duties. An alternate for the CQC System Manager shall be identified in the plan to serve in the event of the System Manager's absence. The requirements for the alternate shall be the same as for the designated CQC System Manager. #### 3.4.3 CQC Personnel In addition to CQC personnel specified elsewhere in the contract, the Contractor shall provide as part of the CQC organization specialized personnel to assist the CQC System Manager for the following areas: electrical, mechanical, structural, fire protection, and architectural. These individuals may be employees of the prime or subcontractor; be responsible to the CQC System Manager; be physically present at the construction site during work on their areas of responsibility; have the necessary education and/or experience in accordance with the experience matrix listed herein. These individuals may perform other duties
but must be allowed sufficient time to perform their assigned quality control duties as described in the Quality Control Plan. | | Experience Matrix | | | |---|-------------------------------|--|--| | | <u>Area</u> | Qualifications | | | Α | Mechanical | Graduate Mechanical Engineer with 2 years experience or person with 5 years related experience | | | В | Electrical | Graduate Electrical Engineer with 2 years related experience or person with 5 years related experience | | | С | Structural | Graduate Structural Engineer with 2 years experience or person with 5 years related experience | | | D | Architectural | Graduate Architect with 2 years experience or person with 5 years related experience | | | Е | Fire Protection | Graduate Mechanical Engineer with 2 years experience or person with 5 years related experience | | | F | Concrete, Pavements and Soils | Materials Technician with 2 years experience for the appropriate area | | | G | Hazardous Materials | Lead-based paint/asbestos abatement supervisors, workers, certified industrial hygienist, test lab, and abatement contractor each with 5 years experience. | |---|---|--| | Н | Testing Adjusting and Air
Balancing of mechanical
systems | See requirements in 15990, and 15995 | #### 3.4.4 Additional Requirement In addition to the above experience education requirements the CQC System Manager shall have completed the course entitled "Construction Quality Management For Contractors". This course is periodically offered at AGC offices throughout the state of Washington and Oregon. #### 3.4.5 Organizational Changes The Contractor shall maintain the CQC staff at full strength at all times. When it is necessary to make changes to the CQC staff, the Contractor shall revise the CQC Plan to reflect the changes and submit the changes to the Contracting Officer for acceptance. #### 3.5 SUBMITTALS Submittals shall be made as specified in Section 01330 SUBMITTAL PROCEDURES. The CQC organization shall be responsible for certifying that all submittals are in compliance with the contract requirements. #### 3.6 CONTROL Contractor Quality Control is the means by which the Contractor ensures that the construction, to include that of subcontractors and suppliers, complies with the requirements of the contract. At least three phases of control shall be conducted by the CQC System Manager for each definable feature of work as follows: #### 3.6.1 Preparatory Phase This phase shall be performed prior to beginning work on each definable feature of work, after all required plans/documents/materials are approved/accepted, and after copies are at the work site. This phase shall include: - a. A review of each paragraph of applicable specifications. - b. A review of the contract drawings. - c. A check to assure that all materials and/or equipment have been tested, submitted, and approved. - d. Review of provisions that have been made to provide required control inspection and testing. - e. Examination of the work area to assure that all required preliminary work has been completed and is in compliance with the contract. - f. A physical examination of required materials, equipment, and sample work to assure that they are on hand, conform to approved shop drawings or submitted data, and are properly stored. - g. A review of the appropriate activity hazard analysis to assure safety requirements are met. - h. Discussion of procedures for controlling quality of the work including repetitive deficiencies. Document construction tolerances and workmanship standards for that feature of work. - i. A check to ensure that the portion of the plan for the work to be performed has been accepted by the Contracting Officer. - Discussion of the initial control phase. - k. The Government shall be notified at least 48 hours in advance of beginning the preparatory control phase. This phase shall include a meeting conducted by the CQC System Manager and attended by the superintendent, other CQC personnel (as applicable), and the foreman responsible for the definable feature. However, there may be more than one definable feature under a section of the specifications, i.e., mechanical, electrical, etc. Invite the government's representative to each meeting. The results of the preparatory phase actions shall be documented by separate minutes prepared by the CQC System Manager and attached to the daily CQC report. The Contractor shall instruct applicable workers as to the acceptable level of workmanship required in order to meet contract specifications. #### 3.6.2 Initial Phase This phase shall be accomplished at the beginning of a definable feature of work. The following shall be accomplished: - a. A check of preliminary work to ensure that it is in full compliance with contract requirements. Review minutes of the preparatory meeting. - b. Verify adequacy of controls to ensure full contract compliance. Verify required control inspection and testing. - c. Establish level of workmanship and verify that it meets minimum acceptable workmanship standards. Compare with required sample panels as appropriate. - d. Resolve all differences. - e. Check safety to include compliance with and upgrading of the safety plan and activity hazard analysis. Review the activity analysis with each worker. - f. The Government shall be notified at least 48 hours in advance of beginning the initial phase. Separate minutes of this phase shall be prepared by the CQC System Manager and attached to the daily CQC report. Exact location of initial phase shall be indicated for future reference and comparison with follow-up phases. - g. The initial phase should be repeated for each new crew to work onsite, or any time acceptable specified quality standards are not being met. #### 3.6.3 Follow-up Phase Daily checks shall be performed to assure control activities, including control testing, are providing continued compliance with contract requirements, until completion of the particular feature of work. The checks shall be made a matter of record in the CQC documentation. Final follow-up checks shall be conducted and all deficiencies corrected prior to the start of additional features of work which may be affected by the deficient work. The Contractor shall not build upon nor conceal non-conforming work. #### 3.6.4 Additional Preparatory and Initial Phases Additional preparatory and initial phases shall be conducted on the same definable features of work if the quality of on-going work is unacceptable, if there are changes in the applicable CQC staff, onsite production supervision or work crew, if work on a definable feature is resumed after a substantial period of inactivity, or if other problems develop. #### 3.7 TESTS #### 3.7.1 Testing Procedure The Contractor shall perform specified or required tests to verify that control measures are adequate to provide a product which conforms to contract requirements, see Table 1 – Minimum Testing, attached at the end of this specification section. Upon request, the Contractor shall furnish to the Government duplicate samples of test specimens for possible testing by the Government. Testing includes operation and/or acceptance tests when specified. The Contractor shall procure the services of a Corps of Engineers approved testing laboratory or establish an approved testing laboratory at the project site. The Contractor shall perform the following activities and record and provide the following data: - a. Verify that testing procedures comply with contract requirements. - b. Verify that facilities and testing equipment are available and comply with testing standards. - c. Check test instrument calibration data against certified standards. - d. Verify that recording forms and test identification control number system, including all of the test documentation requirements, have been prepared. e. Results of all tests taken, both passing and failing tests, shall be recorded on the CQC report for the date taken. Specification paragraph reference, location where tests were taken, and the sequential control number identifying the test shall be given. If approved by the Contracting Officer, actual test reports may be submitted later with a reference to the test number and date taken. An information copy of tests performed by an offsite or commercial test facility shall be provided directly to the Contracting Officer. Failure to submit timely test reports as stated may result in nonpayment for related work performed and disapproval of the test facility for this contract. #### 3.7.2 Testing Laboratories #### 3.7.2.1 Capability Check The Government reserves the right to check laboratory equipment in the proposed laboratory for compliance with the standards set forth in the contract specifications and to check the laboratory technician's testing procedures and techniques. Costs of testing the Contractor Laboratory facilities for Government acceptance shall be borne by the Contractor. Laboratory facilities, including personnel and equipment, utilized for testing soils, concrete, asphalt and steel shall meet criteria detailed in ASTM D 3740 and ASTM E 329, and be accredited by the American Association of Laboratory Accreditation (AALA), National Institute of Standards and Technology (NIST), National Voluntary Laboratory Accreditation Program (NVLAP), the American Association of State Highway and Transportation Officials (AASHTO), or other approved national accreditation authority. All personnel performing concrete testing shall be certified by the American Concrete Institute (ACI). The contractor shall submit documentation showing the AALA, or other approved testing facility, certification, personnel ACI
certifications, and the name and work experience of the Registered Professional Engineer on the staff. #### 3.7.3 Onsite Laboratory The Government reserves the right to utilize the Contractor's control testing laboratory and equipment to make assurance tests and to check the Contractor's testing procedures, techniques, and test results at no additional cost to the Government. #### 3.7.4 Furnishing or Transportation of Samples for Testing Costs incidental to the transportation of samples or materials will be borne by the Contractor. Samples of materials for test verification and acceptance testing by the Government shall be delivered to the Corps of Engineers Division Laboratory, f.o.b., at the following address: U.S. Army Corps of Engineers Materials Testing Center Waterways Experiment Station 3909 Hall Ferry Road Vicksburg, MS 39180-6199 Phone: (610) 634-3974 | ATTN: Project | , Contract Number | | |---------------------------|---|-----| | Coordination for each spe | ific test, exact delivery location and dates will be made through | the | | Area Office. | • | | If samples are scheduled to arrive at the laboratory on a weekend (after 1700 Friday through Sunday) notify the laboratory at least 24 hours in advance at (601) 634-3974 to arrange for delivery. #### 3.8 COMPLETION INSPECTION #### 3.8.1 Punch-Out Inspection Near the completion of all work or any increment thereof established by a completion time stated in the Special Clause entitled "Commencement, Prosecution, and Completion of Work," or stated elsewhere in the specifications, the CQC System Manager shall conduct an inspection of the work and develop a punch list of items which do not conform to the approved drawings and specifications. Such a list of deficiencies shall be included in the CQC documentation, as required by paragraph DOCUMENTATION below, and shall include the estimated date by which the deficiencies will be corrected. The CQC System Manager or staff shall make a second inspection to ascertain that all deficiencies have been corrected. Once this is accomplished, the Contractor shall notify the Government that the facility is ready for the Government Pre-Final inspection. #### 3.8.2 Pre-Final Inspection The Government will perform this inspection to verify that the facility is complete and ready to be occupied. A Government Pre-Final Punch List may be developed as a result of this inspection. The Contractor's CQC System Manager shall ensure that all items on this list have been corrected before notifying the Government so that a Final inspection with the customer can be scheduled. Any items noted on the Pre-Final inspection shall be corrected in a timely manner. These inspections and any deficiency corrections required by this paragraph shall be accomplished within the time slated for completion of the entire work or any particular increment thereof if the project is divided into increments by separate completion dates. #### 3.8.3 Final Acceptance Inspection The Contractor's Quality Control Inspection personnel, plus the superintendent or other primary management person, and the Contracting Officer's Representative shall be in attendance at this inspection. Additional Government personnel including, but not limited to, those from Base/Post Civil Facility Engineer user groups, and major commands may also be in attendance. The final acceptance inspection will be formally scheduled by the Contracting Officer based upon results of the Pre-Final inspection. Notice shall be given to the Contracting Officer at least 5 days prior to the final acceptance inspection and shall include the Contractor's assurance that all specific items previously identified to the Contractor as being unacceptable, along with all remaining work performed under the contract, will be complete and acceptable by the date scheduled for the final acceptance inspection. Failure of the Contractor to have all contract work acceptably complete for this inspection will be cause for the Contracting Officer to bill the Contractor for the Government's additional inspection cost in accordance with the contract clause titled "Inspection of Construction". #### 3.9 DOCUMENTATION Repair Fuel System Maintenance Dock, Fairchild AFB, Wa. The Contractor shall maintain current records providing factual evidence that required quality control activities and/or tests have been performed. These records shall include the work of subcontractors and suppliers and shall be on an acceptable form that includes, as a minimum, the following information: - a. Contractor/subcontractor and their area of responsibility. - b. Operating plant/equipment with hours worked, idle, or down for repair. - c. Work performed each day, giving location, description, and by whom. When Network Analysis (NAS) is used, identify each phase of work performed each day by NAS activity number. - d. Test and/or control activities performed with results and references to specifications/drawings requirements. The control phase should be identified (Preparatory, Initial, Follow-up). List deficiencies noted along with corrective action. - e. Quantity of materials received at the site with statement as to acceptability, storage, and reference to specifications/drawings requirements. - f. Submittals reviewed, with contract reference, by whom, and action taken. - g. Off-site surveillance activities, including actions taken. - h. Job safety evaluations stating what was checked, results, and instructions or corrective actions. - i. Instructions given/received and conflicts in plans and/or specifications. - j. Contractor's verification statement. These records shall indicate a description of trades working on the project; the number of personnel working; weather conditions encountered; and any delays encountered. These records shall cover both conforming and deficient features and shall include a statement that equipment and materials incorporated in the work and workmanship comply with the contract. The original and one copy of these records in report form shall be furnished to the Government daily within 24 hours after the date covered by the report, except that reports need not be submitted for days on which no work is performed. As a minimum, one report shall be prepared and submitted for every 7 days of no work and on the last day of a no work period. All calendar days shall be accounted for throughout the life of the contract. The first report following a day of no work shall be for that day only. Reports shall be signed and dated by the CQC System Manager. The report from the CQC System Manager shall include copies of test reports and copies of reports prepared by all subordinate quality control personnel. #### 3.10 SAMPLE FORMS Sample forms are attached at the end of this specification section. #### 3.11 NOTIFICATION OF NONCOMPLIANCE The Contracting Officer will notify the Contractor of any detected noncompliance with the foregoing requirements. The Contractor shall take immediate corrective action after receipt of such notice. Such notice, when delivered to the Contractor at the work site, shall be deemed sufficient for the purpose of notification. If the Contractor fails or refuses to comply promptly, the Contracting Officer may issue an order stopping all or part of the work until satisfactory corrective action has been taken. No part of the time lost due to such stop orders shall be made the subject of claim for extension of time or for excess costs or damages by the Contractor. #### TABLE 1 #### MINIMUM SAMPLING AND TESTING FREQUENCY Minimum Sampling <u>Materials</u> <u>Test</u> <u>and Testing Frequency</u> Fills, Embankments, Backfills, Subgrade, Subbase, and Base Course Material Fill and Embankment Field Density 2/12/ One test per lift for each increment or fraction of 500 S.F. and any time material type changes. Lab Density <u>3</u>/ One test initially per each type of materials or blended material and any time material type changes, and one every 10 field density tests. Gradation 1/ One test every 100 cubic yards of fill for each type of materials or blended material and any time material type changes. Subgrade Field Density 2/12/ One test per each increment or fraction of 500 S.F. or two tests minimum. Lab Density3/ One test every 10 field density tests. Backfill for Culverts, Trenches, Buildings and Walls, Pavements, and Other Structures Field Density <u>2/12/</u> Culverts: One test per lift for each increment or fraction of 500 S.F. and any time material type changes. Trenches: One test per lift for each increment or fraction of 200 linear feet for backfill, or one test for each 100 linear foot of long narrow fills 200 feet or more in length. Under pavements, one test every lift and at every crossing. | <u>Materials</u> | <u>Test</u> | Minimum Sampling and Testing Frequency | |------------------|---|---| | | | Walls and Buildings Perimeters,
Including Footings: One test per lift for
each increment or fraction of 200
linear feet of backfill, or one test for
each 100 linear foot of long narrow
fills 200 feet or more in length. | | | | Building Slabs on Grade: One test per lift for each increment or faction of 1000 s.f. | | | | Areas enclosed by grade beams, compacted with power driven hand operated compactors: One test per lift for each increment or fraction of 500 s.f. | | | | Pavements: Two tests per lift for each increment or fraction of 2000 s.y. | | | | Other Structures: One test per lift for each increment or fraction of 200 linear feet of backfill. | | | Lab Density <u>3/</u> | One test initially per each type of material or blended material and
one every 10 field density tests. | | | Moisture-Density
Relationship ^{3/} | One test per every 50 c.y. | | | Gradation <u>1/</u> | One test per each type of material or blended material and one every 10 field density tests, or every 100 c.y. | | Subbase and Base | Gradation $\frac{1}{}$ (including .02 mm particles size limits. | 1 sample for every 4,000 sy. | | | In-Place Density ² / 12/ | 1 sample every 2,000 sy. | | | Moisture-Density
Relationship ^{3/} | 1 initially and every 20 density tests. | | | | | Minimum Sampling Materials Test and Testing Frequency Asphaltic Concrete and Pavements (Non airfield) Asphaltic concrete WSDOT M41-10 1 test per day or 2 tests minimum. Specific Gravity per each WSDOT M41-10, Sec 5- 04.3(8)A. Extraction 1 test for each WSDOT M41-10, Sec 5-04.3(8)A. Gradation 5/ 1 per each extraction test. Fracture faces 5/ 1 per each extraction test. Cored or sawed specimens Perform complete test (thickness, in-place density and bulk specific gravity) on each cored or sawed sample. 12/ Take 1 set of 3 cored sawed specimens for each 1,000 square yards or fraction thereof. One specimen shall be taken from longitudinal joint or from transverse joint. Portland Cement Concrete (Non airfield) Coarse and Fine Aggregate 7/ Moisture, specific gravity and absorption8/ 1 initially. Gradation and fineness modules 1 every 250 cy of concrete. Moisture, specific gravity and absorption8/ (same as coarse aggregate). Concrete Slump Conduct test every day of placement and for every 150 cy and more frequently if batching appears inconsistent. Conduct with strength tests. Entrained Air Conduct with slump test. Repair Fuel System Maintenance Dock, Fairchild AFB, Wa. Ambient and concrete temperatures Conduct with slump tests. | <u>Materials</u> | Test | Minimum Sampling and Testing Frequency | |-------------------------------------|--|--| | | Unit weight, yield, and water cement ratio | Conduct with strength tests. Check unit weight and adjust aggregate weights to insure proper yield. | | | Flexural strength and evaluation | When specified for slabs on grade or for concrete pavements, take one set of 6 beams every 100 cy of concrete with a minimum of 1 set per day. Two beams shall be tested at 7 days, two at 28 days, and two at 90 days. | | | Compressive strength | One set of 3 cylinders per day and every 100 cy for each class of structural concrete. Test one cylinder at 7 days and two at 28 days. Additional field cure cylinders shall be made when insitu strengths are required to be known. | | Vibrators | Frequency and amplitude | Check frequency and amplitude initially and any time vibration is questionable. | | | Masonry | quodidilabidi | | Concrete Masonry
Units <u>9/</u> | Dry shrinkage <u>10/</u> | 1 set of 3 per 10,000 units and manufacturers certification and test report. | | | Absorption | 11 11 11 | | | Compressive strength | 11 11 11 | | | Unit Weight | 11 11 11 | | Mortar and grout | Compressive Strength | 1 set of 3, every 2,000 units (1 test at 7 days and 2 tests at 28 days). | #### NOTES: ^{1/}All acceptance tests shall be conducted from in-place samples. ²/Additional tests shall be conducted when variations occur due to the contractors operations, weather conditions, site conditions, etc. Repair Fuel System Maintenance Dock, Fairchild AFB, Wa. <u>3</u>/Classification (ASTM D-2487), moisture contents, Atterberg limits and specific gravity tests shall be conducted for each compaction test if applicable. 4/Materials to be submitted only upon request by the Contracting Officer. <u>5</u>/Tests can substitute for same tests required under "Aggregates" (from bins or source), although gradations will be required when blending aggregates. <u>6</u>/Increase quantities by 50 percent for Paving mixes and by 100 percent for Government testing of admixtures. Include standard deviation for similar mixes from the intended batch plant and data from a minimum of 30 tests, if available. Refer to ACI 214. <u>7</u>/A petrographic report for aggregate is required with the sample for source approval. If the total amount of all types of concrete is less than 153 cubic meters (200 c.y.) service records from three separate structures in similar environments which used the aggregates may substitute for the petrographic report. <u>8</u>/Aggregate moisture tests are to be conducted in conjunction with concrete strength tests for w/c calculations. <u>9/For less than 1,000 units, the above test may be waived at the discretion of the Contracting Officer and acceptance based on manufacturers certification and test report.</u> <u>10</u>/Additional tests shall be performed when changes are made either in the manufacturing processes or in materials used in the production of the masonry units. <u>11</u>/If adequate storage protection is not provided at the jobsite, additional tests shall be made to determine that the allowable moisture condition has not been exceeded before the blocks can be placed in the structure. <u>12</u>/The nuclear densometer, if properly calibrated, may be used but only in addition to the required testing frequency and procedures using sandcones. The densometer shall be calibrated and is recommended for use when the time for complete results becomes critical. #### TABLE 2 #### STANDARD REPORT FORMS AND USE | Form Number | Form Title | Form Use | |-------------|---|--| | NPD 300 | Transmittal of Material Samples | Form to accompany any samples sent to NPD Laboratory | | NPD 326 | Compaction Test Data Sheet | Soil compaction tests. | | DD 1206 | Sieve Analysis Data | Sieve analysis data sheet for soils. | | NPD 320 | Mechanical Analysis Test Data | Sieve analysis data sheet and hydrometer data sheet for soils. | | ENG 2087 | Gradation Curves | Gradation graph for soils and aggregates. (To include specification limits). | | DD 1205 | Soil Moisture Content | Moisture content sheet for soils and/or aggregates. | | NPD 322 | Specific Gravity and Absorption
Test Data Sheet | Specific gravity and absorption test for soil and aggregates. | | DD 1209 | Atterberg Limits Determinations | Test and graph for Atterburg limits tests. | | DD 1217 | Bituminous Mix Design -Aggregate Blending | Aggregate blending sheet for asphaltic concrete. | | NPD 346 | Asphaltic Concrete Mix Design Report | Asphaltic mix design and aggregate grinding. | | DD 1218 | Marshall Method - Computation of
Properties of Asphalt
Mixtures | Marshall Test form. | | NPD 88 | Screen Analysis of Concrete
Aggregates | Gradation test form for aggregates (self carboning). | | NPD 357 | Mortar Strength of Fine
Aggregate Data Sheet | Flexural and compressive strength test form for mortar. | | NPD 355 | Data Sheet - Compressive and Flexural Strengths of Concrete | Compressive and/or flexural strength testing (include averages per specification). | | NPD 359 | Report of Concrete Mixture Design | Mix design sheet for Contractor mix submittal. | Repair Fuel System Maintenance Dock, Fairchild AFB, Wa. NPS 57 Statistical Evaluation of Concrete Compression Tests Summary sheet of concrete tests. Form can be used for flexural strengths if revised to conform with proper days specified. A separate sheet is to be used for each mix design. ### (Sample of typical Contractor's Daily Report) DAILY CONSTRUCTION QUALITY CONTROL REPORT | Contract Number: | | Date: | Rpt No | | |-----------------------------------|-----------------|---------------|----------------|-------------| | Contract Title: | | Location | on: | | | Weather: ClearP. | Cloudy Cloudy _ | Rainfall (| _% of workday) | | | Temperature during wo | rkday: High d | egrees F. Low | degrees F. | | | WORK PERFORME Contractor Name | 2. EQUIPMENT DATA: | | | | | | Type, Size, Etc. | Owned/Rented | Hours Used | Hours Standby | Repair Fuel System Maintenance Dock, Fairchild AFB, Wa. | 3. QUALITY CONTROL INSPECTIONS AND RESULTS: (Include a description of preparatory, initial, and/or follow up inspections or meetings; check of subcontractors work and materials delivered to the site compared to submittals and/or specifications; comments on the proper storage of materials; include comments on corrective actions to be taken): | |--| | | | QUALITY CONTROL TESTING AND RESULTS (comment on tests and attach test reports): | | | | 5. DAILY SAFETY INSPECTIONS (Include comments on new hazards to be added to the Hazard Analy and corrective action of any safety issues): | | 6. REMARKS (Include conversations with or instructions from the Government representatives; delays of any kind that are impacting the job; conflicts in the contract documents; comments on change orders; environmental considerations; etc.): | | | | CONTRACTOR'S VERIFICATION: The above report is complete and correct. All material, equipment use and work performed during this reporting period are in compliance with the contract documents except a noted above. | | CONTRACTOR QC REPRESENTATIVE | #### (Sample of Typical Contractor's Test Report) #### TEST REPORT | STRUCTURE OR BUILDING |
--| | CONTRACT NO | | DESCRIPTION OF ITEM, SYSTEM, OR PART OF SYSTEM TESTED: | | | | DESCRIPTION OF TEST: | | NAME AND TITLE OF PERSON IN CHARGE OF PERFORMING TESTS FOR THE CONTRACTOR: | | NAME | | TITLE | | SIGNATURE | | I HEREBY CERTIFY THAT THE ABOVE DESCRIBED ITEM, SYSTEM, OR PART OF SYSTEM HAS BEEN TESTED AS INDICATED ABOVE AND FOUND TO BE ENTIRELY SATISFACTORY AS REQUIRED IN THE CONTRACT SPECIFICATIONS. | | SIGNATURE OF CONTRACTOR QUALITY CONTROL INSPECTOR | | DATE | | REMARKS | | | | | **END OF SECTION** #### **SECTION 01501** #### CONSTRUCTION FACILITIES AND TEMPORARY CONTROLS #### PART 1 GENERAL #### 1.1 AVAILABILITY OF UTILITY SERVICES #### 1.1.1 Water The Government will make available to Contractor, from existing outlets and supplies, reasonable amounts of potable water without charge. Contractor shall reasonably conserve potable water furnished. Contractor, at its own expense, shall install and maintain necessary temporary connections and distribution lines and shall remove the connections and lines prior to final acceptance of construction. #### 1.1.2 Electricity Electric power (120/208 volts, 200 amps) will be made available by the Government, without charge, to the Contractor for performing work at the work area. The Contractor shall carefully conserve electricity furnished. The Contractor, at its own expense and in a workmanlike manner satisfactory to the Contracting Officer, shall extend the existing electrical distribution system (overhead and underground) for temporary electrical service to the worksite, shall install and maintain necessary temporary connections, and shall remove the same prior to final acceptance of the construction. These connections shall be coordinated with the Air Force Exterior Electrical Shop, Through the Contracting Officer. #### 1.2 SANITARY PROVISIONS Contractor shall provide sanitary accommodations for the use of employees as may be necessary and shall maintain accommodations approved by the Contracting Officer and shall comply with the requirements and regulations of the State Health Department, County Sanitarian, or other authorities having jurisdiction. #### 1.3 TEMPORARY ELECTRIC WIRING #### 1.3.1 Temporary Power and Lighting The Contractor shall provide construction power facilities in accordance with the safety requirements of the National Electric Code NFPA No. 70 and the SAFETY AND HEALTH REQUIREMENTS MANUAL EM 385-1-1. The Contractor, or its delegated subcontractor, shall enforce the safety requirements of electrical extensions for the work of subcontractors. Work shall be accomplished by journeyman electricians. #### 1.3.2 Construction Equipment In addition to the requirements of SAFETY AND HEALTH REQUIREMENTS MANUAL, EM 385-1-1, temporary wiring conductors installed for operation of construction tools and equipment shall be either Type TW or THW contained in metal raceways, or shall be hard usage or extra hard usage multiconductor cord. Temporary wiring shall be secured above the ground or floor in a workmanlike manner and shall not present an obstacle to persons or equipment. Open wiring may only be used outside of buildings, and then only in accordance with the provisions of the National Electric Code. #### 1.3.3 Submittals Submit detailed drawings of temporary power connections. Drawings shall include, but not be limited to, main disconnect, grounding, service drops, service entrance conductors, feeders, GFCI'S, and all site trailer connections. #### 1.4 FIRE PROTECTION During the construction period, the Contractor shall provide fire extinguishers in accordance with the safety requirements of the SAFETY AND HEALTH REQUIREMENTS MANUAL, EM 385-1-1. The Contractor shall remove the fire extinguishers at the completion of construction. #### 1.5 STAGING AREA Contractor will be provided adequate open staging area as directed by the Contracting Officer. Area is unsecured, and Contractor shall make provisions for its own security. Contractor shall be responsible for keeping staging area and office area clean and free of weeds and uncontrolled vegetation growth. Weeds shall be removed by pulling or cutting to within 1-inch of ground level. Lawn areas shall be mown to keep growth to less than 2-inches. All loose debris and material subject to being moved by prevailing winds in the area shall be picked up or secured at all times. #### 1.6 HOUSEKEEPING AND CLEANUP Pursuant to the requirements of Clause CLEANING UP and Clause ACCIDENT PREVENTION, of the CONTRACT CLAUSES, the Contractor shall assign sufficient personnel to insure compliance. The Contractor shall submit a detailed written plan for implementation of this requirement. The plan will be presented as part of the preconstruction safety plan and will provide for keeping the total construction site, structures, and accessways free of debris and obstructions at all times. Work will not be allowed in those areas that, in the opinion of the Contracting Officer, have unsatisfactory cleanup and housekeeping at the end of the preceding day's normal work shift. At least once each day all areas shall be checked by the Quality Control person of the Contractor and the findings recorded on the Quality Control Daily Report. In addition, the Quality Control person shall take immediate action to insure compliance with this requirement. Housekeeping and cleanup shall be assigned by the Contractor to specific personnel. The name(s) of the personnel shall be available at the project site. #### 1.7 DIGGING PERMIT Upon contract award, the Government will provide the Contractor with a signed digging permit (Air Force Form 103). The AF Form 103 digging permit will include a copy of the Government's existing condition utility drawing. This is the only digging permit the Contractor will receive. The Contractor shall post the digging permit and all associated attachments at the job site. Not less than 2 days or more than 10 days before construction excavation, the Contractor shall contact the off-base, one-call public utility locating service at either 1-800-424-5555 or (509) 456-8000. This single telephone call will arrange for the utility locate service to verify all known public utilities on the project construction site. The Contractor shall walk the construction site with locating technician and provide orientation of proposed construction excavation work. The locating service representative will provide the Contractor with a project reference number which the Contractor must note on the posted Government-issued Air Force Form 103 digging permit. The Contractor shall require the locating technician not to leave the project site until the technician has indicated the location of the locating markings. The Contractor must maintain all locating service markings until the project excavation work is completed. In the event the locating markings are inadvertently destroyed (e.g., due to traffic) then the Contractor must re-call the locating service to re-mark the locates. The Contractor will post to the Air Force Form 103 digging permit any locating technician reports provided during the locating work. The Contractor shall ensure that utility locating technician signs the AF Form 103 digging permit. #### 1.8 CONSTRUCTION NEAR COMMUNICATIONS CABLES #### 1.8.1 Excavation Near Communication Cables Digging within 3 feet of communication cables (including fiber optic cables) shall be performed by hand digging until the cable is exposed. The Contracting Officer shall be notified a minimum 3 days prior to digging within a 3-foot area near cable. The cable route will be marked by the Government prior to excavation in the area. A digging permit shall be obtained by the Contractor before performing any excavation. The Contractor shall be held responsible for any damage to the cable by excavation procedures. Once the cable is exposed, mechanical excavation may be used if there is no chance of damage occurring to the cable. #### 1.8.2 Reburial of Exposed Utilities When existing utility lines are reburied a tape, detectable by pipe detector systems, shall be installed above the uncovered length of the utility at a depth of 12 inches below grade. Tape shall be a minimum 5 mil plastic tape with metallic tracer, minimum 3 inches wide, lettering on tape to show buried utility, and brightly colored. #### 1.8.3 Access to Communications Manhole or Handhole No communications manhole or handhole shall be entered without first obtaining a fiber optic cable briefing. Coordinate through the Contracting Officer with with the Base Communications Officer (for Air Force project). #### 1.8.4 Cable Cuts or Damage If a communications cable is cut or damaged the Contractor shall immediately notify the Contracting Officer (CO) and begin gathering personnel and equipment necessary to repair the cut, or damage. Contractor shall begin repairs within one hour of the cut or damage, unless notified otherwise, and continue repairs without interruption until full service is restored. #### 1.9 PROJECT SIGN Contractor shall furnish and install 1 project sign in accordance with conditions hereinafter specified and layout shown on drawing No. 49s-40-05-15, Sheets 1 and 2, except Corps of Engineers' castle and Department of Air Force seal will be Government furnished. All letters shall be block type, upper case. Letters shall be painted as indicated using exterior-type paint. Sign shall be maintained in excellent condition throughout the life of job. Project sign shall be located as directed. Upon completion of project, sign shall be removed and shall remain the property of Contractor. #### 1.10 ELEVATED WORK AREAS Workers in elevated work areas in excess of 6 feet above an adjoining surface require special safety attention. In addition to the provisions of SAFETY AND HEALTH
REQUIREMENTS MANUAL, EM 385-1-1, the following safety measures are required to be submitted to the Contracting Officer's Representative. Prior to commencement of work in elevated work areas, the Contractor shall submit drawings depicting all provisions of his positive fall protection system including, but not limited to, all details of guardrails. Positive protection for workmen engaged in the installation of structural steel and steel joist shall be provided by safety nets, tie-offs, hydraulic man lifts, scaffolds, or other required means. Decking crews must be tied-off or work over nets or platforms not over 6 feet below the work area. Walking on beams and/or girders and the climbing of columns is prohibited without positive protection. Perimeter guardrails shall be installed at floor, roof, or wall openings more than 6 feet above an adjoining surface and on roof perimeters. Rails shall be designed to protect all phases of elevated work including, but not limited to, roofing operations and installation of gutters and flashing. Rails around roofs may not be removed until all work on the roof is complete and all traffic on or across the roof ceases. Rails shall be designed by a licensed engineer to provide adequate stability under any anticipated impact loading. As a minimum, the rails shall consist of a top rail at a height of 42 inches, a mid-rail, and a toe board. Use of tie-offs, hydraulic man lifts, scaffolds, or other means of roof edge protection methods may be utilized on small structures such as family housing, prefabricated metal buildings, etc. If safety belts and harnesses are used, the positive fall protection plan will address fall restraint versus fall arrest. Body belts will ONLY be used for fall restraint, they will not be used for fall arrest. #### 1.11 CONSTRUCTION PLANNING MEETINGS #### 1.12 TRAFFIC CONTROL PLAN The Contractor shall submit a Traffic Control Plan for moving traffic through and around the construction zone in a manner that is conducive to the safety of motorists, pedestrians, and workers. This plan shall indicate scheduling, placement, and maintenance of traffic control devices in accordance with the U.S. Department of Transportation, Federal Highway Administration publication, Manual on Uniform Traffic Control Devices. The Contractor shall obtain, in writing, from the Directorate of Public Works (PW) Traffic Engineer, through the Contracting Officer, approval of the Traffic Control Plan. The Contractor shall submit his Traffic Control Plan at least 15 working days prior to commencement of street or road work. Streets (except dead end) may be closed to traffic temporarily (except at least one access lane shall be kept open to traffic) by approved written request to the Contracting Officer at least 10 working days prior to street closure. Excavations shall not remain open for more than 1 working day without approval. The Contractor shall identify by site inspection and indicate on the plan all roads and trails used by military or civilian wheeled and tracked vehicular traffic and, by traffic control devices, prevent this traffic from entering the construction zone. #### 1.13 UTILITIES NOT SHOWN The Contractor can expect to encounter, within the construction limits of the entire project, utilities not shown on the drawings and not visible as to the date of this contract. If such utilities will interfere with construction operations, he shall immediately notify the Contracting Officer verbally and then in writing to enable a determination by the Contracting Officer as to the necessity for removal or relocation. If such utilities are removed or relocated as directed, the Contractor shall be entitled to equitable adjustment for any additional work or delay. The types of utilities the Contractor may encounter are waterlines, sewer lines (storm and sanitary), gas lines, fueling lines, steam lines, buried fuel tanks, septic tanks, other buried tanks, communication lines, and power lines. These utilities may be active or abandoned utilities. #### 1.14 GOVERNMENT WITNESSING AND SCHEDULING OF TESTING The Contractor shall notify the Contracting Officer by serial letter of dates and agenda of all performance testing of the following systems: mechanical (including fire protection and EMCS) and electrical (including fire protection) not later than 10 calendar days prior to start of such testing. In this notification, the Contractor shall certify that all equipment, materials, and personnel necessary to conduct such testing will be available on the scheduled date and that the systems have been prechecked by him and are ready for performance and/or acceptance testing. Contractor shall also confirm that all operations and maintenance manuals have been submitted and approved. NO PERFORMANCE AND/OR ACCEPTANCE TESTING WILL BE PERMITTED UNTIL THE OPERATIONS AND MAINTENANCE MANUALS HAVE BEEN APPROVED. Government personnel, at the option of the Government, will travel to the site to witness testing. If the testing must be postponed or canceled for whatever reason not the fault of the government, the Contractor shall provide the Government not less than 3 working days advance notice (notice may be faxed) of this postponement or cancellation. Should this 3 working day notice not be given , the Contractor shall reimburse the Government for any and all out of pocket expenses incurred for making arrangements to witness such testing including, but not limited to airline, rental car, meal, and lodging expenses. Should testing be conducted, but fail and have to be rescheduled for any reason not the fault of the Government, the Contractor shall similarly reimburse the Government for all expenses incurred. #### 1.15 HARD HAT SIGNS The Contractor shall provide 24 by 24 inch square Hard Hat Area signs at each entry to the project or work area as directed by the Contracting Officer. A minimum of two signs will be required. Signs shall be in accordance with the sketch at the end of this section. PART 2 PRODUCTS AND PART 3 EXECUTION (NOT APPLICABLE) - SIGN SHALL BE FABRICATED FROM .125 THICK 6061-T6 ALUMINUM PANEL - COLOR - 1. SAFETY RED (SR) - 2. WHITE - 3. WHITE - 4. BLACK - LETTERING SHALL BE HELVETICA BOLD TYPOGRAPHY. - LETTERS AND BACKGROUND SHALL BE REFLECTIVE SHEETING MATERIAL. - SIGNS SHALL BE POSTED AT 6'-6" (BOTTOM SIGN TO GRADE) OR AS DIRECTED BY THE CONTRACTING OFFICER. LETTERING TO BE CENTERED ON PANEL. #### NOTES: - 1. Signboard 4' x 8' x 5/8" grade A-C exterior type plywood with medium density overlay on both sides. - 2. Paint both sides and edges with one prime coat and two coats of paint, accordance with FED. STD. 595b, color number brown 30118 exterior type enamel. Lettering shall be as shown on drawing and shall be antique linen 33578 gloss exterior type enamel. - 3. Lettering shall be Helvetica medium. - 4. Acceptable abbreviations may be used for Contractor's name. - 5. Department of Air Force Seal and Corps of Engineers' Castle to be Government furnished. - 6. No company logo shall be used. - 7. Sign posts and 1½" wood trim shall be stained dark brown. - 8. Upon completion of work under this contract, the project sign shall be removed from the job site and shall remain the property of the Contractor. SHEET 2 OF 2 **END OF SECTION** #### SECTION 01701 #### OPERATIONS AND MAINTENANCE MANUALS #### PART 1 GENERAL #### 1.1 SUBMITTALS Submittals shall be in accordance with SECTION 01330; SUBMITTAL PROCEDURES. #### PART 3 EXECUTION #### 3.1 GENERAL The Contractor shall provide Operation and Maintenance (O&M) manuals following the General Requirements paragraph of ETL 89-2 especially regarding the distinction between System Operating Manuals and Equipment O&M and Repair Manuals for the complete project as applicable under this contract, including all Contractor furnished and installed equipment, systems and materials, and all Government furnished-Contractor installed equipment, systems and materials. Included herein are requirements for compiling and submitting the O&M data. Additional O&M data requirements are specified in the individual sections of the technical specifications. O & M Manual requirements shall be coordinated with the requirements as stated in the other technical specification sections and shall include listings for spare parts, framed instructions, etc. Separate O&M manuals shall be prepared for the pump house and for Hangar Building 1019. #### 3.1.1 PREPARATION Manual preparation shall be under the direction of an individual or organization that has demonstrated expertise and a minimum of 3 years experience in the preparation of comprehensive and complete O&M manuals. Qualifications shall be submitted for Contracting Officer approval. #### **3.1.2 FORMAT** - 3.1.2 O&M data shall be separated into distinct systems and shall include information for the following disciplines: Mechanical, Electrical, Fire Protection and Detection, and Architectural/General. O&M manuals for any particular system shall include narrative and technical descriptions of the interrelations with other systems. This narrative shall include a description on how the system works with notable features of the system, including normal and abnormal operating conditions. The explanation of the system is to be short and concise with reference to specific manufacturer's equipment manuals for details (see paragraph CONTENT, subparagraph b). If the quantity of material is such that it will not fit within one binder then it shall be divided into volumes, as required (see paragraph Binders). - 3.1.3 Six copies of the complete set of manuals shall be provided for each building (as identified by a building number or building description) for multi-building projects. 3.1.4 The requirement for six copies of the O&M manual shall supersede and replace any requirements for a lesser amount of manuals which may be indicated in some specifications. Each set of manuals shall be tailored for its respective building or facility. ####
3.2 PRELIMINARY O&M MANUAL AND DATA SUBMITTAL To establish and assure uniform O&M manual format, the Contractor shall submit two copies of complete set of O & M data without the binders and receive Contracting Officer approval on one (1) of the sets prior to submission of the final bound manuals. Initial O & M Manual data submittal shall be a minimum of 30 days prior to 90 percent project completion. The Contractor shall also provide two typewritten pages representing the proposed binder marking format as required under Paragraph: Marking and Binding. One page will represent the front cover/spine and the other page will represent the inside of the front cover. - 3.2.1 Data submitted for the manual are to be for the specific equipment furnished, and are in addition to that furnished as shop drawings. - 3.2.2 The Contracting Officer will require thirty (30) days for review of submitted O&M manual(s) or data. The Contracting Officer will retain one copy of unacceptable O&M manual submittal and return remainder of copies to the Contractor marked "Returned for Correction." If "Returned for Correction." the Contractor shall resubmit the required number of copies of the manual(s) incorporating all comments, prior to substantial completion and/or use and possession. The Contractor may, at his option, update the copy retained by the Government in lieu of providing the added copy. - 3.2.3 For equipment or systems requiring personnel training and/or acceptance testing, the final O&M data shall be approved by the Contracting Officer prior to the scheduling of the training and/or testing. O&M data on equipment or systems not requiring training or testing shall be submitted so all data will be approved and bound in the O&M manuals in the required quantity by the time the project reaches 90 percent completion. Failure to furnish approved, bound manuals in the required quantity by the time the project is 90 percent complete, will be cause for the Contracting Officer to hold or adjust the retained percentage in accordance with CONTRACT CLAUSE, PAYMENTS UNDER FIXED PRICE CONSTRUCTION CONTRACTS. - 3.2.4 Three of the six completed copies of the final O&M manuals (for each building) shall contain original manufacturer's data. Data in the remaining manuals may be duplicated copies of original data. All data furnished must be of such quality to reproduce clear, legible copies. #### 3.3 BINDERS #### 3.3.1 Construction and Assembly Manuals shall be sliding posts or screw-type aluminum binding posts (three screws) with spine, but only one type shall be used for all manuals. The manuals shall be hardback plastic-covered, cleanable, not over 3 inches thick and designed for 8-1/2 by 11 inch paper. The hard cover shall be of minimum stiffness equal to 0.080 inch display board or double weight illustration board. #### 3.3.2 Marking and Binding As appropriate, systems shall be grouped into four separate categories and bound into four volumes as follows: Mechanical, Electrical, Fire Protection/Security, and Architectural/General. Each binder shall have the following information inscribed on the cover using an offset or silk screen printing process: Type of O&M Manual, Project Title, Project Number, Facility Number, Volume Number, Prime Contractor, and Subcontractor (see Figure 1 O&M Manual Cover). Each binder shall also have the following information inscribed on the spine in the same manner as above: Type of O&M Manual, Project Title, Project Number, Facility Number, Volume Number and Year Constructed (see Figure 2 O&M Manual Spine). Figure 1 O&M Manual Cover Figure 2 O&M Manual Spine | Type of O&M Manual | Type of O&M Manual | |---|---| | Project Title
Project Number | Project Title
Project Number | | Facility Number | Facility Number | | Volume Number Discipline Year Constructed | Volume Number
Discipline
Year Constructed | #### 3.3.3 Color Color of binder shall be black and the printing shall be gold. #### 3.3.4 Content The O&M manuals shall be structured to address each of the following topics in order for each system. When the topic does not apply to a particular system the topic name will be included in the manual with the words "DOES NOT APPLY." - a. Warning Page: A warning page shall be provided to warn of potential dangers (if they exist), such as high voltage, toxic chemicals, flammable liquids, explosive materials, carcinogens, or high pressures. The warning page shall be placed inside the front cover, in front of the title page. - b. Index: Each manual shall have a master index at the front identifying all manuals and volumes and subject matter by system name for each. Following the master index, each manual shall have an index of its enclosures listing each volume, tab numbers, etc., as necessary to readily refer to a particular operating or maintenance instruction. Rigid tabbed fly leaf sheets shall be provided for each separate product and/or piece of equipment under each system in the manual. For example, if a system includes Air Handling Units 1 through 5, there shall be tab sheets AHU-1, AHU-2, AHU-3, AHU-4 and AHU-5. When a manual is divided into volumes, each volume shall have a master index at its front, followed by an index for the specific volume listing in detail all enclosed instructions for materials, individual pieces of equipment, and systems. All pages shall be numbered with the referenced number included in the index. - c. Description: Narrative and technical descriptions of the system and of the interrelations with other systems. - d. Check List Prior to Start Up: Precautions and prechecks prior to start up of equipment and/or system, including safety devices, monitoring devices and control sequence shall be provided. - e. Start Up and Operation: Step-by-step sequential procedures for start up and normal operation checks for satisfactory operation shall be provided. Safety precautions and instructions that should be followed during these procedures shall be incorporated into the operating instructions and flagged for the attention of the operator. Procedures shall include test, manual or normal, and automatic modes. - f. Shutdown: Procedures for normal and emergency shutdown of equipment and/or systems shall be provided. The instructions shall include any procedures necessary for placing the equipment and/or system on standby or preparing the equipment and/or system for start up at a later time. Procedures shall include test, manual or normal, and automatic modes. - g. Operator Preventive Maintenance, Major Maintenance, and Adjustments: The instructions shall include recommended operator preventive maintenance which would normally be performed by operating personnel and adjustment procedures necessary for normal operation. Schedules shall be provided indicating time frames or operating hours for initiating operator maintenance and adjustments, and including manufacturer's recommended major maintenance requirements. Emergency adjustments shall be included and flagged for operator's attention; the instructions shall also include procedures for emergency repairs that could be performed by operating personnel. These emergency repairs or "trouble-shooting guides" shall be outlined in three columns with the following headings: Column 1 - Trouble Column 2 - Probable Cause(s) Column 3 - Correction - h. Operator Data: The instructions shall include equipment and/or system layouts showing all piping, wiring, breakers, valves, dampers, controls, etc., complete with diagrams, schematics, isometrics, and data to explain the detailed operation and control of each individual piece of equipment and/or system, including system components. Layouts shall show the location within the facility of controls, valves, switches, dampers, etc., by reference to site location, wing designation, floor, room number, or other clear and concise directions for locating the item. Operator data may be identical to posted data and framed instructions but shall be prepared as part of the O&M manuals. All control systems operations data shall include the following: - (1) A fully labeled control schematic which details all set points, throttling ranges, actions, spans, proportional bands, and any other adjustment. - (2) A fully labeled elementary diagram (ladder diagram). - (3) A sequence of control on the diagrams cross-referenced to the control schematic and elementary diagram. - (4) A generic, functional description of each control component shown on the drawings. - (5) Catalog data of every control device. - i. Electrical Layout Drawings: The Electrical O&M's shall include complete layout drawings and one-line diagrams of exterior and interior electrical with reference to the buildings and site layout. Drawings shall include layout of interior lighting, interior power, intrusion detection systems, communication systems and fire protection systems. Exterior layout drawings shall show where fed from, pad-mount transformer, metering, main distribution panel and communication lines. Layout drawings shall show the location within the facility or reference to the building and the site plan. Layout drawings shall be half size contract as-built drawings and shall be inserted into plastic pockets and installed at the back of the O&M's that pertain to that particular drawing. - j. Maintenance Procedures: Recommended procedures shall indicate preventive maintenance, lubrication, and good housekeeping practices which should be performed by operating personnel as well as more complex maintenance procedures which would normally be performed by trained maintenance personnel only. The procedures shall be presented with a schedule indicating time frames or operating hours for specific maintenance to be accomplished. Safety precautions and instructions that should be followed during these procedures shall be incorporated into the maintenance procedures and flagged
for the attention of personnel. The procedures shall include necessary operating instructions for taking equipment off line, putting equipment on line, or putting equipment on standby. The instructions shall include all necessary material, equipment, and system data to perform maintenance work and shall include, but not be limited to, manufacturers/bulletins, catalogs, and descriptive data; certified performance curves, copies of approved test plans, including logs and records of performance acceptance test results, and actual adjustments made during final acceptance and inspection; system layouts, including block diagrams, wiring, control, and isometric diagrams: schematic items within the facility; and interrelationships with other items of system. - k. Repairs: Repair procedures shall be presented with a step-by-step procedure for locating and correcting the trouble. A "shop manual" may be used for this purpose. Repair procedures shall be keyed to a troubleshooting guide outlined in three columns with the following headings: Column 1 - Trouble Column 2 - Probable Cause(s) Column 3 - Correction The procedures shall clearly indicate a major repair activity which should only be performed in a shop or factory versus normal repair work that may be performed onsite or with equipment online. The procedures shall also clearly indicate the limit of repair work that may be performed by Government personnel during the warranty period without voiding warranty provisions. Safety precautions and instructions that should be followed during these procedures shall be incorporated into the repair procedures and flagged for the attention of personnel. I. Tools: The Contractor shall provide one of each nonstandard tool, test instrument, and gauge necessary for performing maintenance and repair work. A nonstandard tool, test instrument, or gauge is defined as an item normally supplied by the manufacturer for the equipment operation or maintenance. The Contractor shall prepare a master list of such items for all equipment and systems and shall key maintenance and repair procedures to this list. The above referenced items for performing maintenance and repair work shall be provided for each individual facility of multifacility projects. - m. Parts and Supplies: A complete list of parts and supplies shall be provided with the maintenance instructions. The list shall include all parts and components of individual pieces of equipment, and all parts and components of each system and shall identify such items as description of part, model number, circuit or component identification, etc. Parts and supplies lists shall be included within each volume of maintenance instructions. Further, a master list of spare parts and supplies recommended from each manufacturer for 1 year of operation, including source of supply, shall be sublisted with each instruction. - (1) Availability: The Contractor shall list the sources of supply for all parts and supplies, including name of supplier/manufacturer, address, and telephone number. If the parts and supplies are not normally stocked locally, (within 6 hours travel time, round trip by surface transportation) necessary procurement time shall also be a part of the listing. - (2) Spare Parts: The Contractor shall provide those spare parts and supplies that are specified in the TECHNICAL SPECIFICATIONS and those which are normally provided with the equipment or material item. A separate master list shall be provided for these items upon turnover to the Government of the parts and supplies. - n. Maintenance Schedule: A separate schedule of all required periodic maintenance shall be included. This schedule shall list by frequency of occurrence all lubricants and special adjustments required. The types and amounts of lubrication must be specified. The Contractor shall verify that the furnished maintenance schedule agrees with the published manufacturer's data. # 3.3.4.1 Architectural/General O&M: - (1) Building Products, Applied Materials, and Finishes: Include product data, with catalog number, size, composition, and color and texture designations. Provide information for re-ordering custom manufactured products. Data shall include, but not be limited to, information on carpet, floor tile, vinyl wall finishes, builder's hardware, etc. - (2) Instructions for Care and Maintenance: Include manufacturer's recommendations for cleaning agents and methods, precautions against detrimental agents and methods, and recommended schedule for cleaning and maintenance. - (3) Moisture-protection and Weather-exposed Products: Include product data listing applicable reference standards, chemical composition, and details of installation. Provide recommendations for inspections, maintenance, and repair. - (4) Additional Requirements: As specified in individual specifications sections. # 3.3.4.2 Warranties: In addition to the general warranty required by the contract, the O&M manuals shall include any specific warranties required by other sections of the TECHNICAL SPECIFICATIONS and other warranties normally provided with the particular piece of equipment or system. Extended warranties normally provided by manufacturers that are beyond the warranty of construction shall be specifically noted. The O&M manuals shall also include a specific warranty section itemizing all standard and extended warranty items. The warranty list shall be as indicated below. Warranties will not begin until the facility is accepted by the Contracting Officer. Copy of warranty shall be included in the manual. # WARRANTY INFORMATION # Project Title Contract Number General Contractors Name, Phone Number # ITEM DESCRIPTION START DATE END DATE O & M REFERENCE LOCATION (in alphabetical order) Descriptive Name, Manufactures/ Warrantors Name Address & Phone No. # 3.3.4.3 Installed Equipment Lists: A copy of the completed Equipment in Place forms required in Section 01705 EQUIPMENT-IN-PLACE -LIST shall be included in the manual. The completed forms shall be located at the front of the catalog and O&M data for the equipment listed on the form. # 3.3.4.4 Data Layout: - (1) Data Identification: Catalog data shall be marked to clearly identify pertinent data by highlighting the data with pointers or crossing out all nonpertinent data. - (2) Drawings: All drawings bound in the manuals shall be of such size that will require only one fold made right to left. All larger size drawings shall be inserted into a separate pocket in the required location in the manual. All drawings shall be of microfilm quality. - (3) Posted Data: The Contractor shall provide posted data for equipment or systems, in addition to O&M manuals, and as required by other Technical Specifications sections. The data shall consist of as-built schematics of all wiring, controls, piping, etc., as necessary for the operation of the equipment or system, and a condensed typewritten description of the system. The posted data may include approved shop drawings, layout drawings, riser, and block diagrams and shall indicate all necessary interrelation with other equipment and systems. The data may be presented in one or several frames, under glass or sheet acrylic glazing, for clarity and convenience of location. The framed data presentation and outline shall be acceptable to and posted at locations designated by the Contracting Officer. The data shall be posted before personnel training or performance testing acceptance for the related items of equipment or system. - (4) Framed Instructions: Typewritten instructions, framed under glass or sheet acrylic glazing, explaining equipment or system prestart checkout, startup, operations and shutdown DACA67-00-R-0222 01701-7 procedures, safety precautions, preventive maintenance procedures, and normal operation checks for satisfactory performance of the equipment of systems shall be posted in conjunction with the posted data. The framed instructions may be presented in one or several frames for clarity and convenience of location. The instruction presentation and outline shall be acceptable to the Contracting Officer prior to posting, and shall be posted at locations designated by the Contracting Officer. All framed instructions shall be posted before personnel training or performance testing acceptance commences for the related item of equipment or system. # 3.3.5 Payment Payment will be made at the contract lump sum price for Item No. 0003, All Work for O&M Manuals; payment of which shall constitute full compensation of Item No. 0003 complete. No partial or total payment will be made for this item until all O&M Manuals are fully approved by the Government (A or B action) and all copies of final manuals are received by the Government in their final binders. # 3.3.6 Checklist Contractor shall complete and initial a copy of the O&M Manual Check List which is provided at the end of this section, and forwarded along with ENG form 4025 as part of the O&M Manual submittal to the Contracting Officer for approval. # O&M MANUAL - REVIEW CHECKLIST | Does the manual cover all equipment furnished under the contract? (Review against
equipment schedules on the drawings and/or equipment submittals.) | |--| | Does the manual clearly highlight all relevant portions or cross out all irrelevant portions of
catalog data? | | Does the manual contain operations data for the equipment? (Step-by-step operating instructions, start up procedures, sequences of operation, precautions.) | | Does the manual contain maintenance and repair data for the equipment? (Lubrication, dismantling, assembly, adjustment, troubleshooting.) | | Does the manual contain a separate maintenance
schedule listed by frequency of occurrence? | | Does the manual contain parts lists or parts catalogs for the equipment? Parts catalog or list
shall contain identification, part numbers, recommended parts to be stocked, and local
source of parts. | | Does the manual contain electrical connection diagrams? | | Does the manual contain control and interlock system diagrams where applicable? | | Is every page in the manual numbered and an index provided for ready reference to the data? | | Is the cover hard (nonflexible) with the facility name, identification number, location, and system embossed on both the spine and cover? Is the Contractor's name and address, and the contract title and contract number embossed on the inside of the manual cover? Is the binding screw posts or sliding post? | | Is any of the data in the manual under the binding where it cannot be seen? | | Do three sets of manuals contain all original data sheets and are others clearly legible? | | Are system layout drawings provided? (Simplified diagrams for the system as installed.) | | Are all drawings in the manual of such a size that requires one fold right to left, or if a larger size drawing, then inserted into a pocket in the manual? | # SECTION 01702 # AS BUILT RECORDS AND DRAWINGS # PART 1 GENERAL #### 1.1 SUBMITTALS Data listed in PART 3 of this section shall be submitted in accordance with section 01330 SUBMITTAL PROCEDURES. Due dates shall be as indicated in applicable paragraphs and all submittals shall be completed before final payment will be made. PART 2 PRODUCTS (NOT APPLICABLE) PART 3 EXECUTION 3.1 AS-BUILT FIELD DATA # 3.1.1 General The Contractor shall keep at the construction site two complete sets of full size blueline prints of the contract drawings, reproduced at Contractor expense, one for the Contractor's use, one for the Government. During construction, both sets of prints shall be marked to show all deviations in actual construction from the contract drawings. The color red shall be used to indicate all additions and green to indicate all deletions. The drawings shall show the following information but not be limited thereto: - a. The locations and description of any utility lines and other installations of any kind or description known to exist within the construction area. The location includes dimensions and/or survey coordinates to permanent features. - b. The locations and dimension of any changes within the building or structure, and the accurate location and dimension of all underground utilities and facilities. - c. Correct grade or alignment of roads, structures, and utilities if any changes were made from contract plans. - d. Correct elevations if changes were made in site grading from the contract plans. - e. Changes in details of design or additional information obtained from working drawings specified to be prepared and/or furnished by the Contractor including, but not limited to, fabrication erection, installation, and placing details, pipe sizes, insulation material, dimensions of equipment foundations, etc. - f. The topography and grades of all drainage installed or affected as part of the project construction. - g. All changes or modifications from the original design and from the final inspection. - h. Where contract drawings or specifications allow options, only the option actually used in the construction shall be shown on the as-built drawings. The option not used shall be deleted. These deviations shall be shown in the same general detail utilized in the contract drawings. Marking of the prints shall be pursued continuously during construction to keep them up to date. In addition, the Contractor shall maintain full size marked-up drawings, survey notes, sketches, nameplate data, pricing information, description, and serial numbers of all installed equipment. This information shall be maintained in a current condition at all times until the completion of the work. The resulting field-marked prints and data shall be referred to and marked as "As-Built Field Data," and shall be used for no other purpose. They shall be made available for inspection by the Contracting Officer's representative whenever requested during construction and shall be jointly inspected for accuracy and completeness by the Contracting Officer's representative and a responsible representative of the Contractor prior to submission of each monthly pay estimate. Failure to keep the As-Built Field Data (including Equipment-in-Place lists) current shall be sufficient justification to withhold a retained percentage from the monthly pay estimate. # 3.1.2 Submittal of the As-Built Field Data Two sets of the As-Built Field Data shall be submitted to the Contracting Officer for review and approval a minimum of 20 calendar days prior to the date of final inspection. If review of the preliminary as-built drawings reveals errors and/or omissions, the drawings will be returned to the Contractor for corrections. The Contractor shall make all corrections and return the drawings for backcheck to the Contracting Officer within 10 calendar days of receipt. When submitted drawings are accepted, one set of marked drawings will be returned to the Contractor for the completion of the as-built drawings. # 3.2 AS-BUILT ELECTRONIC FILE DRAWINGS - 3.2.1 No earlier than 30 days after award the Government will have available for the Contractor one set of AutoCad release 12, DWG binary, electronic file format contract drawings, to be used for preparation of as-built drawings. The electronic file drawings will be available on either 89 mm (3-1/2 inch) 1.44 MB floppy disks or ISO-9660 CD-ROM, as directed by the Contracting Officer. The Contractor has 30 days after the receipt of the electronic file to verify the usability of the files, and bring any discrepancies to the attention of the Contracting Officer. Any discrepancies will be corrected within 15 days and files returned to the Contractor. The Contractor shall incorporate all deviations from the original contract drawings as recorded in the approved 'As-built Field Data' (see paragraph 3.1.2). The Contractor shall also incorporate all the written modifications to the contract drawings which were issued by amendment or contract modification. All revisions and changes shall be incorporated, i.e. items marked "deleted" shall be deleted, clouds around new items shall be removed, etc. - 3.2.2 No later than 30 days after final acceptance a complete set of as-built drawings shall be submitted in AutoCad Release 14, DWG binary, electronic file format. The layering standards and submittal requirements are specified in paragraphs below. The as-built drawings shall be done in a quality equal to that of the originals. Line work, line weights, lettering, and use of symbols shall be the same as the original line work, line weights, and lettering, and symbols. If additional drawings are required they shall be prepared in electronic file format under the same guidance. When final revisions have been completed, each drawings shall be identified with the words "AS-BUILT" in block letters at least 3/8-inch high placed above the title block if space permits, or if not, below the title block between the border and the trim line. The date of completion and the words "REVISED AS-BUILT" shall be placed in the revision block above the latest revision notation. # 3.2.3 Electronic File Submittal Requirements - 3.2.3.1 The AutoCAD electronic file(s) deliverable shall be in AutoCAD release 14, 'DWG' binary format. All support files required to display or plot the file(s) in the same manner as they were developed shall be delivered along with the files. These files include but are not limited to Font Files, Menu Files, Plotter Setup, and Referenced files. - 3.2.3.2 Layering shall remain as provided in the electronic files. An explanatory list of which layers are in each drawing, including any additional layers needed to complete incorporation of the As-Built data shall be provided with each submittal. - 3.2.3.3 Electronic File Deliverable Media: All electronic files shall be submitted on ISO 9660 format CD-ROM (CD). Zip drive disks shall not be provided. Two complete sets of CDs shall be submitted along with one complete set of prints and one complete set of full size mylars taken from the CDs. The mylars are to be submitted only after corrections, if any are made. See 3.2.4 below. Each CD shall have a clearly marked label stating the Contractor's firm name, project name and location, submittal type (AS-BUILT), and date. Each submittal shall be accompanied by a hard copy transmittal sheet that contains the above information along with a tabulated information about all files submitted as shown below: Electronic File Name Plate Number Drawing Title Electronic version of the table shall be included with each submittal set of disks. 3.2.4 Submittal of the Final As-Built Drawings The final as-built record drawings shall be completed and returned together with the approved preliminary as-built drawings to the COE, Seattle District Office, Technical Branch, Records and Information Section, within 30 calendar days of final acceptance. All drawings from the original contract drawings set shall be included, including the drawings where no changes were made. The Government will review all final as-built record drawings for accuracy and conformance to the drafting standards and other requirements contained in DIVISION 1 GENERAL REQUIREMENTS. The drawings will be returned to the Contractor if corrections are necessary. The Contractor shall make all corrections and shall return the drawings to the same office within 7 calendar days of receipt. - 3.3 Payment will be made at the contract lump sum price for Item No. 0002, All Work for As-Built Drawings; payment of which shall constitute full compensation of Item No. 0002, complete. No partial or total payment will be made for this item until the as-built drawings, both marked up blue prints
and electronic files are fully approved by the Government (A or B action) and all copies of approved drawings and electronic media received by the Government. - 3.4 One set of marked-up as-built blueline prints shall be furnished at the time of Seattle District check. These as-built blueline prints shall be in addition to the submittals of marked-up as-built blueline prints specified in paragraph 3.1.2. # SECTION 01703 # WARRANTY OF CONSTRUCTION # PART 1 GENERAL ### 1.1 SUBMITTALS Submittals shall be made in accordance with SECTION 01330: SUBMITTAL PROCEDURES. Submittal dates shall be as defined in PART 3 of this section. PART 2 PRODUCTS (NOT APPLICABLE) PART 3 EXECUTION - 3.1 WARRANTY OF CONSTRUCTION (APR 1984) (FAR52.246-21): - 3.1.1 In addition to any other warranties in this contract, the Contractor warrants, except as provided in paragraph 3.1.9 of this Clause, that work performed under this contract conforms to the contract requirements and is free of any defect in equipment, material, or design furnished, or workmanship performed by the Contractor or any subcontractor or supplier at any tier. - 3.1.2 This warranty shall continue for a period of 1 year from the date of final acceptance of the work. If the Government takes possession of any part of the work before final acceptance, this warranty shall continue for a period of 1 year from the date the Government takes possession. - 3.1.3 The Contractor shall remedy at the Contractor's expense, any failure to conform, or any defect. In addition, the Contractor shall remedy, at the Contractor's expense, any damage to Government-owned or controlled real or personal property, when that damage is the result of: - a. the Contractor's failure to conform to contract requirements or - b. any defect of equipment, material, workmanship, or design furnished. - 3.1.4 The Contractor shall restore any work damaged in fulfilling the terms and conditions of this clause. The Contractor's warranty with respect to work repaired or replaced will run for 1 year from the date of repair or replacement. - 3.1.5 The Government will notify the Contractor, in writing or by telephone, after the discovery of any failure, defect, or damage and the Contractor shall respond and be on-site to investigate the problem within 1 working day after notification. The Contractor shall furnish, and maintain, a 24 hour emergency telephone number as the point of contact. For failures, defects, or damage causing loss of power or heat, the Contractor shall respond and mitigate problem within 4 hours. - 3.1.6 If the Contractor fails to remedy any failure, defect, or damage within 5 working days after receipt of notice, the Government will have the right to replace, repair, or otherwise remedy the failure, defect, or damage at the Contractor's expense. - 3.1.7 With respect to all warranties, express or implied, from subcontractors, manufacturers, or suppliers for work performed and materials furnished under this contract, the Contractor shall: - a. obtain all warranties that would be given in normal commercial practice; - b. require all warranties to be executed, in writing, for the benefit of the Government, if directed by the Contracting Officer; and - c. enforce all warranties for the benefit of the Government, if directed by the Contracting Officer. - 3.1.8 In the event the Contractor's warranty under paragraph 3.1.2 of this clause has expired, the Government may bring suit at its expense to enforce a subcontractor's, manufacturer's, or supplier's warranty. - 3.1.9 Unless a defect is caused by the negligence of the Contractor or subcontractor or supplier at any tier, the Contractor shall not be liable for the repair of any defects of material or design furnished by the Government nor for the repair of any damage that results from any defect in Government-furnished material or design. - 3.1.10 This warranty shall not limit the Government's rights under the Inspection of Construction clause of this contract with respect to latent defects, gross mistakes, or fraud. - 3.1.11 After final acceptance of the work, the Contractor shall furnish and install an Equipment Warranty Sticker on Contractor-installed equipment. (Same equipment as listed on the Equipment-In-Place List required under Section 01705 EQUIPMENT-IN-PLACE LIST). Lettering shall be block-type upper case and easily readable. Sticker shall be of a durable type material and of a type that can be written on. Sticker shall state the following: - a. The title "Equipment Warranty." - b. Contractor's name and Contract Number. - c. Date warranty expires. - d. Point of contact, including name and telephone number. - e. Manufacturer. - 3.1.12 Defects in design or manufacture of equipment specified by the Government on a "brand name and model" basis shall not be included in this warranty. In this event, the Contractor shall require the subcontractors, manufacturers, or suppliers thereof to execute their warranties, in writing, directly to the Government. # SECTION 01704 # FORM 1354 CHECKLIST # PART 1 GENERAL # 1.1 Procedures The form, which is a part of this specification, section shall be completed for any project having revisions to real property. The following page contains the basic instructions applicable to the form. # 1.2 Submittal This form shall be submitted for approval, and be approved a minimum of 30 days before final inspection of the project. Failure to have this form completed and approved in time for the final inspection will result in delay of the inspection until the checklist is completed. PARTS 2 AND 3 NOT USED # INSTRUCTIONS FOR DD FORM 1354 CHECKLIST The following checklist is only a guide to describe various parts of new and modified construction. Alter this form as necessary or create your own document to give complete accounting of the real property added or deleted for this contract. All items added, deleted, replaced, or relocated within the building 5 foot line, or on site 5 feet beyond the building perimeter must be accounted for completely. Only a few of the most common items beyond the 5 foot line are included on the checklist under UTILITIES/SURFACE CONSTRUCTION, add additional items as required by the construction accomplished. Attach a continuation sheet and use the checklist format to describe other work related to this particular project. Listed on the last page are additional items with units of measure and descriptive terms. Costs for <u>each</u> item must include material, tax, installation, overhead and profit, bond and insurance costs. This form should be filled out as each item is installed or each phase of work is completed. TOTAL FOR ALL ITEMS INCLUDING CONTRACT MODIFICATION COSTS ADDED TOGETHER SHOULD EQUAL THE TOTAL CONTRACT PRICE. ### **KEY TO ABBREVIATIONS** AC - Acres BL - Barrels, Capacity BTU - British Thermal Unit CY - Cubic Yards EA - Each GA - Gallons, Capacity HD - Head KV - Kilovolt-Amperes, Capacity (KVA) KW - Kilowatts, Capacity SE - Seats SF - Square Feet SY - Square Yard MB - Million British Thermal Units MI - Miles LF - Linear Feet KG - Thousand Gallons Per Day, Capacity TN - Ton # - Number; How Many # DD FORM 1354 CHECKLIST Transfer of Real Property | CONTRACT NUMBER: | | | |--|--|--| | CONTRACT TITLE: | | | | LOCATION: | | | | DEMOLITION (Describe each item removed and the cost of removal.)* | | | | | | | | | | | | | | | | 2. RELOCATION (Describe each item relocated and the cost of relocation.)* | | | | 2. TELEGOTTION (Bosonibo cacin Rom rolosation and the cost of follosation) | | | | | | | | | | | | | | | | 3. REPLACEMENTS (Describe each item replaced and replacement cost.)* | *Use a continuation sheet if more space is required. Items should be described by quantity and the correct unit of measure. | | | | 4. NEW CONSTRUCTION OVERVIEW: BUILDING(S)/ADDITION(S) TO A BUILDING - Use a separate checklist for <u>each</u> building and/or addition. | | | | (1) Outside Dimensions: Length x Width | | | | (a) Main Building | | | | (b) Offsets (c) Wings | | | | (d) Basement | | | | (e) Attic | | | | (2) Number of Usable Floors: | | |--|---------| | (3) Construction: Exterior Materials Used | | | (a) Foundation (such as concrete) | | | (4) Utilities ENTERING Building: Measure lineal meters (LF) from building entry to next larger size | of pipe | | (a) Water (size & type of pipe; number of lineal meters(LF) (b) Gas (size & type of pipe; number of lineal meters (LF) (c) Sewer (size & type of pipe; number of lineal meters (LF) (d) Electric (phase, voltage, size & type of wire, connected load in amps | | | (5) Air Conditioning: | | | (a) Type | | | (6) Heating: | | | (a) Source | | | (7) Hot Water Facilities: | | | (a) Capacity Liters (GAL) | | | BUILDING COST: | | | 5. BUILDING SYSTEMS (INTERIOR) | | | A. FIRE PROTECTION: Property Code (1) (880 50/880-211) CLOSED HEAD AUTO SPRINKLERS - Square Feet (SF) & HD (wet or dry pipe Lineal Feet (LF) of service pipe; type of pipe & # of heads; # of Square Feet (SF) covered by system) DESCRIPTION: | | | COST: | | | (2) (880 10/880-221) AUTO FIRE DETECTION SYSTEM - Square Feet (SF) & EA (# of alarms-horns etc.; # of smoke detectors; # of heat detectors; # of fire alarm panels; # of radio transmitters/ antenna DESCRIPTION: | | | | | | COST: (3) (880 20/880-222) MANUAL FIRE ALARM SYSTEM - EA (# of pull stations; # of alarm horns; # of fire extinguisher cabinets) DESCRIPTION: |
---| | COST: | | (4) (880 60/880-232) FOAM FIRE SYSTEM - EA (# of tanks - capacity in kilograms (lbs)) DESCRIPTION: | | COST: | | (5) (880 60/880-233) OTHER FIRE SYSTEM - EA DESCRIPTION: | | COST: | | B. HEATING/COOLING SYSTEMS | | (1) (826 14/890-125) A/C PLT LESS THAN 5 tons (TN) - tons (TN) & square feet (SF)-(# of tons (TN); # of square feet (SF) covered) DESCRIPTION: | | COST: | | (2) (821 32/821-116) HEATING PLT OVER 1026 W (3500 MB) - W(MB)-(# of kW (MBH); type of heating system) DESCRIPTION: | | COST: | | SITE WORK | | 3. UTILITIES/SURFACE CONSTRUCTION: | | (1) (812/81360) TRANSFORMERS-KVA POWER POLES-Lineal Meters (LF) (# poles; # transformers - pad or pole mounted; KVA of wire; # Lineal Feet (LF) of wire) DESCRIPTION: | | | | (2) (812 42/812-225) PRIM DISTR LINE UG-Lineal Feet (LF)-(KVA; voltage; type of conduit & size(encase or direct burial); size & kind of wire inside conduit; Lineal Feet (LF) of wire & conduit) DESCRIPTION: | |--| | COST: | | (3) (812 42/812-226) SEC DISTR LINE UG-Lineal Feet (LF)-(type of conduit & size; type & size of wires conduit; Lineal Feet (LF) of conduit & wire inside conduit; voltage) DESCRIPTION: | | | | (4) (812 30/812-926) EXTERIOR LIGHTING-EA-(streets or parking area lights) (# & type of lights; whether pole mounted or not; # Lineal Feet (LF) of connecting wire if pole mounted) DESCRIPTION: | | COST: | | (5) (832 10/832-266) SANITARY SEWER-Lineal Feet (LF)-(sizes & types of pipes - # of Lineal Feet (LF) (each; # of cleanouts; # & size of manholes) DESCRIPTION: | | COST: | | (6) (842 10/842-245) WATER DISTR MAINS (POTABLE)-Lineal Feet (LF)-(# Lineal Feet (LF) & size, type of pipe) DESCRIPTION: | | COST: | | (7) (851 90/851-145) DRIVEWAY-Square Yards (SY)-Square Yards (SY); material used; thickness) DESCRIPTION: | | COST: | | | of pipe; # of catch basins & manholes & sizes of each) (8) (871 10/871-183) STORM DRAIN DISPOSAL-Lineal Feet (LF)-(# Lineal Feet (LF) of pipe; sizes & types # 00029/II Repair Fuel Systems Maintenance Dock, Fairchild AFB | DESCRIPTION: | |--| | COST: | | (9) (890 70/890-187) UTILITY VAULT (4 or more transformers)- Square Feet (SF) (# Square Feet (SF); dimensions of vault; # of transformers) DESCRIPTION: | | | | (10) (135 10/135-583) TEL DUCT FACILITY-Lineal Feet (LF)-(# of Lineal Feet (LF); size & type of conduit; type of wire) DESCRIPTION: | | | | 7. INSTALLED EQUIPMENT: Furnish an Equipment-In-Place List. Any price related to equipment should already be included in this checklist. | | 8. SYSTEMS NOT PREVIOUSLY LISTED: Attach a separate sheet and use the same format to describe the system(s). Example: CATV system, intercom system, or other utilities and surface construction not | | described on this checklist. | | 9. ASBESTOS REMOVAL: Furnish a description by building of the number of Lineal Meters (LF) of asbestos removed, number of Lineal Meters (LF) of reinsulation, number of Square Meters (SF) of soil encapsulation, and number and size of tanks, etc., where asbestos was removed. Also, identify buildings by their numbers and use. | Repair Fuel Systems Maintenance Dock, Fairchild AFB 10. MAINTENANCE/RENOVATIONS: List by building number and describe all additions and deletions by quantity and the correct unit of measure. Furnish a cost <u>per</u> building. Repair Fuel Systems Maintenance Dock, Fairchild AFB UTILITIES/SURFACE CONSTRUCTION - Listed below are some additional items that may or may not apply to your contract. EACH item installed on site should be listed and priced separately even if not included on this checklist. - (1) IRRIGATION SYSTEM(-Lineal Meters (LF) of pipe; size & type of pipe; number and type of heads) - (2) UNDERGROUND/ABOVEGROUND STORAGE TANKS(-Liters (GA), type of tank; material stored) - (3) (833-354) DUMPSTER ENCLOSURE (-Square Meters (SF) & dimensions) - (4) (890-152) UNLOADING PAD (-Square Meters (SY); material) - (5) SIGNAGE-(Dimensions; material) - (6) (12580) CATHODIC PROTECTION (kilometers; Lineal Feet) (MI; LF) - (7) (87270 LIGHTNING PROTECTION-Lineal Feet (LF) - (8) (81290) POLE DUCT RISER (-Lineal Feet (LF, type of material) - (9) RAMPS-Square Meters (SF), material; Cubic Meters (CY) if concrete-use code for sidewalk if concrete) - (10) (89080/890-158) LOAD AND UNLOAD PLATFORM-Square Meters (SF) - (11) (83240/832-255) INDUSTRIAL WASTE MAIN-Lineal Meters (LF) - (12) WHEEL STOPS- (EA; size & material) - (13) (81350) OUTDOOR INTEGRAL DISTR CTR-(KVA) - (14) (45110) OUTDOOR STORAGE AREA-Square Meters (SF) - (15) (73055/730-275) BUS/WAIT SHELTER-Square Meters (SF) - (16) (690-432) FLAGPOLE-(EA; dimensions) - (17) (93210) SITE IMPROVEMENT-(JOB) - (18) (93220) LANDSCAPE PLANTING (Hectare (Acre); EA; Square Meters (SF)) - (19) (93230) LANDSCAPE BERMS/MOUNDS-Square Meters (SY) - (20) (93410) CUT AND FILL-Cubic Meters (CY) - (21) (843-315) FIRE HYDRANTS-(EA; Type) - (22) (14970) LOADING AND UNLOADING DOCKS AND RAMPS (not connected to a building)-Square Meters (SF) (23) BICYCLE RACK-(EA) - (24) (85140/812-928) TRAFFIC SIGNALS-(EA) - (25) (87210) FENCING OR WALLS-Lineal Meters (LF) - (26) (15432) RIPRAP-Lineal Meters & Square Meters (LF & SY) - (27) (75061) GRANDSTAND OR BLEACHERS-(EA; SE) - (28) 87150/871-187) RETAINING WALLS-Lineal Meters; Square Meters (LF; SY); material NOTE: 5 Digit Codes-Army; 6 Digit Codes-Air Force # SECTION 01705 #### **EQUIPMENT-IN-PLACE LIST** # PART 1 GENERAL # 1.1 SUBMITTALS Data listed in PART 3 of this section shall be submitted in accordance with section 01330 SUBMITTAL PROCEDURES. Due dates shall be as indicated in applicable paragraphs and all submittals shall be completed before final payment will be made. PART 2 PRODUCTS (NOT APPLICABLE) PART 3 EXECUTION # 3.1 SUBMITTAL: The final equipment-in-place list shall be completed and returned to the Contracting Officer within 30 calendar days of the final inspection. The Contracting Officer will review all final Equipment-In-Place Lists for accuracy and conformance to the requirements contained in DIVISION 1 GENERAL REQUIREMENTS. The lists shall be returned to the Contractor if corrections are necessary. The Contractor shall make all corrections and shall return the lists to the Contracting Officer within 7 calendar days of receipt. # 3.2 EQUIPMENT-IN-PLACE LIST: Contractor shall submit for approval, at the completion of construction, a list of equipment-inplace. This list shall be updated and kept current throughout construction, and shall be jointly inspected for accuracy and completeness by the Contracting Officer's representative and a responsible representative of the Contractor prior to submission of each monthly pay estimate. A sample form showing minimum data required is provided at the end of this section. The EQUIPMENT-IN-PLACE LIST shall be comprised of all equipment falling under one or more of the following classifications: - a. Each piece of equipment listed on the mechanical equipment schedules. - b. Each electrical panel, switchboard, and MCC panel. - c. Each transformer. - d. Each piece of equipment or furniture designed to be movable. - e. Each piece of equipment that contains a manufacturer's serial number on the name plate. This information shall be listed in the RMS CQC Module furnished by the Government under the "Installed Property" menu selection. # 3.3 PAYMENT: Payment will be made at the contract lump sum price for Item No. 0004, All Work for Form 1354 Checklist and Equipment in Place List; payment of which shall constitute full compensation of Item No. 0004 complete. No partial or total payment will be made for this item until both the 1354 Checklist and Equipment in Place List are fully approved by the Government (A or B action) and all copies of approved lists received by the Government. # **EQUIPMENT-IN-PLACE LIST** | CONTRACT NO.: | | | |---|---------------------|--| | Specification Section: | Paragraph No | | | ITT. | | | | ITEM DESCRIPTION: | | | | Item Name: | | | | Serial Number: | | | | Model Number: | | | | Capacity: | Replacement Cost | | | | | | | ITEM LOCATION: | | | | Building Number: | Room Number: | | | | or Column Location: | | | MANUFACTURER INFORM | MATION: | | | Manufacturer Name: | | | | Trade Name (if different from item name): | | | | | | | | Manufacturer's Address: | | | | | | | | Telephone Number: | | | | WARRANTY PERIOD: | | | | CH | HECKED BY: | | # SECTION 02090 # LEAD-BASED PAINT (LBP) ABATEMENT AND DISPOSAL # PART 1 GENERAL # 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. | CODE OF FEDERAL REGULATIONS (CFR) | | |-------------------------------------|--| | 29 CFR 1910 | Occupational Safety and Health
Standards | | 29 CFR 1926 | Safety and Health Regulations for Construction | | 40 CFR 148 | Hazardous Waste Injection
Restrictions | | 40 CFR 260 | Hazardous Waste Management System:
General | | 40 CFR 261 | Identification and Listing of
Hazardous Waste | | 40 CFR 262 | Standards Applicable to Generators of Hazardous Waste | | 40 CFR 263 | Standards Applicable to Transporters of
Hazardous Waste | | 40 CFR 264 | Standards for Owners and Operators
of Hazardous Waste Treatment,
Storage, and Disposal Facilities | | 40 CFR 265 | Interim Status Standards for Owners
and Operators of Hazardous Waste
Treatment, Storage, and Disposal
Facilities | | 40 CFR 268 | Land Disposal Restrictions | | 49 CFR 172 | Hazardous Material Table, Special
Provisions, Hazardous Material
Communications, Emergency Response
Information, and Training
Requirements | | 49 CFR 178 | Specifications for Packaging | | DEPARTMENT OF HOUSING AND URBAN DEV | ELOPMENT (HUD) | | HUD 0005646 | (1990; Rev May 1991) Lead-Based
Paint: Interim Guidelines for Hazard
Identification and Abatement in
Public and Indian Housing | REPAIR FUEL SYSTEM MAINTENANCE DOCK - Building 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 ENGINEERING MANUALS (EM) EM 385-1-1 (1992) U.S. Army Corps of Engineers Safety and Health Requirements Manual NATIONAL FIRE PROTECTION ASSOCIATION (NFPA) NFPA 701 (1989) Methods of Fire Test for Flame-Resistant Textiles and Films NATIONAL INSTITUTE FOR OCCUPATIONAL SAFETY AND HEALTH (NIOSH) NIOSH OSHA Booklet 3142 Lead in Construction UNDERWRITERS LABORATORIES (UL) UL 586 (1990) High-Efficiency, Particulate, Air Filter Units #### 1.2 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: Lead Exposure Compliance Plan; GA. The Contractor shall prepare a detailed Lead Exposure Compliance Plan that identifies the work procedures, health, and safety measures to be used to protect worker exposure to lead during building renovation. The plan shall include the Initial Exposure Assessment conducted by the Contractor's lead "competent" person and shall meet the requirements specified in paragraph 1.3.1. Waste Handling and Site Storage Plan; GA. A Handling and Site Storage Plan shall be prepared that addresses the handling and storage of LBP debris in accordance with the requirement of 40 CFR 262 and 40 CFR 265. The Contractor shall confirm that an EPA identification number has been obtained so that proper manifesting of the waste will be addressed, and that site storage limitations, including the time of storage, container requirements, contingency plan, and personnel training have been complied with. Waste Disposal Plan; GA. A Waste Disposal Plan shall be prepared that will include but not be limited to the following: - a. A written confirmation that the debris will be treated and disposed of in accordance with the requirements of 40 CFR 260, 40 CFR 261, 40 CFR 262, 40 CFR 264 and 40 CFR 268. - b. A written confirmation that transportation of the debris will be in accordance with $40\ \text{CFR}\ 263$. - c. Waste subcontractor's name, address, telephone number, and landfill location, including copies of licenses and signed agreements. REPAIR FUEL SYSTEM MAINTENANCE DOCK - Building 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 - d. Landfill name, address, and telephone number. A copy of the landfill's state and locally issued license, and a signed agreement that the landfill will accept the LBP wastes. - e. Detailed delivery tickets prepared, signed, and dated by an agent of the landfill, certifying the amount of LBP containing materials delivered to the landfill, within 3 days after delivery. Sampling Result; GA. Records of all personal and environmental sampling results shall be reviewed by the Lead Competent Person and submitted upon completion of the project. Quality Assurance; GA. Certificates shall meet the requirements of paragraph QUALITY ASSURANCE. The statements shall be signed and dated by a certifying officer after the award of this contract and contain the following: - a. Contractor's name and address. - b. Project name and location. - c. The specified requirements that are being certified. #### 1.3 QUALITY ASSURANCE # 1.3.1 Qualifications - a. Contractor: Certification that the Contractor has prior experience (2 years of on-the-job experience, minimum) on LBP abatement projects similar in nature and extent to ensure the capability to perform the abatement in a satisfactory manner. - b. Competent Person: Certification that the Contractor's full-time onsite Competent Person meets the competent person requirements of 29 CFR 1926 Section .62 and is experienced in administration and supervision of LBP abatement projects, including work practices, protective measures for building and personnel, disposal procedures, etc. This person shall have completed a Contractor Supervisor LBP abatement course and Lead Based Paint Building Inspector Coarse by an EPA Training Center or an equivalent certification course, and have had a minimum of 2 years on-the-job experience. - c. Testing Laboratory: The name, address, and telephone number of the independent testing laboratory selected to perform analysis for all lead samples. Provide documentation that the laboratory performing the analysis is an EPA National Lead Laboratory Accreditation Program (NLLAP) accredited laboratory and that it is rated proficient in the NIOSH/EPA Environmental Lead Proficiency Analytical Testing Program (ELPAT). Certification shall include accreditation for heavy metal analysis, list of experience relevant to analysis of lead in air, and a Quality Assurance and Quality Control Program. Currently, the American Association for Laboratory Accreditation (ASLA) and the American Industrial Hygiene Association (AIHA) are the EPA recognized laboratory accreditors. Documentation shall include the date of accreditation or reaccreditation. REPAIR FUEL SYSTEM MAINTENANCE DOCK - Building 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 # 1.3.2 Respiratory Protection Devices Manufacturer's certification of NIOSH or the Mine Safety and Health Administration (MSHA) approval for respiratory protection devices utilized on the site. # 1.3.3 Cartridges, Filters, and Vacuum Systems Manufacturer's certification of NIOSH approval of respirator cartridges (organic vapor, acid gas, mist, dust, high efficiency particulate); High Efficiency Particulate Air (HEPA) filtration capabilities for all cartridges, filters, and HEPA vacuum systems. #### 1.3.4 Medical Records Certification that employees who are involved in LBP abatement work, or work were exposure to lead may occur, have received medical examinations and will receive continued medical surveillance, including biological monitoring, as required by 29 CFR 1926 Section .62 and by the state and local regulations pertaining to such work. Records shall be retained, at Contractor expense, in accordance with 29 CFR 1910 Section .20. #### 1.3.5 Training Training certification shall be provided prior to the start of work involving LBP abatement, for all of the Contractors' workers, supervisors and Competent Person. Training shall meet the requirements of 29 CFR 1926 Section .62, 29 CFR 1926 Section .59 and 49 CFR 172, and that required by EPA or the state LBP course for the work to be performed. Training shall be provided prior to the time of job assignment and, at least, annually. Training may cover all abatement methods or focus only on those methods specified in the LBP Management Plan. # 1.3.6 Licenses and Permits Copies of licenses and permits as required by applicable Federal, state, and local regulations shall be obtained at least 20 days before the start of the building renovation work. #### 1.4 DESCRIPTION OF WORK This specification requires that appropriate engineering, work practices and administrative controls be developed by the Contractor to protect workers from exposure to lead during building renovation activities. Work under this specification includes: - a. Conducting lead exposure assessments; - b. Developing a Lead Exposure Compliance Plan; - c. Removal of lead based paint. An estimated 300 lineal feet of LBP is to be removed from steel framing prior to welding. The Contractor shall reference the applicable project drawings for abatement locations; - d. Developing a Waste Handling and Site Storage Plan; and - e. Developing a Waste Disposal Plan REPAIR FUEL SYSTEM MAINTENANCE DOCK - Building 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 #### 1.5 SITE VISIT Contractor shall visit and investigate the site, review the drawings and specifications, assess the amount of LBP (see survey data at the end of this specification section), and become familiar with conditions which will affect the work. #### 1.6 LIABILITY INSURANCE FOR LBP LBP abatement liability insurance shall be obtained without additional expense to the Government. The Contractor shall assume full responsibility and liability for the compliance with Federal, state, and local regulations pertaining to training, work practices, hauling, disposal, and protection of workers, visitors to the site, and persons occupying areas adjacent to the site. #### 1.7 PROTECTION OF EXISTING WORK TO REMAIN Abatement, storage, transportation, and disposal work shall be performed without damaging or contaminating adjacent work and areas. Where such work or areas are damaged or contaminated, the Contractor shall restore work and areas to the original condition. #### 1.8 COORDINATION WITH OTHER WORK Abatement and disposal work shall be coordinated with existing work and/or concurrent work being performed in adjacent areas. #### 1.9 SAFETY AND HEALTH REGULATORY REQUIREMENTS Work shall be performed in accordance with applicable regulations including, but not limited to 29 CFR 1910, 29 CFR 1926, especially Section .62. Matters of interpretation of the standards shall be submitted to the appropriate agency for resolution before starting work. Where these requirements vary, the most stringent shall apply. # 1.10 PRECONSTRUCTION SAFETY MEETING The Contractor shall attend a preconstruction safety meeting prior to starting any work involving LBP abatement. Items required to be submitted will be reviewed
for completeness, and where specified, for acceptance. # 1.11 RESPIRATORY PROTECTION PROGRAM A respiratory protection program shall be established as required by 29 CFR 1926 Section .103 and .62 and in accordance with 29 CFR 1910 Section .134. An approved respirator shall be furnished to each employee and visitor required to enter a LBP work control area. A fit test shall be conducted in accordance with 29 CFR 1926 Section .62, Appendix D. ### 1.12 HAZARD COMMUNICATION PROGRAM A Hazard Communication Program shall be implemented in accordance with 29 CFR 1926 Section .59. #### 1.13 SAFETY AND HEALTH OVERSIGHT The Competent Person shall be the onsite person responsible for coordination, safety, security and execution of the work. The Competent Person shall be able to identify existing and predictable lead hazards and shall have the authority to take corrective measures to eliminate them. The Competent Person shall be responsible for dust wipe, personal, and environmental sampling. REPAIR FUEL SYSTEM MAINTENANCE DOCK - Building 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 # 1.14 PREPARATORY INSPECTION MEETING The Contractor shall arrange and hold a preparatory inspection meeting immediately prior to beginning any operations that can lead to lead exposure. The Contractor's Lead Exposure Compliance Plan, including containment, engineering controls, worker protection, training, and monitoring, will be reviewed for completeness. #### 1.15 TRAINED AND COMPETENT PERSONNEL Work shall be performed by Competent Persons, qualified and trained in the abatement, enclosure, encapsulation, monitoring, testing, storage, treatment, hauling, and disposal of contaminated LBP debris material, and in subsequent cleanup of the affected environment. Workers shall comply with the appropriate Federal, state, and local regulations which mandate training requirements and work practices and shall be capable of performing the work under this contract. #### 1.16 POSTED WARNINGS AND NOTICES The following regulations, warnings, and notices shall be posted at the work site in accordance with 29 CFR 1926 Section .62. ### 1.16.1 Regulations Two copies of applicable Federal, state, and local regulations and NIOSH OSHA Booklet 3142 shall be maintained. One copy shall be posted at the work site and one copy shall be on file in the project office. #### 1.16.2 Worker Information Right-to-know notices shall be placed in clearly visible areas of the work site in compliance with Federal, state, and local regulations. # 1.16.3 Air Monitoring Results Daily air monitoring results shall be prepared so as to be easily understood by the workers, and shall be placed in a clearly visible area of the work site. # 1.16.4 Emergency Telephone Numbers A list of telephone numbers shall be posted at the site. The list shall include numbers of the local hospital, emergency squad, police and fire departments, Government and Contractor representatives who can be reached 24 hours per day, and professional consultants directly involved in the project. #### 1.17 EQUIPMENT AND MATERIALS Sufficient quantities of health and safety materials required by 29 CFR 1926 Section .62, and other materials and equipment needed to complete the project, shall be available and kept on the site. ### 1.17.1 Respirators Air-purifying respirators shall be approved by NIOSH for use with dust, fumes, and mists having permissible exposure limits less than 0.05 milligrams per cubic meter (i.e., have high-efficiency particulate air (HEPA) filters) and for other hazardous airborne contaminants that may be encountered, as determined by the Competent Person. Respirators shall comply with the requirements of 29 CFR 1926 Section .62 and shall be used in accordance with 29 CFR 1926 Section .103 and 29 CFR 1910 Section .134. REPAIR FUEL SYSTEM MAINTENANCE DOCK - Building 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 # 1.17.2 Respirator Cartridges A sufficient supply of respirator cartridges shall be maintained at the work site to provide new cartridges to employees, authorized visitors, and Government personnel throughout the duration of the project. Cartridges shall be replaced according to the manufacturer's recommendations, when breathing becomes difficult, or if the cartridge becomes wet. #### 1.17.3 Protective Clothing The Contractor shall furnish, at no cost to personnel, equipment/clothing for protection from airborne and waterborne LBP debris. An adequate supply of these items shall be available for the worker. #### 1.18 STORAGE OF MATERIALS Materials shall be stored in a place and manner which protects them from damage and contamination. During periods of cold weather, plastic materials shall be protected from the cold. No flammable or hazardous materials shall be stored inside any building. Regularly inspect materials to identify damaged or deteriorating items. Damaged or deteriorated items shall not be used and shall be removed from the site as soon as they are discovered. Any materials which become contaminated with LBP waste shall be disposed of consistent with the requirements of 40 CFR 148 and these specifications. Stored materials shall not present a hazard or an inconvenience to workers, visitors, and/or other occupants and employees of the building. #### PART 2 PRODUCTS (NOT APPLICABLE) #### PART 3 EXECUTION # 3.1 WORK PROCEDURES Building renovation work shall be performed in accordance with the accepted Contractor's Lead Exposure Compliance Plan as modified and approved. Procedures and equipment required to limit occupational and environmental exposures to lead shall be in accordance with 29 CFR 1926 Section .62, and as specified herein. Paint chips and associated waste shall be disposed of in compliance with Federal, state, and local regulations. #### 3.1.1 Personnel Protection Procedures Personnel shall wear and use protective clothing and equipment as specified in the Lead Exposure Compliance Plan. ### 3.1.2 Safety and Health Procedures The Competent Person shall be present on the work site throughout the renovation project to supervise, monitor, and document the project's health and safety provisions. #### 3.1.3 Safety and Health Responsibilities The Competent Person shall: - a. Verify that training meets applicable requirements. - b. Review and approve Lead Exposure Compliance Plan for conformance to the $\,$ applicable referenced standards. - c. Inspect LBP removal work for conformance with the accepted LBP Management Plan. REPAIR FUEL SYSTEM MAINTENANCE DOCK - Building 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 - d. Ensure that worker exposure air monitoring activities are in accordance with 29 CFR 1926 Section .62. - e. Ensure work is performed in strict accordance with specifications. - f. Ensure hazardous exposure to personnel and to the environment are adequately controlled. The Competent Person shall be responsible for directing personal, environmental, air monitoring, and lead dust wipe sampling. #### 3.1.4 Medical Surveillance Procedures Medical surveillance shall be implemented in accordance with the approved Contractor's Lead Exposure Compliance Plan and shall comply with the requirements of 29 CFR 1926 Section .62, including the provisions for biological monitoring, medical removal protection and a physician's written opinion, signed by the physician performing the employee examination. The Contractor shall provide a copy of the written opinion for Contractor's employees in the Lead Exposure Compliance Plan. ### 3.1.5 Engineering Controls and Containment Structures Engineering controls shall be used to minimize worker exposure to lead during building renovation activities. Engineering controls shall be provided in the Lead Exposure Compliance Plan. #### 3.1.6 Protection of Surrounding Soil The Contractor shall use 10 mil visqueen to protect bare soil from of LBP chips that may flake off the structure. # 3.4 MONITORING During the entire Building renovation, Competent Person shall be onsite directing the monitoring/sampling and inspecting the work to ensure that the health and safety requirements of this contract are satisfied. All monitoring shall be conducted in accordance with the Contractor's Leas Exposure Compliance Plan. ### 3.2 ADJACENT AREAS Damage to adjacent areas shall be repaired to the approval of the Contracting Officer. # 3.3 CLEANUP AND DISPOSAL # 3.3.1 Cleanup #### 3.3.1.1 Daily Surfaces containing LBP shall be maintained free of accumulations of paint chips and dust. Spread of dust and debris shall be restricted; waste shall not be distributed over the work area. Dry sweep or compressed air shall not be used for cleanup. At the end of each shift, the area shall be cleaned of visible lead paint contamination by vacuuming with a HEPA filtered vacuum cleaner and wet mopping the area. Building renovation work shall cease during the cleanup. REPAIR FUEL SYSTEM MAINTENANCE DOCK - Building 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 ### 3.3.2 Disposal ### 3.3.2.1 Toxicity Characteristic Leaching Procedure (TCLP) Results The results of the TCLP analysis performed of the waste generated during the building renovation work that contain lead based paint shall be used to determine disposal procedures. #### 3.3.2.2 Contaminated Waste Lead-contaminated waste, scrap, and debris shall be disposed of in accordance with 40 CFR 260, 40 CFR 261, 40 CFR 262, 40 CFR 263, 40 CFR 264, and 40 CFR 265. Land disposal restriction notification shall be as required by 40 CFR 268. #### 3.6.3 Non-Contaminated Waste Non-contaminated waste, scrap, and debris shall be disposed of off-site at a permitted disposal facility. ### 3.6.4 Disposal Documentation Written evidence shall be provided that the hazardous waste treatment, storage, or disposal facility is approved for lead disposal by the EPA and state or local regulatory agencies. One copy shall be submitted of the completed manifest; signed, and dated by the initial transporter in accordance with 40 CFR 262. #### 3.6.5 Title to Materials Materials
resulting from demolition work, except as specified otherwise, shall become the property of the Contractor, and shall be disposed of in accordance with Section 02050 DEMOLITION, except as specified herein. ### 3.6.6 Payment for Hazardous Waste Payment for disposal of hazardous waste will not be made until a signed copy of the manifest from the treatment or disposal facility certifying the amount of lead-containing materials delivered is returned and a copy is furnished to the Government. Fairchild AFB, WA PN: GJKZ 99-0151 SECTION 02120 # TRANSPORTATION AND DISPOSAL OF HAZARDOUS MATERIALS # PART 1 GENERAL # 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. # CODE OF FEDERAL REGULATIONS (CFR) | 40 CFR 61 | National Emission Standards for Hazardous Air
Pollutants | |------------------|---| | 40 CFR 261 | Identification and Listing of Hazardous Waste | | 40 CFR 262 | Standards Applicable to Generators of Hazardous Waste | | 40 CFR 263 | Standards Applicable to Transporters of Hazardous Waste | | 40 CFR 264 | Standards for Owners and Operators of
Hazardous Waste Treatment, Storage, and
Disposal Facilities | | 40 CFR 265 | Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities | | 40 CFR 266 | Standards for the Management of Specific
Hazardous Wastes and Specific Types of
Hazardous Waste Management Facilities | | 40 CFR 268 | Land Disposal Restrictions | | 40 CFR 270 | EPA Administered Permit Programs: The Hazardous Waste Permit Program | | 40 CFR 279 | Standards for the Management of Used Oil | | 40 CFR 300 | National Oil and Hazardous Substances
Pollution Contingency Plan | | 40 CFR 302 | Designation, Reportable Quantities, and Notification | | 40 CFR 761 | Polychlorinated Biphenyls (PCBs) Manufacturing, Processing, Distribution in Commerce, and Use Prohibitions | | 49 CFR 107 | Hazardous Materials Program Procedures | | DACA67-00-R-0222 | 02120-1 | Repair Fuel Systems Maintenance Dock, Building 1012 Fairchild AFB, WA PN: GJKZ 99-0151 49 CFR 172 Hazardous Materials Table, Special Provisions, Hazardous Materials Communications, Emergency Response Information, and Training Requirements 49 CFR 173 Shippers - General Requirements for Shipments and Packagings 49 CFR 178 Specifications for Packagings WASHINGTON STATE ADMINISTRATIVE CODE (WAC) 173-303 (1998) Dangerous Waste Regulations #### 1.2 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-1 Data Off-site Hazardous Waste Management; GA. Prior to start of work, a plan detailing the manner in which hazardous wastes shall be managed. SD-09 Reports # Recordkeeping; GA. Information necessary to file state annual or EPA biennial reports for all hazardous waste transported, treated, stored, or disposed of under this contract. The Contractor shall not forward these data directly to the regulatory agency but to the Contracting Officer at the specified time. The submittal shall contain all the information necessary for filing of the formal reports in the form and format required by the governing Federal or state regulatory agency. A cover letter shall accompany the data to include the contract number, Contractor name, and project location. # Exception Reports; GA. In the event that a manifest copy documenting receipt of hazardous waste at the treatment, storage, and disposal facility is not received within 35 days of shipment initiation, the Contractor shall prepare and submit an exception report to the Contracting Officer within 37 days of shipment initiation. SD-13 Certificates # Qualifications; FIO. Copies of the current certificates of registration issued to the Contractor and/or subcontractors or written statements certifying exemption from these requirements. Repair Fuel Systems Maintenance Dock, Building 1012 Fairchild AFB, WA PN: GJKZ 99-0151 Off-Site Policy Compliance Certification; FIO. A letter certifying that EPA considers the facilities to be used for all off-site disposal to be acceptable in accordance with the Off-Site policy in 40 CFR 300, Section .440. This certification shall be provided for wastes from Resource Conservation and Recovery Act (RCRA), 42 U.S.C. 6901 et seq., sites as well as from Comprehensive Environmental Response Compensation and Liability Act (CERCLA), 42 U.S.C. 9601 et seq., responses. See Attachment A, sample certification, at the end of this section. #### Certificates of Disposal; FIO. Certificates documenting the ultimate disposal of hazardous wastes, polychlorinated biphenyls (PCBs), and/or asbestos within 180 days of initial shipment. Receipt of these certificates will be required for final payment. # Shipping Documents and Packagings Certification; GA. All transportation related shipping documents to the Contracting Officer and Fairchild AFB Environmental Office, including manifests for asbestos waste shipment records, PCBs containing light ballasts, fluorscent light bulbs, and CFC-12 refrigerator coolant, for review a minimum of 5 days prior to anticipated pickup. Packaging assurances shall be furnished prior to transporting hazardous material; "generator copies" of waste manifests shall be furnished when shipments are originated; and "receipt copies" of asbestos waste shipment records at the designated disposal facility shall be furnished not later than 35 days after acceptance of the shipment. ## SD-18 Records # Notices of Non-Compliance and Notices of Violation; FIO. Notices of non-compliance or notices of violation by a Federal, state, or local regulatory agency issued to the Contractor in relation to any work performed under this contract. The Contractor shall immediately provide copies of such notices to the Contracting Officer. The Contractor shall also furnish all relevant documents regarding the incident and any information requested by the Contracting Officer, and shall coordinate its response to the notice with the Contracting Officer or his designated representative prior to submission to the notifying authority. The Contractor shall also furnish a copy to the Contracting Officer of all documents submitted to the regulatory authority, including the final reply to the notice, and all other materials, until the matter is resolved. #### 1.3 QUALIFICATIONS ## 1.3.1 Transportation and Disposal Coordinator The Contractor shall designate, by position and title, one person to act as the Transportation and Disposal Coordinator (TDC) for this contract. The TDC shall serve as the single point of contact for all environmental regulatory matters and shall have overall responsibility for total environmental compliance at the site including, but not limited to, accurate identification and classification of hazardous waste and hazardous materials; determination of proper shipping names; identification of marking, labeling, packaging and placarding requirements; completion of waste profiles, hazardous waste manifests, asbestos waste shipment records, #### 00029/11 Repair Fuel Systems Maintenance Dock, Building 1012 Fairchild AFB, WA PN: GJKZ 99-0151 PCB manifests, bill of ladings, exception and discrepancy reports; and all other environmental documentation. The TDC shall have, at a minimum, one year of specialized experience in the management and transportation of hazardous waste. # 1.3.2 Training The Contractor's hazardous materials employees shall be trained, tested, and certified to safely and effectively carry out their assigned duties in accordance with 49 CFR 107. #### 1.3.3 Certification The Contractor and/or subcontractors transporting hazardous materials shall possess a current certificate of registration issued by the Research and Special Programs Administration (RSPA), U.S. Department of Transportation, when required by $49~\mathrm{CFR}~107$, Subpart G. # 1.4 LAWS AND REGULATIONS REQUIREMENTS Work shall meet or exceed the minimum requirements established by Federal, state, and local laws and regulations which are applicable. These requirements are amended frequently and the Contractor shall be responsible for complying with amendments as they become effective. In the event that compliance exceeds the scope of work or conflicts with specific requirements of the contract, the Contractor shall notify the Contracting Officer immediately. #### 1.5 DEFINITIONS - a. Hazardous Material. A substance or material which has been determined by the Secretary of Transportation to be capable of posing an unreasonable risk to health, safety, and property when transported in commerce, and which has been so designated pursuant to the Hazardous Materials Transportation Act, 49 U.S.C. Appendix Section 1801 et seq. The term includes materials designated as hazardous materials under the provisions of 49 CFR 172, Sections .101 and .102 and materials which meet the defining criteria for hazard classes and divisions in 49 CFR 173. EPA designated hazardous wastes are also hazardous materials. - b. Hazardous Waste. A waste which meets criteria established in RCRA or specified by the EPA in 40 CFR 261 or which has been designated as hazardous by a RCRA authorized state program. #### PART 2 PRODUCTS # 2.1 MATERIALS The Contractor shall provide all of the materials required for the packaging, labeling, marking, placarding and transportation of hazardous wastes and hazardous materials in conformance with Department of Transportation standards. Details in this specification shall not be construed as establishing the limits of the Contractor's responsibility. Repair Fuel Systems Maintenance Dock, Building 1012 Fairchild AFB, WA PN: GJKZ 99-0151 ####
2.1.1 Packagings The Contractor shall provide containers for packaging hazardous materials/wastes consistent with the authorizations referenced in the Hazardous Materials Table in 49 CFR 172, Section .101, Column 8. ## 2.1.2 Markings The Contractor shall provide markings for each hazardous material/waste package, freight container, and transport vehicle consistent with the requirements of 49 CFR 172, Subpart D. Markings shall be capable of withstanding, without deterioration or substantial color change, a 180 day exposure to conditions reasonably expected to be encountered during container storage and transportation. ## 2.1.3 Labeling The Contractor shall provide primary and subsidiary labels for hazardous materials/wastes consistent with the requirements in the Hazardous Materials Table in 49 CFR 172, Section .101, Column 6. Labels shall meet design specifications required by 49 CFR 172, Subpart E including size, shape, color, printing, and symbol requirements. Labels shall be durable and weather resistant and capable of withstanding, without deterioration or substantial color change, a 180 day exposure to conditions reasonably expected to be encountered during container storage and transportation. ## 2.1.4 Placards For each off-site shipment of hazardous material/waste, the Contractor shall provide primary and subsidiary placards consistent with the requirements of 49 CFR 172, Subpart F. Placards shall be provided for each side and each end of bulk packaging, freight containers, transport vehicles, and rail cars requiring such placarding. Placards may be plastic, metal, or other material capable of withstanding, without deterioration, a 30 day exposure to open weather conditions and shall meet design requirements specified in 49 CFR 172, Subpart F. ## 2.1.5 Spill Response Materials The Contractor shall provide spill response materials including, but not limited to, containers, adsorbent, shovels, and personal protective equipment. Spill response materials shall be available at all times in which hazardous materials/wastes are being handled or transported. Spill response materials shall be compatible with the type of material being handled. #### 2.2 EQUIPMENT AND TOOLS The Contractor shall provide miscellaneous equipment and tools necessary to handle hazardous materials and hazardous wastes in a safe and environmentally sound manner. Fairchild AFB, WA PN: GJKZ 99-0151 PART 3 EXECUTION #### 3.1 ON-SITE HAZARDOUS WASTE MANAGEMENT These paragraphs apply to Government owned waste only. Contractors are prohibited by 10 U.S.C. 2692 from storing contractor owned waste on site for any length of time. The Contractor shall be responsible for ensuring compliance with all Federal, state, and local hazardous waste laws and regulations and shall verify those requirements when preparing reports, waste shipment records, hazardous waste manifests, or other documents. The Contractor shall identify hazardous wastes using criteria set forth in 40 CFR 261 or all applicable state and local laws, regulations, and ordinances. When accumulating hazardous waste on-site, the Contractor shall comply with generator requirements in 40 CFR 262 and applicable WAC 173-303. Accumulation start dates shall commence when waste is first generated (i.e. containerized or otherwise collected for discard). The Contractor shall only use containers in good condition and compatible with the waste to be stored. The Contractor shall be responsible for ensuring containers are closed except when adding or removing waste. The Contractor shall be responsible for immediately marking all hazardous waste containers with information required by 40 CFR 262, Section .32 and WAC 173-303 as soon as the waste is containerized. An additional marking shall be placed on containers of "unknowns" designating the date sampled, and the suspected hazard. The Contractor shall be responsible for inspecting containers for signs of deterioration and shall be responsible for responding to any spills or leaks. The Contractor shall inspect all hazardous waste areas weekly and shall provide written documentation of the inspection. Inspection logs shall contain date and time of inspection, name of individual conducting the inspection, problems noted, and corrective actions taken. ## 3.1.1 Hazardous Waste Classification The Contractor, in consultation with the Contracting Officer and Fairchild AFB Environmental Office (generator), shall identify all waste codes applicable to each waste stream based on requirements in 40 CFR 261 or any applicable state or local law or regulation. The Contractor shall also identify all applicable treatment standards in 40 CFR 268 and state land disposal restrictions and shall make a determination as to whether or not the waste meets or exceeds the standards. Waste profiles, analyses, classification and treatment standards information shall be submitted to Contracting Officer for review and approval. ## 3.1.2 Management Plan The Contractor shall prepare a plan detailing the manner in which hazardous wastes will be managed and describing the types and volumes of hazardous wastes anticipated to be managed as well as the management practices to be utilized. The plan shall identify the method to be used to ensure accurate piece counts and/or weights of shipments; shall identify waste minimization methods; shall propose facilities to be utilized for treatment, storage, and/or disposal; shall identify areas on-site where hazardous wastes are to be handled; shall identify whether transfer facilities are to be utilized; and if so, how the wastes will be tracked to ultimate disposal. #### 3.1.3 Abatement Activities The Contractor shall remove the following from building 1012 and properly dispose: Fluorescent light bulbs - Approximately 80 4' fluorescent light bulbs are located throughout the building. Under EPA regulations, fluorescent light bulbs are treated as universal waste. The Contractor shall coordinate with the Contracting Officer and Fairchild AFB Environmental Office to determine the desire to recycle these bulbs. Those bulbs not recycled shall be shipped intact to an EPA qualified fluorescent light recycling facility. PCB containing light ballasts - Approximately 40 PCB containing fluorescent light ballasts were identified in the hazardous materials survey. These ballasts shall be removed and shipped to an EPA certified PCB ballast recycling facility. Refrigerators with CFC-12 coolant - Four refrigerators containing CFC-12 coolant were identified in the hazardous materials survey. These refrigerator units shall be drained of CFC-12 coolant into a sealed container and shipped to an EPA certified recycling/disposal facility. ## 3.2 OFF-SITE HAZARDOUS WASTE MANAGEMENT The Contractor shall use RCRA permitted facilities which meet the requirements of 40 CFR 264 or facilities operating under interim status which meet the requirements of 40 CFR 265. Off-site treatment, storage, and/or disposal facilities with significant RCRA violations or compliance problems (such as facilities known to be releasing hazardous constituents into ground water, surface water, soil, or air) shall not be used. # 3.2.1 Description of TSD Facility and Transporter The Contractor shall provide the Contracting Officer with EPA ID numbers, names, locations, and telephone numbers of TSD facilities and transporters. This information shall be contained in the Hazardous Waste Management Plan for approval prior to waste disposal. ## 3.2.2 Status of the Facility Facilities receiving wastes must be permitted in accordance with 40 CFR 270 or operating under interim status in accordance with 40 CFR 265 requirements, or must be permitted by an authorized state program. Additionally, prior to using a TSD Facility, the Contractor shall contact the EPA Regional Off-site Coordinator specified in 40 CFR 300, Section .440, to determine the facility's status, and document all information necessary to satisfy the requirements of the EPA Off-Site policy and furnish this information to the Contracting Officer. # 3.2.3 Shipping Documents and Packagings Certification Prior to shipment of any hazardous material off-site, the Contractor's TDC shall provide written certification to the Contracting Officer/Fairchild AFB Environmental Flight office that hazardous materials have been properly packaged, labeled, and marked in accordance with Department of Transportation and EPA requirements. Fairchild AFB, WA PN: GJKZ 99-0151 # 3.2.4 Transportation The Contractor shall use manifests for transporting hazardous wastes as required by 40 CFR 263 or any applicable state or local law or regulation. Transportation shall comply with all requirements in the Department of Transportation referenced regulations in the 49 CFR series. The Contractor shall acquire manifests in accordance with the hierarchy established in 40 CFR 262, Section .21. The Contractor shall prepare hazardous waste manifests for each shipment of hazardous waste shipped off-site. Manifests shall be completed using instructions in 40 CFR 262, Subpart B and any applicable state or local law or regulation. Manifests and waste profiles shall be submitted to Fairchild AFB Environmental Flight Office for review and approval. The Contractor shall prepare land disposal restriction notifications as required by 40 CFR 268 or any applicable state or local law or regulation for each shipment of hazardous waste. Notifications shall be submitted with the manifest to the Contracting Officer for review and approval. # 3.2.5 Treatment and Disposal of Hazardous Wastes The waste shall be transported to an approved hazardous waste treatment, storage, or disposal facility within 90 days of the accumulation start date on each container. The Contractor shall ship hazardous wastes only to facilities which are properly permitted to accept the hazardous waste or operating under interim status. The Contractor shall ensure wastes are treated to meet land disposal treatment standards
in 40 CFR 268 prior to land disposal. The Contractor shall propose TSD facilities via submission of the Hazardous Waste Management Plan, subject to the approval of the Contracting Officer. #### 3.3 HAZARDOUS MATERIALS MANAGEMENT The Contractor, in consultation with the generator, Fairchild AFB Environmental Flight Office, shall evaluate prior to shipment of any material off-site, whether the material is regulated as a hazardous waste in addition to being regulated as a hazardous material; this shall be done for the purpose of determining proper shipping descriptions, marking requirements, etc., as described below. ## 3.3.1 Identification of Proper Shipping Names The Contractor shall use 49 CFR 172, Section .101 to identify proper shipping names for each hazardous material (including hazardous wastes) to be shipped off-site. Proper shipping names shall be submitted to the Contracting Officer in the form of draft shipping documents for review and approval. # 3.3.2 Packaging, Labeling, and Marking The Contractor shall package, label, and mark hazardous materials/wastes using the specified materials and in accordance with the referenced authorizations. Fairchild AFB, WA PN: GJKZ 99-0151 # 3.3.3 Shipping Documents The Contractor shall ensure that each shipment of hazardous material sent off-site is accompanied by properly completed shipping documents. ## 3.3.3.1 PCB Waste Shipment Documents The Contractor shall prepare hazardous waste manifests for each shipment of PCB waste shipped off-site. Manifests shall be completed using instructions in 40 CFR 761, Sections .207 and .208 and all other applicable requirements. Documents shall be submitted to Contracting Officer for review and approval. ## 3.3.3.2 Asbestos Waste Shipment Documents The Contractor shall prepare waste shipment records as required by 40 CFR 61 for shipments of asbestos. Waste shipment records shall be submitted to the Contracting Officer for review and approval. Waste shipment records shall be signed by the Contractor. # 3.3.3.3 Other Hazardous Material Shipment Documents The Contractor shall prepare a bill of lading for each shipment of hazardous material which is not accompanied by a hazardous waste manifest or asbestos waste shipment record which fulfills the shipping paper requirements. The bill of lading shall satisfy the requirements of 49 CFR 172, Subpart C, and any applicable state or local law or regulation, and shall be submitted to the Contracting Officer for review and approval. For laboratory samples and treatability study samples, the Contractor shall prepare bills of lading and other documentation as necessary to satisfy conditions of the sample exclusions in 40 CFR 261, Section .4(d) and (e) and any applicable state or local law or regulation. Bill of ladings requiring shipper's certifications will be signed by the Fairchild AFB Environmental Office. # 3.4 OBTAINING EPA ID NUMBERS The Contractor shall contact Fairchild AFB Environmental Flight Office for EPA ID number. #### 3.5 WASTE MINIMIZATION The Contractor shall minimize the generation of hazardous waste to the maximum extent practicable. The Contractor shall take all necessary precautions to avoid mixing clean and contaminated wastes. The Contractor shall identify and evaluate recycling and reclamation options as alternatives to land disposal. Requirements of 40 CFR 266 shall apply to: hazardous wastes recycled in a manner constituting disposal; hazardous waste burned for energy recovery; lead-acid battery recycling; and hazardous wastes with economically recoverable precious metals. # 3.6 RECORDKEEPING The Contractor shall be responsible for maintaining adequate records to support information provided to the Contracting Officer regarding exception reports, annual reports, and biennial reports. The Contractor shall be responsible for maintaining asbestos waste shipment records for a minimum of 00029/11 Repair Fuel Systems Maintenance Dock, Building 1012 Fairchild AFB, WA PN: GJKZ 99-0151 3 years from the date of shipment or any longer period required by any applicable law or regulation or any other provision of this contract. ## 3.7 SPILL RESPONSE The Contractor shall respond to any spill of hazardous material or hazardous waste which are in the custody or care of the Contractor, pursuant to this contract. Any direction from the Contracting Officer concerning a spill or release shall not be considered a change under the contract. The Contractor shall comply with all applicable requirements of Federal, state, or local laws or regulations regarding any spill incident. END OF SECTION #### SECTION 02200 #### DEMOLITION AND REMOVAL DEBRIS #### PART 1 GENERAL #### 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. #### ENGINEERING MANUALS (EM) EM 385-1-1 (1992) U.S. Army Corps of Engineers Safety and Health Requirements Manual ## 1.2 GENERAL REQUIREMENTS The work includes demolition, removal of certain pieces of HVAC equipment, salvage of identified items and materials, and removal of resulting rubbish and debris. Rubbish and debris shall be removed from Government property daily, unless otherwise directed, to avoid accumulation at the demolition site. Materials that cannot be removed daily shall be stored in areas specified by the Contracting Officer. In the interest of occupational safety and health, the work shall be performed in accordance with EM 385-1-1, Section 23, Demolition, and other applicable Sections. In the interest of conservation, salvage shall be pursued to the maximum extent possible; salvaged items and materials shall become the property of the Contractor and shall be removed from the Site. Demolition also includes the removal of 80 fluorescent light bulbs with 40 PCB containing light ballasts. Removed fluorescent lights shall be recycled back to Fairchild AFB maintenance or notify Fairchild AFB Environmental Office to manage the bulbs under their universal waste program. The PCB light ballasts shall be shipped to a PCB light ballast disposal facility. Removed asphalt pavement shall be recycled. Duplicate receipts with weights of recycled materials shall be submitted. ## 1.3 SUBMITTALS The procedures proposed for the accomplishment of the work. The procedures shall provide for safe conduct of the work, including procedures and methods to provide necessary supports, lateral bracing and shoring when required, careful removal and disposition of materials specified to be salvaged, protection of property which is to remain undisturbed, coordination with other work in progress, and timely disconnection of utility services. The procedures shall include a detailed description of the methods and equipment to be used for each operation, and the sequence of operations in accordance with EM 385-1-1. #### 1.4 DUST CONTROL The amount of dust resulting from demolition shall be controlled to prevent the spread of dust to occupied portions of the construction site and to avoid creation of a nuisance in the surrounding area. Use of water will not be permitted when it will result in, or create, hazardous or objectionable conditions such as ice, flooding and pollution. #### 1.5 PROTECTION #### 1.5.1 Protection of Personnel During the demolition work the Contractor shall continuously evaluate the condition of the installations being demolished and take immediate action to protect all personnel working in and around the demolition site. No area, section, or component of floors, roofs, walls, columns, pilasters, piping systems, mechanical equipment, or structural elements will be allowed to be left standing without sufficient bracing, shoring, or lateral support to prevent collapse or failure while workmen remove debris or perform other work in the immediate area. The Contractor shall ensure that no elements determined to be unstable are left unsupported and shall be responsible for placing and securing bracing, shoring, or lateral supports as may be required as a result of any cutting, removal, or demolition work performed under this contract. ## 1.5.2 Protection of Existing Property Before beginning any demolition work, the Contractor shall survey the site and examine the drawings and specifications to determine the extent of the work. The Contractor shall take necessary precautions to avoid damage to existing items to remain in place, to be reused, or to remain the property of the Government; any damaged items shall be repaired or replaced as approved by the Contracting Officer. The Contractor shall coordinate the work of this section with all other work and shall construct and maintain shoring, bracing, and supports as required. The Contractor shall ensure that structural elements are not overloaded and shall be responsible for increasing structural supports or adding new supports as may be required as a result of any cutting, removal, or demolition work performed under this contract. #### 1.5.3 Protection From the Weather The interior of buildings to be protected from the weather at all times. #### 1.6 BURNING The use of burning at the project site for the disposal of refuse and debris will not be permitted. All material and equipment must be removed from the site and disposed of by the Contractor at no additional cost to the Contract. ## 1.7 USE OF EXPLOSIVES Use of explosives will not be permitted. #### 1.8 AVAILABILITY OF WORK AREAS Areas in which the work is to be accomplished will be available in accordance with the Contractor developed work schedule which has been approved by the CO. #### 1.9 ASBESTOS ABATEMENT Upon encountering any asbestos material of any type immediate written notice shall be given to the CO. The area where the asbestos is found shall be surrounded by tape barricades giving notice of the presence of asbestos. All asbestos shall be removed and disposed of as provided for under a separate Section of these specifications. A survey
shows that a minimum 1250 feet of steam and condensate piping insulation, 80 fittings, and insulation for mechanical equipment in the Mechanical Room are to be removed before demolition of the mechanical piping systems and equipment can be started. ## PART 3 EXECUTION ## 3.1 DEMOLITION--SCOPE OF WORK The scope of the demolition work under this contract shall consist of removing the entire steam and condensate system, 1,250 feet of piping minimum, from the structure, certain specific pieces of equipment associated with the HVAC operating with Central Steam as indicated on the drawings. The existing underground steam and condensate lines will be capped (welded) at the entrance to the Steam Pit in the Mechanical Room and finished with a water tight sealant material. The underground conduit and piping removal is not a part of this contract. #### 3.2 UTILITIES The existing underground central steam lines shall not be removed as is provided for herein above. A new underground hot water service shall be provided to the Hanger Door Snow Melting System as is indicated. If existing utility lines are encountered that are not indicated on the drawings, the Contracting Officer shall be notified prior to further work in that area. # 3.3 Material Salvaged for the Contractor Material and equipment to be demolished is vested in the Contractor The Government will not be upon receipt of notice to proceed. responsible for the condition, loss or damage to such property after notice to proceed. All material, equipment and debris shall be immediately removed from the Property and properly disposed of by the Contractor. Material salvaged by the Contractor shall not be sold on the site. # 3.4 CLEAN UP Debris and rubbish connected with the general demolition activities and/or the steam and condensate systems removal shall be removed from premises. Debris shall be removed and transported in a manner that prevents spillage on streets or adjacent areas. Local regulations regarding hauling and disposal shall apply. END OF SECTION SECTION 02234 ## SUBBASE COURSES ## PART 1 GENERAL ## 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. ## AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | ASTM C 117 | (1995) Materials Finer Than 75 micrometer (No. 200) Sieve in Mineral Aggregates by Washing | |-------------|---| | ASTM C 131 | (1989) Resistance to Degradation of Small-Size
Coarse Aggregate by Abrasion and Impact in the
Los Angeles Machine | | ASTM C 136 | (1995a) Sieve Analysis of Fine and Coarse
Aggregates | | ASTM D 75 | (1987; R 1992) Sampling Aggregates | | ASTM D 422 | (1963; R 1990) Particle-Size Analysis of Soils | | ASTM D 1556 | (1990) Density and Unit Weight of Soil in Place by the Sand-Cone Method | | ASTM D 1557 | (1991) Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/cu. ft. (2,700 kN-m/cu.m.)) | | ASTM D 2167 | (1994) Density and Unit Weight of Soil in
Place by the Rubber Balloon Method | | ASTM D 2922 | (1991) Density of Soil and Soil-Aggregate in Place by Nuclear Methods (Shallow Depth) | | ASTM D 3017 | (1988; R 1993) Water Content of Soil and Rock in Place by Nuclear Methods (Shallow Depth) | | ASTM D 4318 | (1993) Liquid Limit, Plastic Limit, and Plasticity Index of Soils | | ASTM E 11 | (1995) Wire-Cloth Sieves for Testing Purposes | # 1.2 NOT USED # 1.3 DEGREE OF COMPACTION Degree of compaction is a percentage of the maximum density obtained by the test procedure presented in ASTM D 1557. In this specification, degree of compaction shall be a percentage of laboratory maximum density. #### 1.4 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with SECTION 01330 SUBMITTAL PROCEDURES: SD-01 Data Equipment; FIO. List of proposed equipment to be used in performance of construction work, including descriptive data. SD-09 Reports Sampling and Testing; GA. Copies of initial and in-place test results. #### 1.5 SAMPLING AND TESTING Sampling and testing shall be the responsibility of the Contractor. Sampling and testing shall be performed by an approved commercial testing laboratory, or by the Contractor subject to approval. Tests shall be performed at the specified frequency. If the Contractor elects to establish its own testing facilities, no work requiring testing will be permitted until the Contractor's facilities have been inspected and approved. The first inspection of the facilities will be at the Government's expense; any subsequent inspections required because of failure of the first inspection shall be at the Contractor's expense. Such costs will be deducted from the total amount due the Contractor. The materials shall be tested to establish compliance with the specified requirements. #### 1.5.1 Sampling Samples for laboratory testing shall be taken in conformance with ASTM D 75. When deemed necessary, the sampling will be observed by the Contracting Officer. #### 1.5.2 Tests #### 1.5.2.1 Sieve Analysis Sieve analysis shall be made in conformance with ASTM C 117 and ASTM C 136 and ASTM D 422. Sieves shall conform to ASTM E 11. # 1.5.2.2 Liquid Limit and Plasticity Index Liquid limit and plasticity index shall be determined in accordance with ASTM D 4318. #### 1.5.2.3 Moisture-Density Determinations The maximum density and optimum moisture shall be determined in accordance with ASTM D 1557. #### 1.5.2.4 Density Tests Density shall be measured in the field in accordance with ASTM D 1556, ASTM D 2167,or ASTM D 2922. For the method presented in ASTM D 2922 the calibration curves shall be checked and adjusted, if necessary, using only the sand cone method as described in paragraph Calibration, of the ASTM publication. Tests performed in accordance with ASTM D 2922 result in a wet unit weight of soil and, when using this method, ASTM D 3017 shall be used to determine the moisture content of the soil. The calibration curves furnished with the moisture gauges shall also be checked along with density calibration checks as described in ASTM D 3017. The calibration checks of both the density and moisture gauges shall be made by the prepared containers of material method, as described in paragraph Calibration, in ASTM D 2922, on each different type of material to be tested at the beginning of a job and at intervals as directed. #### 1.5.2.5 Wear Test Wear tests shall be made on subbase course material in conformance with ASTM C 131. #### 1.5.2.6 Soundness Test Soundness tests shall be made on subbase course material in conformance with ASTM C 88. ## 1.5.3 Testing Frequency ## 1.5.3.1 Initial Tests One of each of the following tests shall be performed on the proposed material prior to commencing construction to demonstrate that the proposed material will meet all specified requirements when furnished, and after placing and compaction. - a. Sieve Analysis including 0.02 mm size material - b. Liquid limit and plasticity index moisture-density relationship - c. Wear - d. Soundness - e. Moisture-Density Relationship ## 1.5.3.2 In-Place Tests One of each of the following tests shall be performed on samples taken from the placed and compacted subbase course. Samples shall be taken for each 500 square yards of each layer of material placed in each area. - a. Sieve Analysis including 0.02 mm size material - b. Field Density and Moisture - c. Liquid limit and plasticity index # 1.5.4 Approval of Material The source of the material shall be selected 14 days prior to the time the material will be required in the work. Approval of the materials will be based on tests for gradation, liquid limit, and plasticity index performed on samples taken from the completed and compacted subbase course. #### 1.6 WEATHER LIMITATIONS Construction shall be done when the atmospheric temperature is above 35 degrees F. When the temperature falls below 35 degrees F, the Contractor shall protect all completed areas by approved methods against detrimental effects of freezing. Completed areas damaged by freezing, rainfall, or other weather conditions shall be corrected to meet specified requirements. #### 1.7 EQUIPMENT All plant, equipment, and tools used in the performance of the work will be subject to approval before the work is started and shall be maintained in satisfactory working condition at all times. The equipment shall be adequate and shall have the capability of producing the required compaction, meeting grade controls, thickness control, and smoothness requirements as set forth herein. #### PART 2 PRODUCTS #### 2.1 MATERIALS #### 2.1.1 Subbase Course Aggregates shall consist of crushed stone, gravel,, sand, or other sound, durable, approved materials processed and blended or naturally combined. Aggregates shall be durable and sound, free from lumps and balls of clay, organic matter, objectionable coatings, and other foreign material. Material retained on the No. 4 sieve shall have a percentage of wear not to exceed 50 percent after 500 revolutions when tested as specified in ASTM C 131. The coarse aggregate shall not have a loss greater than 15 percent weighted average at five cycles when tested for soundness in magnesium sulfate. Aggregate shall be reasonably uniform in density and quality. Aggregates shall have a maximum size of 1-1/2 inch and shall be within the limits specified as follows: | | Maximum Allowable Percentage by Weight | |-------------------|--| | Sieve Desigantion | Passing Square-Mesh Sieve | | No. 10 | 50 | | No. 200 | 5 | Particles having diameters less than 0.02 millimeter shall not be in excess of 3 percent by weight of the total sample tested as determined in
accordance with ASTM D 422. The portion of any blended component and of the completed course passing the No. 40 sieve shall be either nonplastic or shall have a liquid limit not greater than 25 and a plasticity index not greater than 5. ## PART 3 EXECUTION ## 3.1 NOT USED ## 3.2 PREPARATION OF UNDERLYING MATERIAL Prior to constructing the subbase course, the subgrade shall be cleaned of all foreign substances. Subgrade shall conform to the requirements of SECTION 02300 EARTHWORK. Ruts, or soft yielding spots, in the underlying courses, subgrade areas having inadequate compaction, and deviations of the surface from the specified requirements, shall be corrected by loosening and removing soft or unsatisfactory material and by adding approved material, reshaping to line and grade, and recompacting to specified density requirements. The finished underlying course shall not be disturbed by traffic or other operations and shall be maintained by the Contractor in a satisfactory condition until the subbase course is placed. #### 3.3 GRADE CONTROL The finished and completed subbase course shall conform to the lines, grades, and cross sections shown. The lines, grades, and cross sections shown shall be maintained by means of line and grade stakes placed by the Contractor at the work site. #### 3.4 MIXING AND PLACING MATERIALS The materials shall be mixed and placed to obtain uniformity of the subbase material at the water content specified. The Contractor shall make such adjustments in mixing or placing procedures or in equipment as may be directed to obtain the true grades, to minimize segregation and degradation, to reduce or accelerate loss or increase of water, and to insure a satisfactory subbase course. #### 3.5 LAYER THICKNESS The compacted thickness of the completed course shall be as indicated. When a compacted layer of 6 inches is specified, the material may be placed in a single layer; when a compacted thickness of more than 6 inches is required, no layer shall exceed 6 inches nor be less than 3 inches when compacted. ## 3.6 COMPACTION Each layer of the subbase course shall be compacted as specified with approved compaction equipment. Water content shall be maintained during the compaction procedure to within plus or minus 2 percent of optimum water content, as determined from laboratory tests, as specified in paragraph SAMPLING AND TESTING. In all places not accessible to the rollers, the mixture shall be compacted with hand-operated power tampers. Compaction shall continue until each layer is compacted through the full depth to at least 95 percent of laboratory maximum density. The Contractor shall make such adjustments in compacting or finishing procedures as may be directed to obtain true grades, to minimize segregation and degradation, to reduce or increase water content, and to ensure a satisfactory subbase course. Any materials that are found to be unsatisfactory shall be removed and replaced with satisfactory material or reworked, as directed, to meet the requirements of this specification. ## 3.7 NOT USED ## 3.8 EDGES Approved material shall be placed along the edges of the subbase course in such quantity as will compact to the thickness of the course being constructed. When the course is being constructed in two or more layers, at least a 1 foot width of the shoulder shall be rolled and compacted simultaneously with the rolling and compacting of each layer of the subbase course, as directed. #### 3.9 SMOOTHNESS TEST The surface of each layer shall not show deviations in excess of 3/8 inch when tested with a 12 foot straightedge applied parallel with and at right angles to the centerline of the area to be paved. Deviations exceeding this amount shall be corrected by removing material, replacing with new material, or reworking existing material and compacting, as directed. #### 3.10 THICKNESS CONTROL The completed thickness of the subbase course shall be in accordance with the thickness and grade indicated on the drawings. The thickness of each course shall be measured at intervals providing at least one measurement for each 500 square yards or part thereof of subbase course. The thickness measurement shall be made by test holes, at least 3 inches in diameter through the course. The completed subbase course shall not be more than 1/2 inch deficient in thickness nor more than 1/2 inch above or below the established grade. Where any of these tolerances are exceeded, the Contractor shall correct such areas by scarifying, adding new material of proper gradation or removing material, and compacting, as directed. Where the measured thickness is 1/2 inch or more thicker than shown, the course will be considered as conforming with the specified thickness requirements plus 1/2 inch. The average job thickness shall be the average of the job measurements as specified above but within 1/4 inch of the thickness shown. #### 3.11 MAINTENANCE The subbase course shall be maintained in a satisfactory condition until accepted. END OF SECTION #### SECTION 02300 #### EARTHWORK #### PART 1 GENERAL #### 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. #### AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | ASTM C 136 | (1996) Sieve Analysis of Fine and Coarse
Aggregates | |-------------|--| | ASTM D 1556 | (1990; R 1996) Density and Unit Weight of
Soil in Place by the Sand-Cone Method | | ASTM D 1557 | (1991) Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/cu. ft. (2,700 kN-m/cu. m.)) | | ASTM D 2167 | (1994) Density and Unit Weight of Soil in
Place by the Rubber Balloon Method | | ASTM D 2487 | (1993) Classification of Soils for
Engineering Purposes (Unified Soil
Classification System) | | ASTM D 4318 | (1995a) Liquid Limit, Plastic Limit, and
Plasticity Index of Soils | ## 1.2 DEFINITIONS # 1.2.1 Satisfactory Materials Satisfactory materials shall comprise any materials classified by ASTM D 2487 as GW, GP, GM, GP-GM, GW-GM, GC, GP-GC, GM-GC, SW, SP, SM, SP-SM, CL. Satisfactory materials for grading shall be comprised of stones less than 8 inches, except for fill material for pavements which shall be comprised of stones less than 3 inches in any dimension. # 1.2.2 Unsatisfactory Materials Materials which do not comply with the requirements for satisfactory materials are unsatisfactory. Unsatisfactory materials also include manmade fills; trash; refuse; backfills from previous construction; and material classified as satisfactory which contains root and other organic matter or frozen material. The Contracting Officer shall be notified of any contaminated materials. #### 1.2.3 Cohesionless and Cohesive Materials Cohesionless materials include materials classified in ASTM D 2487 as GW, GP, SW, and SP. Cohesive materials include materials classified as GC, SC, ML, CL, MH, and CH. Materials classified as GM and SM will be identified as cohesionless only when the fines are nonplastic. Testing required for classifying materials shall be in accordance with ASTM D 4318, ASTM C 136, ASTM D 422, and ASTM D 1140. ## 1.2.4 Degree of Compaction Degree of compaction required is expressed as a percentage of the maximum density obtained by the test procedure presented in ASTM D 1557abbreviated as a percent of laboratory maximum density. #### 1.3 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-09 Reports Testing; GA. Within 24 hours of conclusion of physical tests, 2 copies of test results, including calibration curves and results of calibration tests. #### 1.4 SUBSURFACE DATA Subsurface soil boring logs are shown on the drawings. These data represent the best subsurface information available; however, variations may exist in the subsurface between boring locations. The COE has conducted geotechnical exploration along the Alignments and inside the Hanger. This information is available from the CO. ## 1.5 CLASSIFICATION OF EXCAVATION No consideration will be given to the nature of the materials, and all excavation will be designated as unclassified excavation. # 1.6 UTILIZATION OF EXCAVATED MATERIALS Unsatisfactory materials removed from excavations shall be disposed of offsite. Satisfactory material removed from excavations shall be used, insofar as practicable, in the construction of fills, embankments, subgrades, shoulders, bedding (as backfill), and for similar purposes. No satisfactory excavated material shall be wasted without specific written authorization. Satisfactory material authorized to be wasted shall be disposed of in designated areas approved for surplus material storage or designated waste areas as directed. PART 2 PRODUCTS (NOT APPLICABLE) PART 3 EXECUTION #### 3.1 GENERAL EXCAVATION The Contractor shall perform excavation of every type of material encountered within the limits of the project to the lines, grades, and elevations indicated and as specified. Grading shall be in conformity with the typical sections shown and the tolerances specified in paragraph FINISHING. Satisfactory excavated materials shall be transported to and placed in fill or embankment within the limits of the work. Unsatisfactory materials encountered within the limits of the work shall be excavated below grade and replaced with satisfactory materials as directed. Such excavated material and the satisfactory material ordered as replacement shall be included in excavation. Surplus satisfactory excavated material not required for fill or embankment shall be disposed of off government property. Unsatisfactory excavated material shall be disposed of offsite. During
construction, excavation and fill shall be performed in a manner and sequence that will provide proper drainage at all times. Material required for fill or embankment in excess of that produced by excavation within the grading limits shall be excavated from offsite areas. #### 3.2 SELECTION OF BORROW MATERIAL Borrow material shall be selected to meet the requirements and conditions of the particular fill or embankment for which it is to be used. Borrow material shall be obtained from approved sources, selected by the Contractor. Unless otherwise provided in the contract, the Contractor shall obtain from the owners the right to procure material, pay royalties and other charges involved, and bear the expense of developing the sources, including rights-of-way for hauling. Unless specifically provided, no borrow shall be obtained within the limits of the project site without prior written approval. Contractor shall perform necessary clearing, grubbing, and satisfactory drainage of borrow pits and the disposal of debris thereon shall be considered related operations to the borrow excavation and shall be per owner/operator's requirements and all other applicable regulations. #### 3.3 GRADING AREAS Where indicated, work will be divided into grading areas within which satisfactory excavated material shall be placed in embankments, fills, and required backfills. The Contractor shall not haul satisfactory material excavated in one grading area to another grading area except when so directed in writing. ## 3.4 BACKFILL Backfill adjacent to any and all types of structures shall be placed and compacted to at least 90 percent laboratory maximum density for cohesive materials or 95 percent laboratory maximum density for cohesionless materials to prevent wedging action or eccentric loading upon or against the structure. Ground surface on which backfill is to be placed shall be prepared as specified in paragraph PREPARATION OF GROUND SURFACE FOR EMBANKMENTS. Compaction requirements for backfill materials shall also conform to the applicable portions of paragraphs PREPARATION OF GROUND SURFACE FOR EMBANKMENTS, EMBANKMENTS, and SUBGRADE PREPARATION, and Section 02630 STORM-DRAINAGE SYSTEM; and Section 02316 EXCAVATION, TRENCHING, AND BACKFILLING FOR UTILITIES SYSTEMS. Compaction shall be accomplished by sheepsfoot rollers, pneumatic-tired rollers, steel-wheeled rollers, vibratory compactors, or other approved equipment. # 3.5 PREPARATION OF GROUND SURFACE FOR EMBANKMENTS ## 3.5.1 General Requirements Ground surface on which fill is to be placed shall be stripped of live, dead, or decayed vegetation, rubbish, debris, and other unsatisfactory material; plowed, disked, or otherwise broken up to a depth of 6 inches; pulverized; moistened or aerated as necessary; thoroughly mixed; and compacted to at least 90 percent laboratory maximum density for cohesive materials or 95 percent laboratory maximum density for cohesionless materials. Compaction shall be accomplished by sheepsfoot rollers, pneumatic-tired rollers, steel-wheeled rollers, vibratory compactors, or other approved equipment. The prepared ground surface shall be scarified and moistened or aerated as required just prior to placement of embankment materials to assure adequate bond between embankment material and the prepared ground surface. # 3.5.2 Frozen Material Embankment shall not be placed on a foundation which contains frozen material, or which has been subjected to freeze-thaw action. This prohibition encompasses all foundation types, including the natural ground, all prepared subgrades (whether in an excavation or on an embankment) and all layers of previously placed and compacted earth fill which become the foundations for successive layers of earth fill. All material that freezes or has been subjected to freeze-thaw action during the construction work, or during periods of temporary shutdowns, such as, but not limited to, nights, holidays, weekends, winter shutdowns, or earthwork operations, shall be removed to a depth that is acceptable to the Contracting Officer and replaced with new material. Alternatively, the material will be thawed, dried, reworked, and recompacted to the specified criteria before additional material is placed. The Contracting Officer will determine when placement of fill shall cease due to cold weather. The Contracting Officer may elect to use average daily air temperatures, and/or physical observation of the soils for his determination. Embankment material shall not contain frozen clumps of soil, snow, or ice. ## 3.6 EMBANKMENTS #### 3.6.1 Earth Embankments Earth embankments shall be constructed from satisfactory materials free of organic or frozen material and rocks with any dimension greater than 3 inches. The material shall be placed in successive horizontal layers of loose material not more than 8 inches in depth. Each layer shall be spread uniformly on a soil surface that has been moistened or aerated as necessary, and scarified or otherwise broken up so that the fill will bond with the surface on which it is placed. After spreading, each layer shall be plowed, disked, or otherwise broken up; moistened or aerated as necessary; thoroughly mixed; and compacted to at least 90 percent laboratory maximum density for cohesionless materials or 95 percent laboratory maximum density for cohesionless materials. Compaction requirements for the upper portion of earth embankments forming subgrade for pavements shall be identical with those requirements specified in paragraph SUBGRADE PREPARATION. Compaction shall be accomplished by sheepsfoot rollers, pneumatic-tired rollers, steel-wheeled rollers, vibratory compactors, or other approved equipment. #### 3.7 SUBGRADE PREPARATION #### 3.7.1 Construction Subgrade shall be shaped to line, grade, and cross section, and compacted as specified. This operation shall include plowing, disking, and any moistening or aerating required to obtain specified compaction. Soft or otherwise unsatisfactory material shall be removed and replaced with satisfactory excavated material or other approved material as directed. Low areas resulting from removal of unsatisfactory material shall be brought up to required grade with satisfactory materials, and the entire subgrade shall be shaped to line, grade, and cross section and compacted as specified. After rolling, the surface of the subgrade for roadways shall not show deviations greater than 3/8 inch when tested with a 10 foot straightedge applied both parallel and at right angles to the centerline of the area. The elevation of the finish subgrade shall not vary more than 0.05 foot from the established grade and cross section. ## 3.7.2 Compaction Compaction shall be accomplished by sheepsfoot rollers, pneumatic-tired rollers, steel-wheeled rollers, vibratory compactors, or other approved equipment. Except for paved areas and railroads, each layer of the embankment shall be compacted to at least 90 percent of laboratory maximum density. ## 3.7.2.1 Subgrade for Pavements Subgrade for pavements shall be compacted to at least 100 percentage laboratory maximum density for the depth below the surface of the pavement shown. When more than one soil classification is present in the subgrade, the top 6 inches of subgrade shall be scarified, windrowed, thoroughly blended, reshaped, and compacted. #### 3.8 FINISHING The surface of excavations, embankments, and subgrades shall be finished to a smooth and compact surface in accordance with the lines, grades, and cross sections or elevations shown. The degree of finish for graded areas shall be within 0.1 foot of the grades and elevations indicated except that the degree of finish for subgrades shall be specified in paragraph SUBGRADE PREPARATION. Gutters and ditches shall be finished in a manner that will result in effective drainage. The surface of areas to be turfed shall be finished to a smoothness suitable for the application of turfing materials. #### 3.9 TESTING Testing shall be performed by an approved commercial testing laboratory. Field in-place density shall be determined in accordance with ASTM D 1556. When test results indicate, as determined by the Contracting Officer, that compaction is not as specified, the material shall be removed, replaced and recompacted to meet specification requirements. Tests on recompacted areas shall be performed to determine conformance with specification requirements. Inspections and test results shall be certified by a registered professional civil engineer. These certifications shall state that the tests and observations were performed by or under the direct supervision of the engineer and that the results are representative of the materials or conditions being certified by the tests. The following number of tests, if performed at the appropriate time, will be the minimum acceptable for each type operation. #### 3.9.1 Fill and Backfill Material Gradation One test per 100 cubic yards stockpiled or in-place source material. Gradation of fill and backfill material shall be determined in accordance with ASTM C 136. ## 3.9.2 In-Place Densities - a. One test per 500 square feet, or fraction thereof, of each lift of fill or backfill areas compacted by other than hand-operated machines. - b. One test per 500 square feet, or fraction thereof, of each lift of fill or backfill areas compacted by hand-operated machines. ## 3.9.3 Check Tests on In-Place Densities In-place densities shall be checked by ASTM D 1556 as follows: - a. One check test per lift for each 500 square feet, or fraction thereof, of each lift of fill or backfill compacted by other than hand-operated machines. - b. One check test per lift for each 500 square feet, of fill or backfill areas compacted by hand-operated machines. #### 3.9.4 Moisture Contents In the stockpile, excavation, or borrow areas, a minimum of two tests per day per type of material or source of material being placed during stable weather conditions shall be
performed. During unstable weather, tests shall REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 be made as dictated by local conditions and approved by the Contracting Officer. # 3.9.5 Optimum Moisture and Laboratory Maximum Density Tests shall be made for each type material or source of material including borrow material to determine the optimum moisture and laboratory maximum density values. One representative test per 100 cubic yards of fill and backfill, or when any change in material occurs which may affect the optimum moisture content or laboratory maximum density. # 3.9.6 Tolerance Tests for Subgrades Continuous checks on the degree of finish specified in paragraph SUBGRADE PREPARATION shall be made during construction of the subgrades. #### 3.10 SUBGRADE AND EMBANKMENT PROTECTION During construction, embankments and excavations shall be kept shaped and drained. Ditches and drains along subgrade shall be maintained to drain effectively at all times. The finished subgrade shall not be disturbed by traffic or other operation and shall be protected and maintained by the Contractor in a satisfactory condition until subbase, base, or pavement is placed. The storage or stockpiling of materials on the finished subgrade will not be permitted. No subbase, base course, or pavement shall be laid until the subgrade has been checked and approved, and in no case shall subbase, base, surfacing, or pavement be placed on a muddy, spongy, or frozen subgrade. END OF SECTION ## SECTION 02315 ## EXCAVATION, FILLING AND BACKFILLING FOR BUILDINGS # PART 1 GENERAL #### 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. ## AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | ASTM D 1556 | (1990; R 1996) Density and Unit Weight of
Soil in Place by the Sand-Cone Method | |-------------|---| | ASTM D 1557 | (1991) Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/cu. ft. (2,700 kN-m/cu.m.)) | | ASTM D 2167 | (1994) Density and Unit Weight of Soil in
Place by the Rubber Balloon Method | | ASTM D 2216 | (1992) Laboratory Determination of Water (Moisture) Content of Soil, and Rock | | ASTM D 2487 | (1993) Classification of Soils for
Engineering Purposes (Unified Soil
Classification System) | | ASTM D 4318 | (1995a) Liquid Limit, Plastic Limit, and
Plasticity Index of Soils | # 1.2 DEGREE OF COMPACTION Degree of compaction is expressed as a percentage of the maximum density obtained by the test procedure presented in ASTM D 1557, abbreviated as percent laboratory maximum density. ## 1.3 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-09 Reports Testing; GA. REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 Copies of all laboratory and field test reports within 24 hours of the completion of the test. ## PART 2 PRODUCTS #### 2.1 MATERIALS ## 2.1.1 Satisfactory Materials Satisfactory materials shall comprise any materials classified by ASTM D 2487 as SP, SM, SP-SM, and CL. ## 2.1.2 Unsatisfactory Materials Materials which do not comply with the requirements for satisfactory materials are unsatisfactory. Unsatisfactory materials also include manmade fills, trash, refuse, or backfills from previous construction. Unsatisfactory material also includes material classified as satisfactory which contains root and other organic matter, frozen material, and stones larger than 3 inches. The Contracting Officer shall be notified of any contaminated materials. #### 2.1.3 Cohesionless and Cohesive Materials Cohesionless materials include materials classified in ASTM D 2487 as SP. Cohesive materials include materials classified as CL. Materials classified as SP-SM and SM shall be identified as cohesionless only when the fines are nonplastic. ## 2.1.4 Expansive Soils Expansive soils are defined as soils that have a plasticity index equal to or greater than 12 when tested in accordance with ASTM D 4318. #### 2.1.5 Nonfrost Susceptible (NFS) Material Nonfrost susceptible material shall be a uniformly graded washed sand with a maximum particle size of 0.02~mm and less than 5 percent passing the No. 200 size sieve, and with not more than 3 percent by weight finer than 0.02~mm grain size. #### 2.1.6 Sand Sand shall conform to the following grading: | Sieve Size | Percent Passing | |--------------|-----------------| | ½" square | 90-100 | | ¼" square | 65-100 | | U.S. No. 10 | 40-100 | | U.S. No. 50 | 3-30 | | U.S. No. 100 | 0 - 4 | | U.S. No. 200 | 0-3.0 | | | | 00029/11 REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 ## 2.2 CAPILLARY WATER BARRIER Capillary Water Barrier shall consist of clean, crushed, nonporous rock, crushed gravel, or uncrushed gravel. The maximum particle size shall be 1-1/2 inches and no more than 2 percent by weight shall pass the No. 4 size sieve. #### 2.3 SELECT GRANULAR MATERIAL Select granular material shall consist of well-graded sand, gravel, crushed gravel, or crushed stone composed of hard, tough and durable particles, and shall contain not more than 10 percent by weight of material passing a No. 200 mesh sieve and not less than 95 percent by weight passing the 1-inch sieve. The maximum allowable aggregate size shall be 3 inches, or the maximum size recommended by the pipe manufacturer, whichever is smaller. #### PART 3 EXECUTION #### 3.1 EXCAVATION Excavation shall conform to the dimensions and elevations indicated for each building, structure, and footing except as specified, and shall include trenching for utility and foundation drainage systems to a point 5 feet beyond the building line of each building and structure. Excavation shall extend a sufficient distance from walls and footings to allow for placing and removal of forms. Excavations below indicated depths will not be permitted except to remove unsatisfactory material. Unsatisfactory material encountered below the grades shown shall be replaced with satisfactory material; and payment will be made in conformance with the CHANGES clause of the CONTRACT CLAUSES. Satisfactory material removed below the depths indicated, without specific direction of the Contracting Officer, shall be replaced, at no additional cost to the Government, with satisfactory materials to the indicated excavation grade; except that concrete footings shall be increased in thickness to the bottom of the overdepth excavations and over-break in rock excavation. Satisfactory material shall be placed and compacted as specified in paragraph FILLING AND BACKFILLING. Determination of elevations and measurements of approved overdepth excavation of unsatisfactory material below grades indicated shall be done under the direction of the Contracting Officer. ## 3.2 DRAINAGE AND DEWATERING # 3.2.1 Drainage Surface water shall be directed away from excavation and construction sites to prevent erosion and undermining of foundations. Diversion ditches, dikes and grading shall be provided and maintained as necessary during construction. Excavated slopes and backfill surfaces shall be protected to prevent erosion and sloughing. Excavation shall be performed so that the site, the area immediately surrounding the site, and the area affecting operations at the site shall be continually and effectively drained. ## 3.3 SHORING Shoring, including sheet piling, shall be furnished and installed as necessary to protect workmen, banks, adjacent paving, structures, and utilities. Shoring, bracing, and sheeting shall be removed as excavations are backfilled, in a manner to prevent caving. REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 #### 3.4 CLASSIFICATION OF EXCAVATION Excavation will be unclassified regardless of the nature of material encountered. #### 3.5 BLASTING Blasting will not be permitted. #### 3.6 UTILITY AND DRAIN TRENCHES Trenches for underground utilities systems and drain lines shall be excavated to the required alignments and depths. The bottoms of trenches shall be graded to secure the required slope and shall be tamped if necessary to provide a firm pipe bed. Recesses shall be excavated to accommodate bells and joints so that pipe will be uniformly supported for the entire length. #### 3.7 BORROW Where satisfactory materials are not available in sufficient quantity from required excavations, approved materials shall be obtained. Borrow material shall be selected to meet the requirements and conditions of the particular fill or embankment for which it is to be used. Borrow material shall be obtained from approved sources selected by the Contractor. Unless otherwise provided in the contract, the Contractor shall obtain from the owners the right to procure material, pay royalties and other charges involved, and bear the expense of developing the sources, including rights-of-way for hauling. Unless specifically provided, no borrow shall be obtained within the limits of the project site without prior written approval. Contractor shall perform necessary clearing, grubbing, and satisfactory drainage of borrow pits and the disposal of debris thereon shall be considered related operations to the borrow excavation and shall be per owner/operator's requirements and all other applicable regulations. ## 3.8 EXCAVATED MATERIALS Satisfactory excavated material required for fill or backfill shall be placed in the proper section of the permanent work required under this section or shall be separately stockpiled if it cannot be readily placed. Satisfactory material in excess of that required for the
permanent work and all unsatisfactory material shall be disposed of offsite. # 3.9 FINAL GRADE OF SURFACES TO SUPPORT CONCRETE Excavation to final grade shall not be made until just before concrete is to be placed. Only excavation methods that will leave the foundation rock in a solid and unshattered condition shall be used. Approximately level surfaces shall be roughened, and sloped surfaces shall be cut as indicated into rough steps or benches to provide a satisfactory bond. Shales shall be protected from slaking and all surfaces shall be protected from erosion resulting from ponding or flow of water. #### 3.10 SUBGRADE PREPARATION Unsatisfactory material in surfaces to receive fill or in excavated areas shall be removed and replaced with satisfactory materials as directed by the Contracting Officer. The surface shall be scarified to a depth of 6 inches before the fill is started. Sloped surfaces steeper than 1 vertical to 4 horizontal shall be plowed, stepped, benched, or broken up so that the fill material will bond with the existing material. When subgrades are less than the specified density, the ground surface shall be broken up to a minimum depth of 6 inches, pulverized, and compacted to the specified density. When the subgrade is part fill and part excavation or natural ground, the excavated or natural ground portion shall be scarified to a depth of 12 inches and compacted as specified for the adjacent fill. Material shall not be placed on surfaces that are muddy, frozen, or contain frost. Compaction shall be accomplished by sheepsfoot rollers, pneumatic-tired rollers, steelwheeled rollers, or other approved equipment well suited to the soil being compacted. Material shall be moistened or aerated as necessary to provide the moisture content that will readily facilitate obtaining the specified compaction with the equipment used. Minimum subgrade density shall be as specified in paragraph FILLING AND BACKFILLING. #### 3.11 FILLING AND BACKFILLING Satisfactory materials shall be used in bringing fills and backfills to the lines and grades indicated and for replacing unsatisfactory materials. Satisfactory materials shall be placed in horizontal layers not exceeding 8 inches in loose thickness, or 6 inches when hand-operated compactors are used. After placing, each layer shall be plowed, disked, or otherwise broken up, moistened or aerated as necessary, thoroughly mixed and compacted as specified. Backfilling shall not begin until construction below finish grade has been approved, underground utilities systems have been inspected, tested and approved, forms removed, and the excavation cleaned of trash and debris. Backfill shall be brought to indicated finish grade. Backfill shall not be placed in wet or frozen areas. Where pipe is coated or wrapped for protection against corrosion, the backfill material up to an elevation 2 feet above sewer lines and 1 foot above other utility lines shall be free from stones larger than 1 inch in any dimension. Heavy equipment for spreading and compacting backfill shall not be operated closer to foundation or retaining walls than a distance equal to the height of backfill above the top of footing; the area remaining shall be compacted in layers not more than 4 inches in compacted thickness with power-driven hand tampers suitable for the material being compacted. Backfill shall be placed carefully around pipes or tanks to avoid damage to coatings, wrappings, or tanks. Backfill shall not be placed against foundation walls prior to 7 days after completion of the walls. As far as practicable, backfill shall be brought up evenly on each side of the wall and sloped to drain away from the wall. Each layer of fill and backfill shall be compacted to not less than the percentage of maximum density specified below: Percent Laboratory maximum density # 00029/11 REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 | | Cohesive
material | Cohesionless
material | |--|----------------------|--------------------------| | | | | | Fill, embankment, and backfill | | | | Under structures, building slabs, steps, paved areas, around | | | | footings, and in trenches | 90 | 95 | | Under sidewalks and grassed areas | 85 | 90 | | Nonfrost susceptible materials | | 95 | | Subgrade | | | | | | | | Under building slabs, steps, and pave areas, top 12 inches | ed
90 | 95 | | Under sidewalks, top 6 inches | 85 | 90 | Approved compacted subgrades that are disturbed by the Contractor's operations or adverse weather shall be scarified and compacted as specified herein before to the required density prior to further construction thereon. Recompaction over underground utilities and heating lines shall be by hand tamping. #### 3.12 TESTING Testing shall be the responsibility of the Contractor and shall be performed at no additional cost to the Government. Testing shall be performed by an approved commercial testing laboratory. Field in-place density shall be determined in accordance with ASTM D 1556 or ASTM D 2167. # 3.12.1 In-Place Densities In-place density and moisture content test results shall be included with the Contractor's daily construction quality control reports. ## 3.12.1.1 In-Place Density of Subgrades One test per 500 square foot or fraction thereof. # 3.12.1.2 In-Place Density of Fills and Backfills One test per 500 square foot or fraction thereof of each lift for fill or backfill areas compacted by other than hand or hand-operated machines. The density for each lift of fill or backfill materials for trenches, pits, building perimeters or other structures or areas less than 5 feet in width, which are compacted with hand or hand-operated machines shall be tested as REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 follows: One test per each area less than 200 square feet, or one test for each 100 linear foot of long narrow fills 200 feet or more in length. #### 3.12.2 Moisture Content In the stockpile, excavation or borrow areas, a minimum of two tests per day per type of material or source of materials being placed is required during stable weather conditions. During unstable weather, tests shall be made as dictated by local conditions and approved moisture content shall be tested in accordance with ASTM D 2216. # 3.12.3 Optimum Moisture and Laboratory Maximum Density Tests shall be made for each type material or source of material, including borrow material to determine the optimum moisture and laboratory maximum density values. One representative test per 100 cubic yards of fill and backfill, or when any change in material occurs which may affect the optimum moisture content or laboratory maximum density will be made. #### 3.13 CAPILLARY WATER BARRIER Capillary water barrier under concrete floor and area-way slabs on grade shall be placed directly on the subgrade and shall be compacted with a minimum of two passes of a hand-operated plate-type vibratory compactor. ## 3.14 GRADING Areas within 5 feet outside of each building and structure line shall be constructed true-to-grade, shaped to drain, and shall be maintained free of trash and debris until final inspection has been completed and the work has been accepted. # 3.15 SPREADING TOPSOIL Areas outside the building lines from which topsoil has been removed shall be topsoiled. The surface shall be free of materials that would hinder planting or maintenance operations. The subgrade shall be pulverized to a depth of 2 inches by disking or plowing for the bonding of topsoil with the subsoil. Topsoil shall then be uniformly spread, graded, and compacted to the thickness, elevations, slopes shown, and left free of surface irregularities. Topsoil shall be compacted by one pass of a cultipacker, roller, or other approved equipment weighing 100 to 160 pounds per linear foot of roller. Topsoil shall not be placed when the subgrade is frozen, excessively wet, extremely dry, or in a condition otherwise detrimental to seeding, planting, or proper grading. Topsoiled areas shall be regarded as required by Section 01061, Paragraph 1.6. ## 3.16 PROTECTION Settlement or washing that occurs in graded, topsoiled, or backfilled areas prior to acceptance of the work, shall be repaired and grades reestablished to the required elevations and slopes. END OF SECTION SECTION 02316 EXCAVATION, TRENCHING, AND BACKFILLING FOR UTILITIES SYSTEMS ### PART 1 GENERAL #### 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. ## AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | ASTM D 422 | (1963; R 1990) Particle-Size Analysis of Soils | |--------------------|--| | ASTM D 1556 | (1990; R 1996) Density and Unit Weight of
Soil in Place by the Sand-Cone Method | | ASTM D 1557 | (1991) Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/cu. ft. (2,700 kN-m/cu. m.)) | | ASTM D 2167 | (1994) Density and Unit Weight of Soil in
Place by the Rubber Balloon Method | | ASTM D 2487 | (1993) Classification of Soils for
Engineering Purposes (Unified Soil
Classification System) | | ASTM D 2922 | (1996) Density of Soil and Soil-Aggregate in Place by Nuclear Methods (Shallow Depth) | | ASTM D 3017 | (1996) Water Content of Soil and Rock in Place by Nuclear Methods (Shallow Depth) | | CORPS OF ENGINEERS | | | COE EM 385-1-1 | (1996) U.S. Army Corps of Engineers Safety and Health Requirements Manual | # 1.2 DEGREE OF COMPACTION Degree of compaction shall be expressed as a percentage of the maximum density obtained by the test procedure presented in ASTM D 1557 or ASTM D 2922. ### 1.3 SUBMITTALS Government approval is required for submittals with a "GA" designation;
submittals having an "FIO" designation are for information only. The 00029/11 REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-09 Reports Field Density Tests; GA. Testing of Backfill Materials; GA. Copies of all laboratory and field test reports within 24 hours of the completion of the test. PART 2 PRODUCTS ### 2.1 MATERIALS # 2.1.1 Satisfactory Materials Satisfactory materials shall comprise any materials classified by ASTM D 2487 as GW, GP, GM, GP-GM, GW-GM, GC, GP-GC, GM-GC, SW, SP, SM, SP-SM, CL. ## 2.1.2 Unsatisfactory Materials Materials which do not comply with the requirements for satisfactory materials are unsatisfactory. Unsatisfactory materials also include manmade fills, trash, refuse, or backfills from previous construction. Unsatisfactory material also includes material classified as satisfactory which contains root and other organic matter, frozen material, and stones larger than 3 inches. The Contracting Officer shall be notified of any contaminated materials. ### 2.1.3 Cohesionless and Cohesive Materials Cohesionless materials shall include materials classified in ASTM D 2487 as GW, GP, SW, and SP. Cohesive materials shall include materials classified as GC, SC, ML, CL, MH, and CH. Materials classified as GM and SM shall be identified as cohesionless only when the fines are nonplastic. # 2.1.4 Unyielding Material Unyielding material shall consist of rock and gravelly soils with stones greater than 3 inches in any dimension or as defined by the pipe manufacturer, whichever is smaller. ### 2.1.5 Unstable Material Unstable material shall consist of materials too wet to properly support the utility pipe, conduit, or appurtenant structure. ### 2.1.6 Select Granular Material Select granular material shall consist of well-graded sand, gravel, crushed gravel, crushed stone or crushed slag composed of hard, tough and durable particles, and shall contain not more than 10 percent by weight of material passing a No. 200 mesh sieve and no less than 95 percent by weight passing the l inch sieve. The maximum allowable aggregate size shall be 3 inches, or the maximum size recommended by the pipe manufacturer, whichever is smaller. ### 2.1.7 Initial Backfill Material Initial backfill shall consist of select granular material or satisfactory materials free from rocks 3 inches or larger in any dimension or free from rocks of such size as recommended by the pipe manufacturer, whichever is smaller. When the pipe is coated or wrapped for corrosion protection, the initial backfill material shall be free of stones larger than 3 inches in any dimension or as recommended by the pipe manufacturer, whichever is smaller. ## 2.2 PLASTIC MARKING TAPE Plastic marking tape shall be acid and alkali-resistant polyethylene film, 6 inches wide with minimum thickness of 0.004 inch. Tape shall have a minimum strength of 1750 psi lengthwise and 1500 psi crosswise. The tape shall be manufactured with integral wires, foil backing or other means to enable detection by a metal detector when the tape is buried up to 3 feet deep. The tape shall be of a type specifically manufactured for marking and locating underground utilities. The metallic core of the tape shall be encased in a protective jacket or provided with other means to protect it from corrosion. Tape color shall be as specified in TABLE 1 and shall bear a continuous printed inscription describing the specific utility. ### TABLE 1. Tape Color Red: Electric Yellow: Gas, Oil, Dangerous Materials Orange: Telephone, Telegraph, Television, Police, and Fire Communications Blue: Water Systems Green: Sewer Systems ## PART 3 EXECUTION ### 3.1 EXCAVATION Excavation shall be performed to the lines and grades indicated. During excavation, material satisfactory for backfilling shall be stockpiled in an orderly manner at a distance from the banks of the trench equal to 1/2 the depth of the excavation, but in no instance closer than 2 feet. Excavated material not required or not satisfactory for backfill shall be removed from the site. Grading shall be done as may be necessary to prevent surface water from flowing into the excavation, and any water accumulating shall be removed to maintain the stability of the bottom and sides of the excavation. Unauthorized overexcavation shall be backfilled in accordance with paragraph BACKFILLING AND COMPACTION at no additional cost to the Government. ### 3.1.1 Trench Excavation Requirements The trench shall be excavated as recommended by the manufacturer of the pipe to be installed. Trench walls below the top of the pipe shall be sloped, or made vertical, and of such width as recommended in the manufacturer's installation manual. Where no manufacturer's installation manual is available, trench walls shall be made vertical. Trench walls more than 3 feet high shall be shored, cut back to a stable slope, or provided with equivalent means of protection for employees who may be exposed to moving ground or cave in. Vertical trench walls more than 6 feet high shall be shored. Trench walls which are cut back shall be excavated to at least the angle of repose of the soil or as required in COE EM 385-1-1. Special attention shall be given to slopes which may be adversely affected by weather or moisture content. The trench width below the top of pipe shall not exceed 24 inches plus pipe outside diameter (O.D.) for pipes of less than 24 inches inside diameter and shall not exceed 36 inches plus pipe outside diameter for sizes larger than 24 inches inside diameter. Where recommended trench widths are exceeded, redesign, stronger pipe, or special installation procedures shall be utilized by the Contractor. The cost of redesign, stronger pipe, or special installation procedures shall be borne by the Contractor without any additional cost to the Government. ## 3.1.1.1 Bottom Preparation The bottoms of trenches shall be accurately graded to provide uniform bearing and support for the bottom quadrant of each section of the pipe. Bell holes shall be excavated to the necessary size at each joint or coupling to eliminate point bearing. Stones of 3 inches or greater in any dimension, or as recommended by the pipe manufacturer, whichever is smaller, shall be removed to avoid point bearing. # 3.1.1.2 Removal of Unyielding Material Where overdepth is not indicated and unyielding material is encountered in the bottom of the trench, such material shall be removed 4 inches below the required grade and replaced with suitable materials as provided in paragraph BACKFILLING AND COMPACTION. ## 3.1.1.3 Removal of Unstable Material Where unstable material is encountered in the bottom of the trench, such material shall be removed to the depth directed and replaced to the proper grade with select granular material as provided in paragraph BACKFILLING AND COMPACTION. When removal of unstable material is required due to the Contractor's fault or neglect in performing the work, the resulting material shall be excavated and replaced by the Contractor without additional cost to the Government. # 3.1.1.4 Excavation for Appurtenances Excavation for manholes, catch-basins, inlets, or similar structures shall be of sufficient size to permit the placement and removal of forms for the full length and width of structure footings and foundations as shown. Removal of unstable material shall be as specified above. When concrete or masonry is to be placed in an excavated area, special care shall be taken not to disturb the bottom of the excavation. Excavation to the final grade level shall not be made until just before the concrete or masonry is to be placed. ## 3.1.1.5 Jacking, Boring, and Tunneling Unless otherwise indicated, excavation shall be by open cut except that sections of a trench shall be jacked or bored where shown on the plans. The Contractor shall employ a company with a record of at least six boring and jacking projects completed successfully. The company shall furnish this record to the Contracting Officer for approval. A detailed plan of the installation process shall be furnished to the Contracting Officer for approval. This plan shall indicate size and location of jacking pits, pipe elevations and location and elevations of other known utilities/structures plus other pertinent information. Jacking pit areas to be restored to original condition. ## 3.1.2 Stockpiles Stockpiles of satisfactory shall be placed and graded as specified. Stockpiles shall be kept in a neat and well drained condition, giving due consideration to drainage at all times. The ground surface at stockpile locations shall be cleared, grubbed, and sealed by rubber-tired equipment, excavated satisfactory and unsatisfactory materials shall be separately stockpiled. Stockpiles of satisfactory materials shall be protected from contamination which may destroy the quality and fitness of the stockpiled material. If the Contractor fails to protect the stockpiles, and any material becomes unsatisfactory, such material shall be removed and replaced with satisfactory material from approved sources at no additional cost to the Government. Locations of stockpiles of satisfactory materials shall be subject to prior approval of the Contracting Officer. ## 3.2 BACKFILLING AND COMPACTION Backfill material shall consist of satisfactory material, select granular material, or initial backfill material as required. Backfill shall be placed in layers not exceeding 6 inches loose thickness for compaction by hand operated machine compactors, and 8 inches loose thickness for other than hand operated machines, unless otherwise specified. Each layer shall be compacted to at least 95 percent maximum density for cohesionless soils and 90 percent maximum density for cohesive soils, unless otherwise specified. # 3.2.1 Trench Backfill Trenches shall be backfilled to the grade shown. The trench shall be backfilled to 2 feet above
the top of pipe prior to performing the required pressure tests. The joints and couplings shall be left uncovered during the pressure test. ## 3.2.1.1 Replacement of Unyielding Material Unyielding material removed from the bottom of the trench shall be replaced with select granular material or initial backfill material. ## 3.2.1.2 Replacement of Unstable Material Unstable material removed from the bottom of the trench or excavation shall be replaced with select granular material placed in layers not exceeding 6 inches loose thickness. ## 3.2.1.3 Bedding and Initial Backfill Bedding shall be of the type and thickness shown. Bedding shall be clean, sand-gravel mixture free from organic matter and conforming to the following gradation when tested in accordance with ASTM D 422. | U.S. | Percent Passing | |----------|-----------------| | Standard | Sieve Size | | 1-inch | 100 | | No. 4 | 25-80 | | No. 200 | 0-10 | Initial backfill material shall be placed to a height of at least one foot above the utility pipe or conduit. Backfill material in this portion of the trench shall consist of satisfactory material at a moisture content that will facilitate compaction, free from stones of such size as recommended by the pipe manufacturer, or larger than 2 inches in any dimension, whichever is smaller. # 3.2.1.4 Final Backfill The remainder of the trench, except for special materials for roadways, and airfields, shall be filled with satisfactory material. Backfill material shall be placed and compacted as follows: - a. Roadways and Airfields: Backfill shall be placed up to the elevation at which the requirements in Section 02300 EARTHWORK control. Water flooding or jetting methods of compaction will not be permitted. - b. Sidewalks, Turfed or Seeded Areas and Miscellaneous Areas: Backfill shall be deposited in layers of a maximum of 12 inch loose thickness, and compacted to 85 percent maximum density for cohesive soils and 90 percent maximum density for cohesionless soils. Compaction by water flooding or jetting will not be permitted. This requirement shall also apply to all other areas not specifically designated above. ## 3.2.1.5 Turf Replacement The final unpaved surfaces shall be restored as required by Section 01061, Paragraph 1.6. ## 3.2.2 Backfill for Appurtenances After the manhole, catch basin, inlet, or similar structure has been constructed and the concrete has been allowed to cure for 3 days, backfill shall be placed in such a manner that the structure will not be damaged by the shock of falling earth. The backfill material shall be deposited and compacted as specified for final backfill, and shall be brought up evenly on all sides of the structure to prevent eccentric loading and excessive stress. ### 3.3 SPECIAL REQUIREMENTS Special requirements for both excavation and backfill relating to the specific utilities are as follows: ## 3.3.1 Water Lines Trenches shall be of a depth to provide a minimum cover of 49 inches from the existing ground surface, or from the indicated finished grade, whichever is lower, to the top of the pipe. ## 3.3.2 Plastic Marking Tape Warning tapes shall be installed directly above the pipe, at a depth of 18 inches below finished grade unless otherwise shown. ## 3.4 TESTING Testing shall be the responsibility of the Contractor and shall be performed at no additional cost to the Government. ## 3.4.1 Testing Facilities Tests shall be performed by an approved commercial testing laboratory. #### 3.4.2 Testing of Backfill Materials Characteristics of backfill materials shall be determined in accordance with particle size analysis of soils ASTM D 422 and moisture-density relations of soils ASTM D 1557. A minimum of one particle size analysis and one moisture-density relation test shall be performed on each different type of material used for bedding and backfill. ## 3.4.3 Field Density Tests Tests shall be performed in sufficient numbers to ensure that the specified density is being obtained. A minimum of one field density test per lift of backfill for every 200 feet of installation shall be performed. One moisture density relationship shall be determined for every 50 cubic yards of material used. Field in-place density shall be determined in accordance with ASTM D 1556 and ASTM D 2167. Trenches improperly compacted shall be reopened to the depth directed, then refilled and compacted to the density specified at no additional cost to the Government. ### 3.4.4 Displacement of Sewers After other required tests have been performed and the trench backfill compacted to the finished grade surface, the pipe shall be inspected to determine whether significant displacement has occurred. This inspection shall be conducted in the presence of the Contracting Officer. Pipe sizes larger than 36 inches shall be entered and examined, while smaller diameter pipe shall be inspected by shining a light or laser between manholes or manhole locations, or by the use of television cameras passed through the pipe. If, in the judgement of the Contracting Officer, the interior of the pipe shows poor alignment or any other defects that would cause improper functioning of the system, the defects shall be remedied as directed at no additional cost to the Government. # 4. UTILITIES POT HOLES Utilities pot holes (PH) data is shown at the end of this section. | | | | | | | | | ₹\
\$\ | | | L | | ι | | 13. | | | | a) | | | , ~ | 13 | ئ م | |--------------------|--------------------------|--------------------|-----------------|----------|-------------|----------------------|--------------|---------------------------|------------------------|-----------------|-------------------------|---------------------|-------------------------|-------------------|-----------------------|-------------------------|-----------------------|--------------------|---------|----------------------------------|---|----------------------|------------------------|-------------------------| | S 0474 | Soil Cond. Comments | - 1 | (1'cosomon Real | | | TI CORNER OF BUILDIN | Con the same | KI C'ELM YOUND THOUGHOUND | 57'S" TOP OF EIR HUMST | 5): 10 LOSE POR | C3'a" TOP OF FIRE HYDRA | 56'3" TO LIGHT POK. | 39'2" TOP OF FIRS HYDAM | 30' TO LIGHT POIS | 38'6" TOP OF FIRSHOWN | भग्रे मार्ग प्रमाद मिथर | 35' CORUR OF BUILDING | 4811"COZWZOS BOLDY | - 1 | रें दें दें त्या अहर हो है या अप | Ko'3' CORUR R OF BULLEY | 179 CORUR OF BULLY 4 | S3'8'CENTE IT AR MACHE | 66'5' COQUEL STEAM VALT | | HOLES | Soil Cond. | 1 | 2 | 1,38 | - | <u> </u> | } | <u> </u> | SOF | | इ | | SOFI | | 13 | | SOFT | | SOFT | | SOFT | | SPFT | | | POT | Pipe Cond. | - | 7004 | See Jane | | ESS. | 1000 | | 9 cox | | Scool | | 1006 | , | 9000 | | poor | | gent | | Scool | | न्य | | | 471617185 | Pipe Material Pipe Cond. | | STEEL | STEEL | | 2122 | į | 7200 | S 122L | | | | 5733.1 | | 5.7321 | | DI | | STE51 | | S. P. C. S. | | TXXC
CONTEST | | | 27 | Pipe/Conduit | size inches | | 1,, | | 4 | a', | a | 4." | | Lynna (30) | | 4,4 | | ., 4 | | 81, | | , h | | 1, 1 | | .41 | | | | Depth to boltom | of util. in inches | اها | 11. | | 49., | 3 | 8 | 30% | , | Course Per | | Jog. | | 34" | | .,72 | | 430 | | 28.1 | | Ċ | | | 99
OF EWGINSTES | П | inches | | 10 | [질 | 45" | | 15: | 300 | 5 | 136 | | 47 | 1 | 35. | | .89 | | 38. | 7 | 37" | | 74" | | | 14-99
PS. OF 8 | ø | \neg | Su.R | S. S. | × | Sizerak | | SEAM | Ē | Z Z Z | CTA ALL | - TANK | 47.2 | - | STAM | | 0, ± | | ST3 Aug | 2 | 24.20 | | Service C | 12 | | 2 2 | Test Hole | | 33 | 3 | | 31 | | X | 2 | | 77 | 2 | 7 | 20 | 75 | 3 | 25 |) | 200 | 90 | 24 | | 40 |] | | 5-11 to | Ĺ | ·Į | > | ** | | 1 | | <u> </u> | * | > | X | | 7 | > | > | \$ | | > | * | | × | - | × | | 02316-8 | 04 | 9 | 9 | 07 | :1 | 1 A | 10 | ca | ti | ng | i | nc | | | | 24 | · | جر | 42 | 53 | 92 | 160 |)2 | 73 | | | | |----|--------------------------------|-------------------|-------------------------|----------------------|-------------------------|--------------------------|--------------------------|--------------------------------|--------------------------|--------------------------|--------------------------|-----------------------|------------------------|---------------------------|--------------------|------------------------|-----------------------|-----------------------|-----------------------|--------------------------|-----------------------|-------------------------|-----------------------|----------------------|--------------------|----------------------| | | | | ر مرد "عام
محرد" عام | | | | ر
المالية
المالية | | | | | | <u>3</u> ,€ | | र्ज्य ८) | • | (J, 'C)- | | | | | | 30'ca | | | | | r | | - | -, , | 7 | , T | } | | _ | <u> </u> | | ପ | J | • | Ų , | <u>ب</u> | 4 |
 | ╄ | | 527 % | | J | | _1 | _ | ᆸ | | | Soil Cond. Comments | | 43'9"COZUCE STAN LAULT | STS CLUTE POLL MANTE | 49'9' CORUER STUM VALLE | MISTORATED POLICE MANIET | S'9 CLISTER SYNER MANIET | ज्या क्षा द्वारा हुन है जिल्ला | 11018 CENTR SEASE BANNOK | व्याष्ट्रियाहर वर विवासन | DY'X"CORNE TOMORRAME PAD | 13'X" COZUZZJEAN VALL | 37 10" CORNE OF BUILDE | Chia" CORURE OF STEAM VAL | 378"CORNIGOT BLDS. | 6'a''cosus Thaspra Pro | 30'3" TO FIRE HIGHAUT | LAS TO THRESTORME PAD | 2355" TO FIRE HYDIAUT | स्तिरंगरा जातान व्याप्ति | IS'4" TO FIRE HYDRAUT | 34'1" TOTYAKSFORMEZ HAL | D' (" TO FIR MY DIMO! | BU COPUED THRESTONED | 444 COPKROF BUILDE | 24'9" TO FIRE HYDIAM | | | Soil Cond. | | SOFT | | SOFT | | SOFT | | Soft | | 8 | | SOFT | i | SSFT | | 1.55 | | SOFT | | Sort | | Ser | | SOFT | | | | | | Age. | | Secon | | 900rl | | yraao | | lago
C | , | page | | 2005 | | 9000 | _ | ညတ | • | कटक | , | ace | | 900) | | | | Pipe Material Pipe Cond. | | SOLVETE
TOUCH | | STEEL | | towert
Ouct | | 23KL | | <u>t</u> d | | CONCIT | | COUNTE | | COLEMEN | | 5735 | | Pvc | | COUNTL | | DT. | | | | Pipe/Conduit | size inches | 1,61, | | .9 |
 J.S." | | ' — | | ъ́ | | 13" | | 13,1 | | 13, | | ٧ | | ,,, | | 13" | } | بک | | | | Death to bottom Pipe/Conduit | of util in inches | 48, | | Ş | | و. | | 15 | | " Ł9 | | 1,×, | | , 7.5° | | \$8. | | į. | | 29, | | 10. | | 75° | | | | Denth to too | of util in inches | | | | | . 78. | | 'n | | 5.4" | | 35.1 | | ., 5 | | 1.71 | | 45" | | ű,
M | | 1,60 | | ,£9 | | | | I Milihy hand | 2011 | 2 3/100 | 1 CM 6 | 7 4 7 | 27.0 | STP Aum | | CATHOTIC, | | 44 | X | 400 | 7 | 200 | | 1 | | FIRE | | Posses | | PriveR | | 02H | | | | Total Uplo | פאר דוסום | 15 | - | 7 | 8 | 4 | 1 | מה | | 45 | | 717 | | 44 | | × 4% | | 40 | | C | 7 | ū | 1 | C | | | | | - | *> | ·· - | > | , | X | · | 7 | > | / | > | X | • / | 7 | / | *> | | \times | , | \times | | 1 | | X | _ | | | | | | | | | | | | | | 4 | 02 | 31 | 6- | -9 | | | | | | | | | | | | | | :
سم | W. W. | ·
~ | | | , oc. | | 90°E | ·
- | | | | | | | = | | | DELL PAD | 5 | | | | |-----------------------------|----------------------|----------------------|--------------------------------|--------------------------|-------------------------|--|---------------------------|--------------------------|---------------------|----------------------|--------------|--------------------|--------------------------|---------------------------|----------------------|-----------------------|----------------------------|----------------------------|---|----------------------------------|---|--------------------------|-------------------|-------------------------| | Soil Cond. Comments | 5'7"TO TOMURGENZ PAD | 3X10" TO STEAM VALLE | ाम, ज , टाजिसहू वर्ट खेला है न | 19'4 CELTIP ELCTIC AMMOR | 129' CORNED OF BUILDING | ISY CLANTER EISLAND MANITO | 419 COLUMN THANSFORMS PRO | S35 COBME TOAKSTORES PAD | 23'1" TO LIGHT POIL | 24.2" TO LIMENT POSE | TO LIGHT POR | 21'7' TO LIGHT ROF | צים'צ"אב בשבים בואיג לאם | פאט דאוש במוצכים הות ביצו | PO'O'TO STEAM MAUNOS | PR' TO MOUTORING WELL | NOT SE CORME MOUNTARING WE | Pain" St. cozura Put. VAND | 49'3" TO POWER VAULT | SO'S'SS CORUM MOUNTAINE GUIL PAD | न्रस्त्र, ११ ट्यामस दरबाध्ये सेमह्यास्त्राम | Bain'TO MOUNTINE US DE H | PR' TO Pruss vant | 835" TO MOLITURITY WEIL | | Soil Cond. | SOFT | | 9 | | 7903 | | Sort | | 285 | | 12
9 | | 505 | | 1105 | | HARD | | HARD | | HARD | | HARD | | | Pipe Cond. | Soorl | - | 200 | | Scal | | क्रम | | See | | aced |) | pane | , | 2000 | | Soci | | 900 | | 202 | | 4000 | , | | Pipe Material Pipe Cond. | STEL | C.S. Z.F.CTK | יסגינ | | DI | | בסיתינונ
סייני | | בארנים ביינים | | COSMI | | CONVACTE | | COUNTY | | ST55.L | - | Concrete
Encored | | 3TEC | | STESL | | | Pipe/Conduit
size inches | • | 9.1 | 18 | | , so | | 11" | | וי | | .,9 | | 16° | | 16., | | 8,, | | 46T PATTOM | | .,9/ | | Š | | | Depth to bottom | 1 1 | | 36" | | ~ - S | | 36" | | 35." | | 45, | : | 8.4 | | .88 | | 19 | | Den 1907 44T | | .89 | | ,74 | | | Depth to top | 1 | | 18" | | .95 | | 25." | | 7,70 | | 34" | | 77" | | 1,50 | | | | .0t | • | ζ3, | | 381 | | | Utility type | FUEL | | Power ! | | O.H | | Park | | P. rush | | OUT 140 | THE PRINT | Prairi | 2 | (7.4%) | | F184 | | 13 | - | 17.16.1 | * | 7,11 | | | Test Hole | 5.3 | | ₹ | | V |)
) | C | | t L | | QS. | | 2 | | 67 | | 19 | | 67 | | 40.4 | | 50.7 | 2 | | <u> - </u> | X | 1 | X | Ļ; | > | <u>. </u> | <u>~</u> | | \ | بلمر | > | | \
\ | > , | Ż, |
> | X | , | ل ــــــــــــــــــــــــــــــــــــ | . | 1_/ | . ! | 1/ | ,J | 02316-10 4253921602 |)
(| 455
455 |) come | CXXXXTE | (13847c) | 7 | 3 | 7.33
6.33
7.33 | | | | | | | | | | | | =
XX | : | | | | | |--------------------------|-------------------------------------|-----------------------------------|------------------------------------|-----------------------------|-------------------------|---------------------------|----------------------|-------------------------------|----------------------------|-----------------------|-----------------------------|----------------------------|----------------------|----------------------|-----------------------------|--------------------------|-------------------------|--------------------------------|-----------------------|------------------------|-------------------|----------------------|--------------------------------|---------------------------------| | Soil Cond. Comments | HS' 35 COPURE STAND PURLYBET PITE | STO 10" & DE CEDIANA MANDES CAPTE | HAID'E DAY OF DIRLY MACHOL CCXXXXT | 19'9"SE COREE BALLE VINET E | 109'SL CORNER FAME VANS | 24'3"ECDE OF DIROW CHANGE | | John" SE CORESE ROWER LAWIT ! | THEY SELVENCE PRINTS VALLE | KHY" EDY OF POWE HAVE | GOID CODE OF POWER IN AUTHE | SYX"SS CORUNG POLIZE VALLE | STID TO BRUEZ MANHOR | BOLEWARRE BAINED LOB | 36 10" See column Buth 1013 | 34'10" TO POWE INPOSEDIE | C2'7" TO SELEZ MOUTHOLE | हारे हैं। एक दलकर है जिएक राजि | (O'4" TO SELVE MOUNDE | Bush waste in the lots | בוסו שנות שית הנה | 321" TO SEWER MANHER | MANUAL STORE OF SEMERAL MANUEL | 39'11" www. COSULUL (310. 1012) | | Soil Cond. | HARD | | (Faiz) | | HARD | | HARD | | 1439 | | | | त्यम | | HARD | | SOFT | | 1188 | | 17.09 | - | 119 | | | 1 1 | good | | acoc | | good | | व्यक्त | | scor! | | | Ì | 3 225 | | رتعه | | gon |) | ممصر | | 300 | | pesso | | | Pipe Material Pipe Cond. | STELL | | 278L | | <u> </u> | | Soventi
Dect | | COUNTER | | Drain) | | COSMETE | | Council
Duct | | STEL | | म्यून्य
रहेन्स्य | | STRI | | STEL | | | Pipe/Conduit | - 10 N | | 16" | | 13. | | 131 | | 8 | | SWPKIR D | | "p(| | 1,4 | | 9 | | 1,1 | | .,, | | 1,9/ | | | | 8 | | 63" | | 376 | | | | "tol | | HIMIS (SW | | 1,8% | | 19 | | .,22 | | C | | 14. | | 103" | | | | ייבע |) | 3%. | | ,27 | 7 | 35" | | "בני | | 70 | | .,17 | | 44" | | Ę | | ,,717 | 1 | .,21 | | ., % | | | Utility type | 7.4 | 30 | Fire | N-A | Daired | | 23.64 | | 7:00 | 2011 | 4 | | C# 135 | | D. 102 | | בו
בו | | CATHETTE | and and a | 7 | - X | F. 15. | | | Test Hole | ۲, | 20 | 47 | | 27 | | 77 | 3 | 7 | 9 | 3/ | 0 0 | 67 | | r.
C | | 4 | | CC | 8 | 24 |) | 74 | | | L-1 | */ | <u> </u> | <u> </u> | > | > | <u>t.</u> | / | > | * | | X | 23 | K
16 | >
>
, — | *
11 | | | | 7 | | 矛 | | Z | | | | Johnan | بي | | | | - | ر
ترسیرا | - | | × | | J. | | | | | | | | | | | | |--------------------------|----------------------------------|--------------------------------|-------------------|--------------------|----------------------|--------------------------|----------------------|------------------------|----------------------|-----------------------------|----------------------|-----------------------------|----|------------|----|--------------|---|---|-----------|-----|-----|----------|------| | Soil Cond. Comments | 27.1" EDGE OF THE CHINGTH MACHEN | SIGNAMA SEASE OF SEASE PARTIES | 134" FUEL MANHOIS | STYN SELLER WANTED | 10'3" TO FIRE MONIES | STY'S TO SELLER ENAUTHER | 34' TO FULL MARCHOIS | CHILLY TO SEWED MANANE | 65'3" TO SULL HANHOK | 78'3"TO FUEL CATHORY MANIOR | K4'10" SELVED MINUME | PS 1 "FLORE CATHOTIC MANNER | | | | | | | | | | | | | Soil Cond. | HARD | | 1305 | | SOFT | | 3 | | SOFI | | 1505 | | | | | | | | | | | | | | Pipe Cond. | Scal | | good | | Scot | | acre. | | accel | | good | 7 | | | | | | | | | | | | | Pipe Material Pipe Cond. | STEST | | COUNTER | | 57551 | | בסרמונגנ | | STEL | | STE4.2 | | | | | | | | | | | | | | Pipe/Conduit | .91 | | "۵۱ | | S" (20) | | 11, | | 4 | | 30 | | | | | | | | | | | | | | Depth to bottom | 1 | | 7£ | | "h& | | ,(<9) | | 107 | | 1.677 | | | | | | | | | | | | | | Depth to top | | 8 | ,49 | | ,29 | | | | 7.17 | | 7.7 | 7 | | | | | | | | | | | | | Utility type | 79.0 | | Cs. 27 | | ž
IJ | 3 | Dr. Wil | | CT Aux | | 7 | 177 | | | | | | | | | | | | | Test Hole | 35 | 7 | 1 to | | tt | | Ĭ, | 4 | 59 | | 797 | 4 | | | | | Į | | | | | | | | · | X | ```. | * |) | 5 | | <u> </u> | | <u> </u> | < | \(\frac{1}{2}\) | | 3/ | 707
-73 | 0, | - | S | E | <u>C1</u> | -10 | , i | , | ···• | ## SECTION 02510 # WATER DISTRIBUTION SYSTEM # PART 1 GENERAL ## 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. # AMERICAN WATER WORKS ASSOCIATION (AWWA) | AWWA | B300 | | | (1992) Hypochlorites | |---------|------------|-------------|------|--| | AWWA | B301 | | | (1992) Liquid Chlorine | | AWWA | ANSI/AWWA | C104/A21.4 | | (1995) Cement-Mortar Lining for Ductile-Iron
Pipe and Fittings for Water | | AWWA | ANSI/AWWA | C105/A21.5 | | (1993) Polyethylene Encasement for Ductile-
Iron Pipe Systems | | AWWA | ANSI/AWWA | C110/A21.10 |) | (1993) Ductile-Iron and Gray-Iron Fittings, 3 In. Through 48 In. (75# mm through 1200# mm), for Water and Other Liquids | | AWWA | ANSI/AWWA | C111/A21.11 | L | (1995) Rubber-Gasket Joints for Ductile-Iron
Pressure Pipe and Fittings | | AWWA | ANSI/AWWA | C115/A21.15 | 5 | (1994) Flanged Ductile-Iron Pipe With
Ductile-Iron or Gray-Iron Threaded Flanges | | AWWA | ANSI/AWWA | C151/A21.51 | L | (1996) Ductile-Iron Pipe, Centrifugally Cast, for Water or Other Liquids | | AWWA | ANSI/AWWA | C153/A21.53 | 3 | (1994; Errata Nov 1996) Ductile-Iron Compact Fittings, 3 In. Through 24 In. (76 mm through 610 mm) and 54 In. through 64 In. (1,400 mm through 1,600 mm) for Water Service Liquids | | AWWA | C500 | | | (1993; C500a) Metal-Sealed Gate Valves for Water Supply Service | | AWWA | C509 | | | (1994) Resilient-Seated Gate Valves for Water Supply Service | | AWWA | C600 | | |
(1993) Installation of Ductile-Iron Water
Mains and Their Appurtenances | | AWWA | C651 | | | (1992) Disinfecting Water Mains | | DACA67- | -00-R-0222 | | SECT | TION 02510 - Page 1 | DUCTILE IRON PIPE RESEARCH ASSOCIATION (DIPRA) DIPRA-01 (1997) Thrust Restraint Design for Ductile Iron Pipe MANUFACTURERS STANDARDIZATION SOCIETY OF THE VALVE AND FITTINGS INDUSTRY (MSS) MSS SP-80 (1997) Bronze Gate, Globe, Angle and Check Valves #### 1.2 PIPING This section covers water service lines, and connections to building service at a point approximately 5 feet outside buildings and structures to which service is required. The Contractor shall have a copy of the manufacturer's recommendations for each material or procedure to be utilized available at the construction site at all times. ## 1.2.1 Excavation, Trenching, and Backfilling Excavation, trenching, and backfilling shall be in accordance with the applicable provisions of Section 02316 EXCAVATION, TRENCHING, AND BACKFILLING FOR UTILITIES SYSTEMS, except as modified herein. # 1.3 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-06 Instructions Installation; FIO. The manufacturer's recommendations for each material or procedure to be utilized. SD-08 Statements Waste Water Disposal Method; FIO. The method proposed for disposal of waste water from hydrostatic tests and disinfection, prior to performing hydrostatic tests. Satisfactory Installation; GA. A statement signed by the principal officer of the contracting firm stating that the installation is satisfactory and in accordance with the contract 00029/11 REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 drawings and specifications, and the manufacturer's prescribed procedures and techniques, upon completion of the project and before final acceptance. SD-09 Reports Bacteriological Disinfection; GA. Test results from commercial laboratory verifying disinfection. SD-13 Certificates Manufacturer's Representative; GA. The name and qualifications of the manufacturer's representative and written certification from the manufacturer that the representative is technically qualified in all phases of PE, RTRP, and/or RPMP pipe laying and jointing and experienced to supervise the work and train the Contractor's field installers, prior to commencing installation. Installation; GA. A statement signed by the manufacturer's field representative certifying that the Contractor's personnel are capable of properly installing the pipe on the project. ### 1.4 HANDLING Pipe and accessories shall be handled to ensure delivery to the trench in sound, undamaged condition, including no injury to the pipe coating or lining. If the coating or lining of any pipe or fitting is damaged, the repair shall be made by the Contractor in a satisfactory manner, at no additional cost to the Government. No other pipe or material shall be placed inside a pipe or fitting after the coating has been applied. Pipe shall be carried into position and not dragged. Use of pinch bars and tongs for aligning or turning pipe will be permitted only on the bare ends of the pipe. The interior of pipe and accessories shall be thoroughly cleaned of foreign matter before being lowered into the trench and shall be kept clean during laying operations by plugging or other approved method. Before installation, the pipe shall be inspected for defects. Material found to be defective before or after laying shall be replaced with sound material without additional expense to the Government. Rubber gaskets that are not to be installed immediately shall be stored in a cool and dark place. ## PART 2 PRODUCTS ### 2.1 PIPE Pipe shall conform to the respective specifications and other requirements specified below. ### 2.1.1 Ductile-Iron Pipe Ductile-iron pipe shall conform to AWWA ANSI/AWWA C151/A21.51, working pressure not less than 150 psi, unless otherwise shown or specified. Pipe shall be cement-mortar lined in accordance with AWWA ANSI/AWWA C104/A21.4. Linings shall be standard. When installed underground, pipe shall be encased with 4mm mil thick polyethylene in accordance with AWWA ANSI/AWWA C105/A21.5. Flanged ductile iron pipe with threaded flanges shall be in accordance with AWWA ANSI/AWWA C115/A21.15. ## 2.1.2 Steel Pipe 3 Inches and larger, Not Galvanized Steel pipe, not galvanized, shall conform to AWWA C200 with dimensional requirements as given in ASME B36.10M for pipe 6 inches in diameter and larger, and ASTM A 53 for smaller sizes. Pipe shall be welded or seamless with plain or shouldered and grooved ends in accordance with AWWA C606 for use with mechanical couplings or bell-and-spigot ends with rubber gaskets. The minimum wall thickness of the various sizes of pipe shall be as follows: Pipe Sizes Thickness 24" 3/8" #### 2.2 FITTINGS AND SPECIALS ## 2.2.1 Ductile-Iron Pipe System Fittings and specials shall be suitable for 150 psi pressure rating, unless otherwise specified. Fittings and specials for mechanical joint pipe shall conform to AWWA ANSI/AWWA C110/A21.10. Fittings and specials for use with push-on joint pipe shall conform to AWWA ANSI/AWWA C110/A21.10 and AWWA ANSI/AWWA C111/A21.11. Fittings and specials shall be cement-mortar lined (standard thickness) in accordance with AWWA ANSI/AWWA C104/A21.4. Ductile iron compact fittings shall conform to AWWA ANSI/AWWA C153/A21.53. #### 2.3 JOINTS ## 2.3.1 Ductile-Iron Pipe Jointing - a. Mechanical joints shall be of the stuffing box type and shall conform to AWWA ANSI/AWWA C111/A21.11. - b. Push-on joints shall conform to AWWA ANSI/AWWA C111/A21.11. - c. Rubber gaskets and lubricants shall conform to the applicable requirements of AWWA ANSI/AWWA C111/A21.11. ### 2.3.2 Bonded Joints For all ferrous pipe, a metallic bond shall be provided at each joint, including joints made with flexible couplings, caulking, or rubber gaskets, of ferrous metallic piping to effect continuous conductivity. The bond wire shall be Size 1/0 copper conductor suitable for direct burial shaped to stand clear of the joint. The bond shall be of the thermal weld type. # 2.4 VALVES ## 2.4.1 Gate Valves Gate valves shall be designed for a working pressure of not less than 150 psi. Valve connections shall be as required for the piping in which they are installed. Valves shall have a clear waterway equal to the full nominal diameter of the valve, and shall be opened by turning counterclockwise. The operating nut or wheel shall have an arrow, cast in the metal, indicating the direction of opening. - a. Valves smaller than 3 inches shall be all bronze and shall conform to MSS SP-80, Type 1, Class 150. - b. Valves 3 inches and larger shall be iron body, bronze mounted, and shall conform to AWWA C500. Flanges shall not be buried. An approved pit shall be provided for all flanged connections. - c. Resilient-Seated Gate Valves: For valves 3 to 12 inches in size, resilient-seated gate valves shall conform to AWWA C509. #### 2.4.2 Vacuum and Air Relief Valves Vacuum and air relief valves shall be of the size shown and shall be of a type that will release air and prevent the formation of a vacuum. The valves shall automatically release air when the lines are being filled with water and shall admit air into the line when water is being withdrawn in excess of the inflow. Valves shall be iron body with bronze trim and stainless steel float. ### 2.5 VALVE BOXES Valve boxes shall be cast iron or concrete, except that concrete boxes may be installed only in locations not subjected to vehicular traffic. Cast-iron boxes shall be extension type with slide-type adjustment and with flared base. The minimum thickness of metal shall be 3/16 inch. Concrete boxes shall be the standard product of a manufacturer of precast concrete equipment. The word "WATER" shall be cast in the cover. The box length shall adapt, without full extension, to the depth of cover required over the pipe at the valve location. ### 2.6 MISCELLANEOUS ITEMS ## 2.6.1 Disinfection Chlorinating materials shall conform to the following: Chlorine, Liquid: AWWA B301. Hypochlorite, Calcium and Sodium: AWWA B300. #### PART 3 EXECUTION ### 3.1 INSTALLATION ## 3.1.1 Cutting of Pipe Cutting of pipe shall be done in a neat and workmanlike manner without damage to the pipe. Unless otherwise recommended by the manufacturer and authorized by the Contracting Officer, cutting shall be done with an approved type mechanical cutter. Wheel cutter shall be used when practicable. Copper tubing shall be cut square and all burrs shall be removed. Squeeze type mechanical cutters shall not be used for ductile iron. ## 3.1.2 Adjacent Facilities ### 3.1.2.1 Sewer Lines Where the location of the water pipe is not clearly defined in dimensions on the drawings, the water pipe shall not be laid closer horizontally than 10 feet from a sewer except where the bottom of the water pipe will be at least 12 inches above the top of the sewer pipe, in which case the water pipe shall not be laid closer horizontally than 6 feet from the sewer. Where water lines cross under gravity-flow sewer lines, the sewer pipe, for a distance of at least 10 feet each side of the crossing, shall be fully encased in concrete or shall be made of pressure pipe with no joint located within 3 feet horizontally of the crossing. Water lines shall in all cases cross above sewage force mains or inverted siphons and shall be not less than 2 feet above the sewer main. Joints in the sewer main, closer horizontally than 3 feet to the crossing, shall be encased in concrete. ### 3.1.2.2 Water Lines Water lines shall not be laid in the same trench with sewer lines, gas lines, fuel lines, or electric wiring. ## 3.1.2.3 Casing Pipe Water pipe shall be encased in a sleeve of rigid conduit for the lengths shown. Where sleeves are required, in all other
cases, the pipe sleeve shall be ductile iron, manufactured in accordance with AWWA C110 Pressure Class 350. A minimum clearance of at least 2 inches between the inner wall of the sleeve and the maximum outside diameter of the sleeved pipe and joints shall be provided. Sand bedding or suitable pipe support shall be provided for the water pipe through the sleeve. Sleeves of ferrous material shall be provided with corrosion protection as required in Section 13112 CATHODIC PROTECTION SYSTEM (IMPRESSED CURRENT). #### 3.1.3 Joint Deflection ## 3.1.3.1 Allowable for Ductile-Iron Pipe The maximum allowable deflection shall be as given in AWWA C600. If the alignment requires deflection in excess of the above limitations, special bends or a sufficient number of shorter lengths of pipe shall be furnished to provide angular deflections within the limit set forth. ## 3.1.4 Placing and Laying Pipe and accessories shall be carefully lowered into the trench by means of derrick, ropes, belt slings, or other authorized equipment. Water-line materials shall not be dropped or dumped into the trench. Abrasion of the pipe coating shall be avoided. Except where necessary in making connections with other lines or as authorized by the Contracting Officer, pipe shall be laid with the bells facing in the direction of laying. The full length of each section of pipe shall rest solidly upon the pipe bed, with recesses excavated to accommodate bells, couplings, and joints. Pipe that has the grade or joint disturbed after laying shall be taken up and relaid. Pipe shall not be laid in water or when trench conditions are unsuitable for the work. Water shall be kept out of the trench until joints are complete. When work is not in progress, open ends of pipe, fittings, and valves shall be securely closed so that no trench water, earth, or other substance will enter the pipes or fittings. Where any part of the coating or lining is damaged, the repair shall be made by and at the Contractor's expense in a satisfactory manner. Pipe ends left for future connections shall be valved, plugged, or capped, and anchored, as shown. # 3.1.4.1 Penetrations Pipe passing through walls of valve pits and structures shall be provided with ductile-iron or Schedule 40 steel wall sleeves. Annular space between walls and sleeves shall be filled with rich cement mortar. Annular space between pipe and sleeves shall be filled with mastic. ## 3.1.4.2 Flanged Pipe Flanged pipe shall only be installed above ground or with the flanges in valve pits. # 3.1.5 Jointing ## 3.1.5.1 Ductile-Iron Pipe Requirements Mechanical and push-on type joints shall be installed in accordance with AWWA C600 for buried lines. ## 3.1.5.2 Bonded Joints Requirements Bonded joints shall be installed in accordance with details specified for joints in paragraph JOINTS. #### 3.1.6 Location of Valves After delivery, valves, including those in hydrants, shall be drained to prevent freezing and shall have the interiors cleaned of all foreign matter before installation. Stuffing boxes shall be tightened and hydrants and valves shall be fully opened and fully closed to ensure that all parts are in working condition. Check, pressure reducing, vacuum, and air relief valves shall be installed in valve pits. Valves and valve boxes shall be installed where shown or specified, and shall be set plumb. Valve boxes shall be centered on the valves. Boxes shall be installed over each outside gate valve unless otherwise shown. Where feasible, valves shall be located outside the area of roads and streets. Earth fill shall be tamped around each valve box or pit to a distance of 4 feet on all sides of the box, or the undisturbed trench face if less than 4 feet. ### 3.1.7 Thrust Restraint Plugs, caps, tees and bends deflecting 11.25 degrees or more, either vertically or horizontally, on waterlines 4 inches in diameter or larger, and fire hydrants shall be provided with thrust restraints. Valves shall be securely anchored or shall be provided with thrust restraints to prevent movement. Thrust restraints shall be either thrust blocks or, for ductile-iron pipes, restrained joints. # 3.1.7.1 Thrust Blocks Thrust blocking shall be concrete of a mix not leaner than: 1 cement, 2-1/2 sand, 5 gravel; and having a compressive strength of not less than 2,000 psi after 28 days. Blocking shall be placed between solid ground and the hydrant or fitting to be anchored. Unless otherwise indicated or directed, the base and thrust bearing sides of thrust blocks shall be poured directly against undisturbed earth. The sides of thrust blocks not subject to thrust may be poured against forms. The area of bearing shall be as shown or as directed. Blocking shall be placed so that the fitting joints will be accessible for repair. Steel rods and clamps, protected by galvanizing or by coating with bituminous paint, shall be used to anchor vertical down bends into gravity thrust blocks. ### 3.2 HYDROSTATIC TESTS Where any section of a water line is provided with concrete thrust blocking for fittings or hydrants, the hydrostatic tests shall not be made until at least 5 days after installation of the concrete thrust blocking, unless otherwise approved. # 3.2.1 Pressure Test After the pipe is laid, the joints completed, fire hydrants permanently installed, and the trench partially backfilled leaving the joints exposed for examination, the newly laid piping or any valved section of piping shall, unless otherwise specified, be subjected for 1 hour to a hydrostatic pressure test of 200 psi. Water supply lines designated on the drawings shall be subjected for 1 hour to a hydrostatic pressure test of 200 psi. Each valve shall be opened and closed several times during the test. Exposed pipe, joints, fittings, hydrants, and valves shall be carefully examined during the partially open trench test. Joints showing visible leakage shall be replaced or remade as necessary. Cracked or defective pipe, joints, fittings, hydrants and valves discovered in consequence of this pressure test shall be removed and replaced with sound material, and the test shall be repeated until the test results are satisfactory. The requirement for the joints to remain exposed for the hydrostatic tests may be waived by the Contracting Officer when one or more of the following conditions is encountered: - a. Wet or unstable soil conditions in the trench. - b. Compliance would require maintaining barricades and walkways around and across an open trench in a heavily used area that would require continuous surveillance to assure safe conditions. - c. Maintaining the trench in an open condition would delay completion of the project. The Contractor may request a waiver, setting forth in writing the reasons for the request and stating the alternative procedure proposed to comply with the required hydrostatic tests. Backfill placed prior to the tests shall be placed in accordance with the requirements of Section 02316EXCAVATION, TRENCHING, AND BACKFILLING FOR UTILITIES SYSTEMS. ## 3.2.2 Leakage Test Leakage test shall be conducted after the pressure tests have been satisfactorily completed. The duration of each leakage test shall be at least 2 hours, and during the test the water line shall be subjected to not less than 200 psi pressure. Water supply lines designated on the drawings shall be subjected to a pressure equal to 200 psi. Leakage is defined as the quantity of water to be supplied into the newly laid pipe, or any valved or approved section, necessary to maintain pressure within 5 psi of the specified leakage test pressure after the pipe has been filled with water and the air expelled. Piping installation will not be accepted if leakage exceeds the allowable leakage which is determined by the following formula: L = 0.0001351ND(P raised to 0.5 power) L = Allowable leakage in gallons per hour N = Number of joints in the length of pipeline tested D = Nominal diameter of the pipe in inches P = Average test pressure during the leakage test, in psi gauge Should any test of pipe disclose leakage greater than that calculated by the above formula, the defective joints shall be located and repaired until the leakage is within the specified allowance, without additional cost to the Government. ### 3.2.3 Time for Making Test Except for joint material setting or where concrete thrust blocks necessitate a 5-day delay, pipelines jointed with rubber gaskets, mechanical or push-on joints, or couplings may be subjected to hydrostatic pressure, inspected, and tested for leakage at any time after partial completion of backfill. Cement-mortar lined pipe may be filled with water as recommended by the manufacturer before being subjected to the pressure test and subsequent leakage test. ## 3.2.4 Concurrent Hydrostatic Tests The Contractor may elect to conduct the hydrostatic tests using either or both of the following procedures. Regardless of the sequence of tests employed, the results of pressure tests, leakage tests, and disinfection shall be as specified. Replacement, repair or retesting required shall be accomplished by the Contractor at no additional cost to the Government. - a. Pressure test and leakage test may be conducted concurrently. - b. Hydrostatic tests and disinfection may be conducted concurrently, using the water treated for disinfection to accomplish the hydrostatic tests. If water is lost when treated for disinfection and air is admitted to the unit being tested, or if any repair procedure results in contamination of the unit, disinfection shall be reaccomplished. ## 3.3 DISINFECTION # 3.3.1 Bacteriological Disinfection Before acceptance of potable water operation, each unit of completed waterline shall be disinfected as specified per AWWA 651. After pressure tests have been made, the unit to be disinfected shall be thoroughly flushed with water until all entrained dirt and mud have been removed before introducing the chlorinating material. The chlorinating material shall be either liquid
chlorine, calcium hypochlorite, or sodium hypochlorite, conforming to paragraph MISCELLANEOUS ITEMS. The chlorinating material shall provide a dosage of not less than 50 ppm and shall be introduced into the water lines in an approved manner. The agent shall not be introduced into the line in a dry solid state. The treated water shall be retained in the pipe long enough to destroy all non-spore forming bacteria. Except where a shorter period is approved, the retention time shall be at least 24 hours and shall produce not less than 25 ppm of free chlorine residual throughout the line at the end of the retention period. Valves on the lines being disinfected shall be opened and closed several times during the contact period. The line shall then be flushed with clean water until the residual chlorine is reduced to less than 1.0 ppm. During the flushing period, each fire hydrant on the line shall be opened and closed several times. From several points in the unit, personnel from the Contractor's commercial laboratory shall take at least 3 water samples from different points, approved by the Contracting Officer, in proper sterilized containers and perform a bacterial examination in accordance with state approved methods. The commercial laboratory shall be certified by the state's approving authority for examination of potable water. The disinfection shall be repeated until tests indicate the absence of pollution for at least 2 full days. The unit will not be accepted until satisfactory bacteriological results have been obtained. #### 3.3.2 Lead Residual Following the bacteriological disinfection and testing, the system shall be flushed with a sufficient velocity of water and sufficient tests performed at each hot and cold water discharge point until no more than 15 ppb lead residuals remain in the system. All tests and samples shall be performed in accordance with state and, if applicable, Federal regulations. Samples for testing are to be collected after a 6 hour continuous period of no flushing, and will be considered first draw samples. The commercial laboratory shall be certified by the state's approving authority for examination of potable water. Lead residual test results shall be submitted to the Contracting Officer. The system will not be accepted until satisfactory bacteriological results and lead residual test results have been obtained. All flushing and testing for lead residuals, including all costs, are the responsibility of the Contractor. #### 3.4 CLEANUP Upon completion of the installation of water lines, and appurtenances, all debris and surplus materials resulting from the work shall be removed. END OF SECTION ## SECTION 02531 # SANITARY SEWERS ## PART 1 GENERAL ## 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. ## AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | ASTM C 14 | (1995) Concrete Sewer, Storm Drain, and Culvert Pipe | |------------|---| | ASTM C 94 | (1996) Ready-Mixed Concrete | | ASTM C 150 | (1997) Portland Cement | | ASTM C 443 | (1994) Joints for Circular Concrete Sewer and
Culvert Pipe, Using Rubber Gaskets | | ASTM C 924 | (1989) Concrete Pipe Sewer Lines by Low-
Pressure Air Test Method | | | AMERICAN WATER WORKS ASSOCIATION (AWWA) | | AWWA ANSI/AWWA C105/A21.5 | (1993) Polyethylene Encasement for Ductile-
Iron Pipe Systems | |----------------------------|---| | AWWA ANSI/AWWA C110/A21.10 | (1993) Ductile-Iron and Gray-Iron Fittings, 3 In. Through 48 In. (75 mm through 1200 mm), for Water and Other Liquids | | AWWA ANSI/AWWA C111/A21.11 | (1995) Rubber-Gasket Joints for Ductile-Iron
Pressure Pipe and Fittings | | AWWA ANSI/AWWA C115/A21.15 | (1994) Flanged Ductile-Iron Pipe with Ductile-Iron or Gray-Iron Threaded Flanges | | AWWA ANSI/AWWA C151/A21.51 | (1996) Ductile-Iron Pipe, Centrifugally Cast, for Water or Other Liquids | # NATIONAL FIRE PROTECTION ASSOCIATION (NFPA) | NFPA 49 | (1994) Hazardous Chemicals Data | |------------|--| | NFPA 325-1 | (1994) Fire Hazard Properties of Flammable Liquids, Gases, and Volatile Solids | 00029/11 REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 NFPA 704 (1996) Identification of the Fire Hazards of Materials for Emergency Response ## 1.2 GENERAL REQUIREMENTS The construction required herein shall include appurtenant structures and building sewers to points of connection with the building drains 5 feet outside the building to which the sewer system is to be connected. The Contractor shall replace damaged material and redo unacceptable work at no additional cost to the Government. Excavation and backfilling is specified in Section 02316 EXCAVATION, TRENCHING, AND BACKFILLING FOR UTILITIES SYSTEMS. Backfilling shall be accomplished after inspection by the Contracting Officer. #### 1.2 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-13 Certificates Portland Cement; FIO. Certificates of compliance stating the type of cement used in manufacture of concrete pipe, fittings and precast manholes. # PART 2 PRODUCTS ### 2.1 PIPE Pipe shall conform to the respective specifications and other requirements specified below. #### 2.1.1 Concrete Pipe Concrete pipe 24 inches or less in diameter, unless otherwise shown or specified, shall be nonreinforced and conform to ASTM C 14, Class 2. Pipe less than 36 inches in diameter shall be bell and spigot type. ### 2.1.2 Ductile Iron Pipe Pipe shall conform to AWWA ANSI/AWWA C151/A21.51 unless otherwise shown or specified. ## 2.1.3 Gate Valve with Valve Box See Section 02510 WATER DISTRIBUTION SYSTEM. ### 2.2 REQUIREMENTS FOR FITTINGS Fittings shall be compatible with the pipe supplied and shall have a strength not less than that of the pipe. Fittings shall conform to the respective specifications and other requirements specified below. ## 2.2.1 Fittings for Concrete Pipe ASTM C 14 for pipe 24 inches or less in diameter. ## 2.2.2 Fittings for Ductile Iron Pipe Mechanical fittings shall conform to AWWA ANSI/AWWA C110/A21.10, rated for 150 psi. Push-on fittings shall conform to AWWA ANSI/AWWA C110/A21.10 and AWWA ANSI/AWWA C111/A21.11, rated for 150 psi. ### 2.3 JOINTS Joints installation shall comply with the manufacturer's instructions. Fittings and gaskets utilized for waste drains or industrial waste lines shall be certified by the manufacturer as oil resistant. ## 2.3.1 Concrete Pipe Jointing Joints and gaskets shall conform to ASTM C 443. ## 2.3.2 Ductile Iron Pipe Jointing Push-on joints shall conform to AWWA ANSI/AWWA C111/A21.11. Mechanical joints shall conform to AWWA ANSI/AWWA C111/A21.11 as modified by AWWA ANSI/AWWA C151/A21.51. Flanged joints shall conform to AWWA ANSI/AWWA C115/A21.15. ### 2.4 CEMENT MORTAR Cement mortar shall conform to ASTM C 270, Type M with Type II cement. ### 2.4.1 Portland Cement Portland cement shall conform to ASTM C 150, Type II for concrete used in concrete pipe, concrete pipe fittings, and manholes and type optional with the Contractor for cement used in concrete cradle, concrete encasement, and thrust blocking. ### 2.4.2 Portland Cement Concrete Portland cement concrete shall conform to ASTM C 94, compressive strength of 4000 psi at 28 days, except for concrete cradle and encasement or concrete blocks for manholes. Concrete used for cradle and encasement shall have a compressive strength of 2500 psi minimum at 28 days. Concrete in place shall be protected from freezing and moisture loss for 7 days. #### PART 3 EXECUTION #### 3.1 INSTALLATION ## 3.1.1 Pipe Laying - a. Pipe shall be protected during handling against impact shocks and free fall; the pipe interior shall be free of extraneous material. - b. Pipe laying shall proceed upgrade with the spigot ends of bell-and-spigot pipe and tongue ends of tongue-and-groove pipe pointing in the direction of the flow. Each pipe shall be laid accurately to the line and grade shown on the drawings. Pipe shall be laid and centered so that the sewer has a uniform invert. As the work progresses, the interior of the sewer shall be cleared of all superfluous materials. - c. Before making pipe joints, all surfaces of the portions of the pipe to be joined shall be clean and dry. Lubricants, primers, and adhesives shall be used as recommended by the pipe manufacturer. The joints shall then be placed, fitted, joined, and adjusted to obtain the degree of water tightness required. - d. ABS composite pipe ends with exposed truss and filler material shall be coated with solvent weld material before making the joint to prevent water or air passage at the joint between the inner and outer wall of the pipe. ### 3.1.1.1 Caulked Joints The packing material shall be well packed into the annular space to prevent the entrance of lead into the pipe. The remainder of the space shall be filled with molten lead that is hot enough to show a rapid change in color when stirred. Scum shall be removed before pouring. The lead shall be caulked to form a tight joint without overstraining the bell and shall have a minimum depth of 1 inch after caulking. ## 3.1.1.2 Trenches Trenches shall be kept free of water and as dry as possible during bedding, laying, and jointing and for as long a period as required. When work is not in progress, open ends of pipe and fittings shall be satisfactorily closed so that no trench water or other material will enter the pipe or fittings. ### 3.1.1.3 Backfill As soon as possible after the joint is
made, sufficient backfill material shall be placed along the pipe to prevent pipe movement off line or grade. Plastic pipe shall be completely covered to prevent damage from ultraviolet light. #### 3.1.1.4 Width of Trench If the maximum width of the trench at the top of the pipe, as specified in Section 02316 EXCAVATION, TRENCHING, AND BACKFILLING FOR UTILITIES SYSTEMS, is exceeded for any reason other than by direction, the Contractor shall install, at no additional cost to the Government, concrete cradling, pipe encasement, or other bedding required to support the added load of the backfill. ## 3.1.1.5 Jointing Joints between different pipe materials shall be made as specified, using approved jointing materials. ## 3.1.1.6 Handling and Storage Pipe, fittings and joint material shall be handled and stored in accordance with the manufacturer's recommendations. Storage facilities for plastic pipe, fittings, joint materials and solvents shall be classified and marked in accordance with NFPA 704, with classification as indicated in NFPA 49 and NFPA 325-1. ## 3.1.2 Leakage Tests Lines shall be tested for leakage by low pressure air testing, infiltration tests or exfiltration tests, as appropriate. Low pressure air testing for PVC pipe shall be as prescribed in UBPPA UNI-B-6. Low pressure air testing procedures for other pipe materials shall use the pressures and testing times prescribed in ASTM C 828 and ASTM C 924, after consultation with the pipe manufacturer. Prior to infiltration or exfiltration tests, the trench shall be backfilled up to at least the lower half of the pipe. If required, sufficient additional backfill shall be placed to prevent pipe movement during testing, leaving the joints uncovered to permit inspection. Visible leaks encountered shall be corrected regardless of leakage test results. When the water table is 2 feet or more above the top of the pipe at the upper end of the pipeline section to be tested, infiltration shall be measured using a suitable weir or other device acceptable to the Contracting Officer. When the Contracting Officer determines that infiltration cannot be properly tested, an exfiltration test shall be made by filling the line to be tested with water so that a head of at least 2 feet is provided above both the water table and the top of the pipe at the upper end of the pipeline to be tested. The filled line shall be allowed to stand until the pipe has reached its maximum absorption, but not less than 4 hours. After absorption, the head shall be re-established. The amount of water required to maintain this water level during a 2-hour test period shall be measured. Leakage as measured by either the infiltration test or exfiltration test shall not exceed 250 gal per inch diameter per mile of pipeline per day. When leakage exceeds the maximum amount specified, satisfactory correction shall be made and retesting accomplished. Testing, correction, and retesting shall be made at no additional cost to the Government. #### 3.1.3 Test for Deflection When flexible pipe is used, a deflection test shall be made on the entire length of the installed pipeline not less than 30 days after the completion of all work including the leakage test, backfill, and placement of any fill, grading, paving, concrete, or superimposed loads. Deflection shall be determined by use of a deflection device or by use of a spherical, spheroidal, or elliptical ball, a cylinder, or circular sections fused to a common shaft. The ball, cylinder, or circular sections shall have a diameter, or minor diameter as applicable, of 92.5 percent of the inside diameter of the pipe. A tolerance of plus 0.5 percent will be permitted. The ball, cylinder, or circular sections shall be of a homogeneous material throughout, shall have a density greater than 1.0 as related to water at 39.2 degrees F, and shall have a surface brinell hardness of not less than 150. The device shall be center bored and through bolted with a 1/4 inch minimum diameter steel shaft having a yield strength of 70,000 psi or more, with eyes at each end for attaching pulling cables. The eye shall be suitably backed with flange or heavy washer; a pull exerted on the opposite end of the shaft shall produce compression throughout the remote end of the ball, cylinder or circular section. Circular sections shall be spaced so that the distance from the external faces of the front and back sections shall equal or exceed the diameter of the circular section. Failure of the ball, cylinder, or circular section to pass freely through a pipe run, either by being pulled through or by being flushed through with water, shall be cause for rejection of that run. When a deflection device is used for the test in lieu of the ball, cylinder, or circular sections described, such device shall be approved prior to use. The device shall be sensitive to 1.0 percent of the diameter of the pipe being measured and shall be accurate to 1.0 percent of the indicated dimension. Installed pipe showing deflections greater than 7.5 percent of the normal diameter of the pipe, or 5 percent for RTRP and RPMP, shall be retested by a run from the opposite direction. If the retest also fails, the suspect pipe shall be replaced at no cost to the Government. END OF SECTION THIS PAGE INTENTIONALLY LEFT BLANK #### SECTION 02580 #### PAVEMENT MARKINGS #### PART 1 GENERAL #### 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. FEDERAL SPECIFICATIONS (FS) FS TT-B-1325 (Rev B) Beads (Glass Spheres) Retro-Reflective FS TT-P-1952 (Rev D) Paint, Traffic and Airfield Marking, Water Emulsion Base #### 1.2 NOT USED ### 1.3 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with SECTION 01330 SUBMITTAL PROCEDURES: SD-01 Data Equipment Lists; FIO. Lists of proposed equipment to be used in performance of construction work, including descriptive data, and notifications of proposed Contractor actions as specified in this section. SD-09 Reports Material Tests; FIO. Certified copies of the test reports, prior to the use of the materials at the jobsite. Testing shall be performed in an approved independent laboratory. ## 1.4 DELIVERY AND STORAGE All materials shall be delivered and stored in sealed containers that plainly show the designated name, formula or specification number, batch number, color, date of manufacture, manufacturer's name, and directions, all of which shall be plainly legible at time of use. ### 1.5 EQUIPMENT All machines, tools and equipment used in the performance of the work shall be approved and maintained in satisfactory operating condition. Equipment operating on roads and runways will display low speed traffic markings and traffic warning lights. ### 1.5.1 Paint Application Equipment The equipment to apply paint to pavements shall be a self-propelled or mobile-drawn pneumatic spraying machine with suitable arrangements of atomizing nozzles and controls to obtain the specified results. The machine shall have a speed during application not less than 5 mph, and shall be capable of applying the stripe widths indicated, at the paint coverage rate specified in paragraph APPLICATION, and of even uniform thickness with clear-cut edges. Equipment used for marking streets and highways shall be capable of placing the prescribed number of lines at a single pass as solid lines, intermittent lines or a combination of solid and intermittent lines using a maximum of two different colors of paint as specified. The equipment used to apply the paint binder to airfield pavements shall be a self-propelled or mobile-drawn pneumatic spraying machine with an arrangement of atomizing nozzles capable of applying a line width at any one time in multiples of 6 inches, from 6 inches to 18 inches. The paint applicator shall have paint reservoirs or tanks of sufficient capacity and suitable gauges to apply paint in accordance with requirements specified. Tanks shall be equipped with suitable air-driven mechanical agitators. The spray mechanism shall be equipped with quick-action valves conveniently located, and shall include necessary pressure regulators and gauges in full view and reach of the operator. Paint strainers shall be installed in paint supply lines to insure freedom from residue and foreign matter that may cause malfunction of the spray guns. The paint applicator shall be readily adaptable for attachment of an air-actuated dispenser for the reflective media approved for use. Pneumatic spray guns shall be provided for hand application of paint in areas where the mobile paint applicator cannot be used. #### 1.5.2 NOT USED #### 1.5.3 Reflective Media Dispenser The dispenser for applying the reflective media shall be attached to the paint dispenser and operate automatically and simultaneously with the applicator through the same control mechanism. The dispenser shall be capable of adjustment and designed to provide uniform flow of reflective media over the full length and width of the stripe at the rate of coverage specified in paragraph APPLICATION at all operating speeds of the applicator to which it is attached. #### 1.5.4 NOT USED ### 1.5.5 Surface Preparation Equipment ## 1.5.5.1 Sandblasting Equipment Sandblasting equipment shall include an air compressor, hoses, and nozzles of proper size and capacity as required for cleaning surfaces to be painted. The compressor shall be capable of furnishing not less than 150 cfm of air at a pressure of not less than 90 psi at each nozzle used, and shall be equipped with traps that will maintain the compressed air free of oil and water. Sandblast media and lead based paint residues shall be contained in accordance with current OSHA 1910.120 and 1926.62 lead standards. All materials contained during the
removal of lead based paint shall be disposed of in accordance with Section 01400 ENVIRONMENTAL PROCEDURES. ### 1.5.5.2 Waterblast Equipment The water pressure shall be specified at 2600 psi at 140 degrees F in order to adequately clean the surfaces to be marked. #### 1.5.6 Traffic Controls Suitable warning signs shall be placed near the beginning of the worksite and well ahead of the worksite for alerting approaching traffic from both directions. Small markers shall be placed along newly painted lines to prevent damage to newly painted surfaces. Painting equipment shall be marked with large warning signs indicating slow-moving painting equipment in operation. # 1.6 HAND-OPERATED, PUSH-TYPE MACHINES All machines, tools and equipment used in the performance of the work shall be approved and maintained in satisfactory operating condition. Hand-operated push-type machines of a type commonly used for application of paint to pavement surfaces shall be acceptable for marking small streets and parking areas. Applicator machine shall be equipped with the necessary paint tanks and spraying nozzles, and shall be capable of applying paint uniformily at coverage specified. Sandblasting equipment shall be provided as required for cleaning surfaces to be painted. Hand-operated spray guns shall be provided for use in areas where push-type machines cannot be used. ### PART 2 PRODUCTS ### 2.1 PAINT The paint shall be homogeneous, easily stirred to smooth consistency, and shall show no hard settlement or other objectionable characteristics during a storage period of 6 months. Paints for airfields shall conform to FS TT-P-1952, color as indicated. Paint for roads and streets shall conform to FS TT-P-1952 color as indicated. - 2.2 NOT USED - 2.3 NOT USED - 2.4 NOT USED - 2.5 REFLECTIVE MEDIA Reflective media for airfields shall conform to AASHTO M 247, Type I or FS TT-B-1325, Type I, Gradation A. # 2.6 SAMPLING AND TESTING Materials proposed for use shall be stored on the project site in sealed and labeled containers, or segregated at source of supply, sufficiently in advance of needs to allow 60 days for testing. Upon notification by the Contractor that the material is at the site or source of supply, a sample shall be taken by random selection from sealed containers by the Contractor in the presence of a representative of the Contracting Officer. Samples shall be clearly identified by designated name, specification number, batch number, manufacturer's formulation number, project contract number, intended use, and quantity involved. Testing shall be performed in an approved independent laboratory. Materials shall be approved based on reports furnished by the Contractor, samples shall be retained by the Government for possible future testing should the material appear defective during or after application. #### 2.7 Barricades Barricades shall be reflective orange and white colored with amberyellow lights. Flashing lights must be at least five candelas effective intensity and flash at the rate of from 55 to 75 flashes per minute. Continuous burning lights must have an effective intensity of 10 candelas. # PART 3 EXECUTION ### 3.1 SURFACE PREPARATION Surfaces to be marked shall be thoroughly cleaned before application of the pavement marking material. Dust, dirt, and other granular surface deposits shall be removed by sweeping, blowing with compressed air, rinsing with water or a combination of these methods as required. Rubber deposits, surface laitance, existing paint markings, and other coatings adhering to the pavement shall be completely removed with scrapers, wire brushes, sandblasting, approved chemicals, or mechanical abrasion as directed. Areas of old pavement affected with oil or grease shall be scrubbed with several applications of trisodium phosphate solution or other approved detergent or degreaser, and rinsed thoroughly after each application. After cleaning, oil-soaked areas shall be sealed with cut shellac to prevent bleeding through the new paint. Pavement surfaces shall be allowed to dry, when water is used for cleaning, prior to striping or marking. Surfaces shall be recleaned, when work has been stopped due to rain. ### 3.1.1 Pretreatment for Early Painting Where early painting is required on rigid pavements, a pretreatment with an aqueous solution containing 3 percent phosphoric acid and 2 percent zinc chloride shall be applied to prepared pavement areas prior to painting. # 3.1.2 Cleaning Existing Pavement Markings In general, markings shall not be placed over existing pavement marking patterns. Existing pavement markings shall be removed as shown. Whenever grinding, scraping, sandblasting or other operations are performed the work must be conducted in such a manner that the finished pavement surface is not damaged or left in a pattern that is misleading or confusing. When these operations are completed the pavement surface shall be blown off with compressed air to remove residue and debris resulting from the cleaning work. # 3.1.3 Cleaning Concrete Curing Compounds FAIRCHILD AFB, WA. PN GJKZ 99-0151 On new portland cement concrete pavements, cleaning operations shall not begin until a minimum of 30 days after the placement of concrete. All new concrete pavements shall be cleaned by either sandblasting or water blasting. The extent of the blasting work shall be to clean and prepare the concrete surface as follows: - a. There is no visible evidence of curing compound on the peaks of the textured concrete surface. - b. There are no heavy puddled deposits of curing compound in the valleys of the textured concrete surface. - c. All remaining curing compound is intact; all loose and flaking material is removed. - d. The peaks of the textured pavement surface are rounded in profile and free of sharp edges and irregularities. - e. The surface to be marked is dry. ### 3.2 APPLICATION All pavement markings and patterns shall be placed as shown on the plans. #### 3.2.1 Paint Paint shall be applied to clean, dry surfaces, and only when air and pavement temperatures are above 40 degrees F and less than 95 degrees F. Paint temperature shall be maintained within these same limits. New asphalt pavement surfaces and new portland concrete cement shall be allowed to cure for a period of not less than 30 days before applications of paint. Paint shall be applied pneumatically with approved equipment at rate of coverage specified herein. The Contractor shall provide guide lines and templates as necessary to control paint application. Special precautions shall be taken in marking numbers, letters, and symbols. Edges of markings shall be sharply outlined. # 3.2.1.1 Rate of Application Reflective Markings: Pigmented binder shall be applied evenly to the pavement area to be coated at a rate of 105 plus or minus 5 square feet per gallon. Glass spheres shall be applied uniformly to the wet paint on airfield pavement at a rate of 10 plus or minus 0.5 pounds of glass spheres per gallon of paint. Glass spheres shall be applied uniformly to the wet paint on road and street pavement at a rate of 6 plus or minus 0.5 pounds of glass spheres per gallon of paint. Nonreflective Markings: Paint shall be applied evenly to the pavement surface to be coated at a rate of 105 plus or minus 5 square feet per gallon. # 3.2.1.2 Drying The maximum drying time requirements of the paint specifications will be strictly enforced to prevent undue softening of bitumen, and pickup, displacement, or discoloration by tires of traffic. If there is a delay in drying of the markings, painting operations shall be discontinued until cause of the slow drying is determined and corrected. #### 3.2.2 Reflective Media Application of reflective media shall immediately follow application of pigmented binder. Drop-on application of glass spheres shall be accomplished to insure that reflective media is evenly distributed at the specified rate of coverage. Should there be malfunction of either paint applicator or reflective media dispenser, operations shall be discontinued immediately until deficiency is corrected. #### 3.3 TEMPORARY CLOSURE OF TAXIWAYS In addition to closure markings indicated on the drawings, provide lighted barricades each side of closed section of taxiway. Barricades shall be anchored or have sufficient mass to retain an established position where they are placed. Barricades shall be placed at 50 foot minimum intervals. Dual markers shall be used at the ends of each close section. END OF SECTION # SECTION 02630 # STORM-DRAINAGE SYSTEM # PART 1 GENERAL ### 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. ### ACI INTERNATIONAL (ACI) | ACI 346/346R | (1990) Standard Specification for Cast-in-
Place Nonreinforced Concrete Pipe and
Recommendations | |----------------------------------|--| | AMERICAN ASSOCIATION OF (AASHTO) | STATE HIGHWAY AND TRANSPORTATION OFFICIALS | | AASHTO HB-16 | (1996) | Standard | Specifications | for | Highway | |--------------|--------|----------|----------------|-----|---------| | | Bridge | S | | | | | AASHTO M 167 | (1994) Corrugated Steel Structural Plate,
Zinc Coated, for Field Bolted Pipe | |--------------|---| | AASHTO M 190 | (1988) Bituminous Coated Corrugated Metal
Culvert Pipe and Pipe Arches | | AASHTO M 198 | (1994) Joints for Circular Concrete Sewer and | | Culvert | Pipe | Using | Flexible | Watertight | | |---------|------|-------|----------|------------|--| | Gaskets | } | | | | | | | | | | | | (1992) Aluminum Alloy Structural Plate for | | Field Bolted Conduits | |--------------|---| | AASHTO M 243 |
(1994) Field Applied Coating of Corrugated
Metal Structural Plate for Pipe, Pipe-Arches,
and Arches | | AASHTO M 294 | (1994) Corrugated Polyethylene Pipe, 305- to | |--------------|--| | | 915- mm (12-to 36 in.) Diameter | | AASHTO MP6 | (1995) | Corrugated | Polyethylene | Pipe | 1050 | and | |------------|---------|------------|--------------|------|------|-----| | | 1200 mr | m Diameter | | | | | # AMERICAN RAILWAY ENGINEERING ASSOCIATION (AREA) | AREA-01 | (1997) 1997-1998 Manual for Railway | |---------|-------------------------------------| | | Engineering 4 Vol., Volume 1 | AASHTO M 219 DACA67-00-R-0222 SECTION 02630 - Page 2 # AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | ASTM A 48 | (1994a) Gray Iron Castings | |-------------------|---| | ASTM A 123/A 123M | (1997a) Zinc (Hot-Dip Galvanized) Coatings on
Iron and Steel Products | | ASTM A 536 | (1984; R 1993) Ductile Iron Castings | | ASTM A 716 | (1995) Ductile Iron Culvert Pipe | | ASTM A 742/A 742M | (1995) Steel Sheet, Metallic Coated and
Polymer Precoated for Corrugated Steel Pipe | | ASTM A 760/A 760M | (1997) Corrugated Steel Pipe, Metallic-Coated for Sewers and Drains | | ASTM A 762/A 762M | (1997) Corrugated Steel Pipe, Polymer Precoated for Sewers and Drains | | ASTM A 798/A 798M | (1997) Installing Factory-Made Corrugated
Steel Pipe for Sewers and Other Applications | | ASTM A 807 | (1996) Installing Corrugated Steel Structural Plate Pipe for Sewers and Other Applications | | ASTM A 849 | (1996) Post-Applied Coatings, Pavings, and
Linings for Corrugated Steel Sewer and
Drainage Pipe | | ASTM A 929/A 929M | (1996) Steel Sheet, Metallic-Coated by the Hot-Dip Process for Corrugated Steel Pipe | | ASTM B 26/B 26M | (1997) Aluminum-Alloy Sand Castings | | ASTM B 745/B 745M | (1995) Corrugated Aluminum Pipe for Sewers and Drains | | ASTM C 12 | (1995) Installing Vitrified Clay Pipe Lines | | ASTM C 14 | (1995) Concrete Sewer, Storm Drain, and
Culvert Pipe | | ASTM C 14M | (1995) Concrete Sewer, Storm Drain, and Culvert Pipe (Metric) | | ASTM C 32 | (1993) Sewer and Manhole Brick (Made from Clay or Shale) | | ASTM C 55 | (1997) Concrete Building Brick | | ASTM C 62 | (1997) Building Brick (Solid Masonry Units
Made from Clay or Shale) | | | | # 00029/11 REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 | ASTM C 76 | (1997) Reinforced Concrete Culvert, Storm
Drain, and Sewer Pipe | |-------------|---| | ASTM C 76M | (1997) Reinforced Concrete Culvert, Storm
Drain, and Sewer Pipe (Metric) | | ASTM C 139 | (1997) Concrete Masonry Units for
Construction of Catch Basins and Manholes | | ASTM C 231 | (1997) Air Content of Freshly Mixed Concrete
by the Pressure Method | | ASTM C 270 | (1997a) Mortar for Unit Masonry | | ASTM C 425 | (1997) Compression Joints for Vitrified Clay
Pipe and Fittings | | ASTM C 443 | (1994) Joints for Circular Concrete Sewer and
Culvert Pipe, Using Rubber Gaskets | | ASTM C 478 | (1997) Precast Reinforced Concrete Manhole
Sections | | ASTM C 478M | (1997) Precast Reinforced Concrete Manhole
Sections (Metric) | | ASTM C 506 | (1995a) Reinforced Concrete Arch Culvert,
Storm Drain, and Sewer Pipe | | ASTM C 506M | (1995a) Reinforced Concrete Arch Culvert,
Storm Drain, and Sewer Pipe (Metric) | | ASTM C 507 | (1995a) Reinforced Concrete Elliptical
Culvert, Storm Drain, and Sewer Pipe | | ASTM C 507M | (1995a) Reinforced Concrete Elliptical
Culvert, Storm Drain, and Sewer Pipe (Metric) | | ASTM C 655 | (1995a) Reinforced Concrete D-Load Culvert,
Storm Drain, and Sewer Pipe | | ASTM C 700 | (1997) Vitrified Clay Pipe, Extra Strength, Standard Strength, and Perforated | | ASTM C 789 | (1995a) Precast Reinforced Concrete Box
Sections for Culverts, Storm Drains, and
Sewers | | ASTM C 828 | (1990; R 1996) Low-Pressure Air Test of
Vitrified Clay Pipe Lines | # 00029/11 # REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 | ASTM C 850 | (1995a) Precast Reinforced Concrete Box
Sections for Culverts, Storm Drains, and
Sewers with Less Than 2 ft of Cover Subjected
to Highway Loadings | |------------------|---| | ASTM C 877 | (1994) External Sealing Bands for Noncircular Concrete Sewer, Storm Drain, and Culvert Pipe | | ASTM C 924 | (1989; R 1997) Concrete Pipe Sewer Lines by
Low-Pressure Air Test Method | | ASTM C 1103 | (1994) Joint Acceptance Testing of Installed
Precast Concrete Pipe Sewer Lines | | ASTM C 1103M | (1994) Joint Acceptance Testing of Installed
Precast Concrete Pipe Sewer Lines (Metric) | | ASTM D 1056 | (1991) Flexible Cellular Materials - Sponge
or Expanded Rubber | | ASTM D 1171 | (1994) Rubber Deterioration - Surface Ozone
Cracking Outdoors or Chamber (Triangular
Specimens) | | ASTM D 1557 | (1991) Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/cu. ft. (2,700 kN-m/cu.m.)) | | ASTM D 1751 | (1983; R 1991) Preformed Expansion Joint Filler for Concrete Paving and Structural Construction (Nonextruding and Resilient Bituminous Types) | | ASTM D 1752 | (1984; R 1996) Preformed Sponge Rubber and
Cork Expansion Joint Fillers for Concrete
Paving and Structural Construction | | ASTM D 1784 | (1997) Rigid Poly(Vinyl Chloride) (PVC)
Compounds and Chlorinated Poly(Vinyl
Chloride) (CPVC) Compounds | | ASTM D 2167 | (1994) Density and Unit Weight of Soil in Place by the Rubber Balloon Method | | ASTM D 2321 | (1989; R 1995) Underground Installation of
Thermoplastic Pipe for Sewers and Other
Gravity-Flow Applications | | ASTM D 2922 | (1996) Density of Soil and Soil-Aggregate in Place by Nuclear Methods (Shallow Depth) | | ASTM D 3017 | (1988; R 1993) Water Content of Soil and Rock in Place by Nuclear Methods (Shallow Depth) | | DACA67-00-R-0222 | SECTION 02630 - Page 4 | | ASTM D 3034 | (1994) Type PSM Poly(Vinyl Chloride) (PVC)
Sewer Pipe and Fittings | |-------------|--| | ASTM D 3212 | (1996a) Joints for Drain and Sewer Plastic
Pipes Using Flexible Elastomeric Seals | | ASTM D 3350 | (1996) Polyethylene Plastics Pipe and Fittings Materials | | ASTM F 477 | (1995) Elastomeric Seals (Gaskets) for
Joining Plastic Pipe | | ASTM F 679 | (1995) Poly(Vinyl Chloride) (PVC) Large-
Diameter Plastic Gravity Sewer Pipe and
Fittings | | ASTM F 714 | (1994) Polyethylene (PE) Plastic Pipe (SDR-PR) Based on Outside Diameter | | ASTM F 794 | (1995a) Poly(Vinyl Chloride) (PVC) Profile
Gravity Sewer Pipe and Fittings Based on
Controlled Inside Diameter | | ASTM F 894 | (1995) Polyethylene (PE) Large Diameter
Profile Wall Sewer and Drain Pipe | | ASTM F 949 | (1994) Poly(Vinyl Chloride) (PVC) Corrugated
Sewer Pipe with a Smooth Interior and
Fittings | | ASTM F 1417 | (1992) Installation Acceptance of Plastic
Gravity Sewer Lines Using Low-Pressure Air | # 1.2 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-06 Instructions Placing Pipe; FIO. Printed copies of the manufacturer's recommendations for installation procedures of the material being placed, prior to installation. SD-13 Certificates Resin Certification; FIO. Pipeline Testing; GA. Hydrostatic Test on Watertight Joints; GA. Determination of Density; FIO. Frame and Cover for Gratings; GA. Certified copies of test reports demonstrating conformance to applicable pipe specifications, before pipe is installed. Certification on the ability of frame and cover or gratings to carry the imposed live load. ### 1.3 DELIVERY, STORAGE, AND HANDLING ### 1.3.1 Delivery and Storage Materials delivered to site shall be inspected for damage, unloaded, and stored with a minimum of handling. Materials shall not be stored directly on the ground. The inside of pipes and fittings shall be kept free of dirt and debris. Before, during, and after installation, plastic pipe and fittings shall be protected from any environment that would result in damage or deterioration to the material. The Contractor shall have a copy of the manufacturer's instructions available at the construction site at all times and shall follow these instructions unless directed otherwise by the Contracting Officer. Solvents, solvent compounds, lubricants, elastomeric gaskets, and any similar materials required to install plastic pipe shall be stored in accordance with the manufacturer's recommendations and shall be discarded if the storage period exceeds the recommended shelf life. Solvents in use shall be discarded when the recommended pot life is exceeded. ### 1.3.2 Handling Materials shall be handled in a manner that ensures delivery to the trench in sound, undamaged condition. Pipe shall be carried to the trench, not dragged. #### PART 2 PRODUCTS # 2.1 PIPE FOR CULVERTS AND STORM DRAINS Pipe for culverts and storm drains shall be of the sizes indicated and shall conform to the requirements specified. # 2.1.1 Concrete Pipe ASTM C 76, Class IV. # 2.1.1.1 Nonreinforced Pipe ASTM C 14, Class 2. # 2.1.2 Ductile Iron Culvert Pipe ASTM A 716. #### 2.2 MISCELLANEOUS MATERIALS #### 2.2.1 Concrete Unless otherwise specified, concrete and reinforced concrete shall conform to the requirements for 3000 psi concrete under Section 03300 CAST-IN-PLACE STRUCTURAL CONCRETE. The concrete mixture shall have air content
by volume of concrete, based on measurements made immediately after discharge from the mixer, of 5 to 7 percent when maximum size of coarse aggregate exceeds 1-1/2 inches. Air content shall be determined in accordance with ASTM C 231. The concrete covering over steel reinforcing shall not be less than 1 inch thick for covers and not less than 1-1/2 inches thick for walls and flooring. Concrete covering deposited directly against the ground shall have a thickness of at least 3 inches between steel and ground. Expansion-joint filler material shall conform to ASTM D 1751, or ASTM D 1752, or shall be resin-impregnated fiberboard conforming to the physical requirements of ASTM D 1752. #### 2.2.2 Precast Reinforced Concrete Manholes Precast reinforced concrete manholes shall conform to ASTM C 478. Joints between precast concrete risers and tops shall be full-bedded in cement mortar and shall be smoothed to a uniform surface on both interior and exterior of the structure. # 2.2.3 Frame and Cover for Gratings Frame and cover for gratings shall be cast gray iron, ASTM A 48, Class 35B; cast ductile iron, ASTM A 536, Grade 65-45-12. Weight, shape, size, and waterway openings for grates and curb inlets shall be as indicated on the plans. # 2.2.4 Joints ### 2.2.4.1 Ductile Iron Pipe Couplings and fittings shall be as recommended by the pipe manufacturer. ### 2.3 STEEL LADDER Steel ladder shall be provided where the depth of the manhole exceeds 12 feet. These ladders shall be not less than 16 inches in width, with 3/4 inch diameter rungs spaced 12 inches apart. The two stringers shall be a minimum 3/8 inch thick and 2-1/2 inches wide. Ladders and inserts shall be galvanized after fabrication in conformance with ASTM A 123/A 123M. ### 2.4 HYDROSTATIC TEST ON WATERTIGHT JOINTS #### 2.4.1 Concrete A hydrostatic test shall be made on the watertight joint types as proposed. Only one sample joint of each type needs testing; however, if the sample joint fails because of faulty design or workmanship, an additional sample joint may be tested. During the test period, gaskets or other jointing material shall be protected from extreme temperatures which might adversely affect the performance of such materials. Performance requirements for joints in reinforced and nonreinforced concrete pipe shall conform to AASHTO M 198 or ASTM C 443. Test requirements for joints in clay pipe shall conform to ASTM C 425. Test requirements for joints in PVC and PE plastic pipe shall conform to ASTM D 3212. ### PART 3 EXECUTION # 3.1 EXCAVATION FOR PIPE CULVERTS, STORM DRAINS, AND DRAINAGE STRUCTURES Excavation of trenches, and for appurtenances and backfilling for culverts and storm drains, shall be in accordance with the applicable portions of Section 02316 EXCAVATION, TRENCHING, AND BACKFILLING FOR UTILITIES SYSTEMS and Section 02300 EARTHWORK and the requirements specified below. ### 3.1.1 Trenching The width of trenches at any point below the top of the pipe shall be not greater than the outside diameter of the pipe plus 24 inches to permit satisfactory jointing and thorough tamping of the bedding material under and around the pipe. Sheeting and bracing, where required, shall be placed within the trench width as specified. Contractor shall not overexcavate. Where trench widths are exceeded, redesign with a resultant increase in cost of stronger pipe or special installation procedures will be necessary. Cost of this redesign and increased cost of pipe or installation shall be borne by the Contractor without additional cost to the Government. # 3.1.2 Removal of Unstable Material Where wet or otherwise unstable soil incapable of properly supporting the pipe, as determined by the Contracting Officer, is unexpectedly encountered in the bottom of a trench, such material shall be removed to the depth required and replaced to the proper grade with select granular material, compacted as provided in paragraph BACKFILLING. When removal of unstable material is due to the fault or neglect of the Contractor in his performance of shoring and sheeting, water removal, or other specified requirements, such removal and replacement shall be performed at no additional cost to the government. ### 3.2 BEDDING The bedding surface for the pipe shall provide a firm foundation of uniform density throughout the entire length of the pipe. # 3.2.1 Concrete Pipe Requirements When no bedding class is specified or detailed on the drawings, concrete pipe shall be bedded in a soil foundation accurately shaped and rounded to conform to the lowest one-fourth of the outside portion of circular pipe or to the lower curved portion of pipe arch for the entire length of the pipe or pipe arch. When necessary, the bedding shall be tamped. Bell holes and REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 depressions for joints shall be not more than the length, depth, and width required for properly making the particular type of joint. # 3.2.2 Ductile Iron Pipe Bedding for ductile iron pipe shall be as shown on the drawings. #### 3.3 PLACING PIPE Each pipe shall be thoroughly examined before being laid; defective or damaged pipe shall not be used. Plastic pipe shall be protected from exposure to direct sunlight prior to laying, if necessary to maintain adequate pipe stiffness and meet installation deflection requirements. Pipelines shall be laid to the grades and alignment indicated. Proper facilities shall be provided for lowering sections of pipe into trenches. Lifting lugs in vertically elongated metal pipe shall be placed in the same vertical plane as the major axis of the pipe. Pipe shall not be laid in water, and pipe shall not be laid when trench conditions or weather are unsuitable for such work. Diversion of drainage or dewatering of trenches during construction shall be provided as necessary. Deflection of installed flexible pipe shall not exceed the following limits: TYPE OF PIPE MAXIMUM ALLOWABLE DEFLECTION (%) Ductile Iron Culvert 3 Not less than 30 days after the completion of backfilling, the Government may perform a deflection test on the entire length of installed flexible pipe using a mandrel or other suitable device. Installed flexible pipe showing deflections greater than those indicated above shall be retested by a run from the opposite direction. If the retest also fails, the suspect pipe shall be replaced at no cost to the Government. # 3.3.1 Concrete and Ductile Iron Pipe Laying shall proceed upgrade with spigot ends of bell-and-spigot pipe and tongue ends of tongue-and-groove pipe pointing in the direction of the flow. ### 3.4 JOINTING # 3.4.1 Concrete Pipe # 3.4.1.1 Cement-Mortar Bell-and-Spigot Joint The first pipe shall be bedded to the established gradeline, with the bell end placed upstream. The interior surface of the bell shall be thoroughly cleaned with a wet brush and the lower portion of the bell filled with mortar as required to bring inner surfaces of abutting pipes flush and even. The spigot end of each subsequent pipe shall be cleaned with a wet brush and uniformly matched into a bell so that sections are closely fitted. After each section is laid, the remainder of the joint shall be filled with mortar, and a bead shall be formed around the outside of the joint with sufficient additional mortar. If mortar is not sufficiently stiff to prevent appreciable slump before setting, the outside of the joint shall be wrapped or bandaged with cheesecloth to hold mortar in place. # 3.4.1.2 Cement-Mortar Oakum Joint for Bell-and-Spigot Pipe A closely twisted gasket shall be made of jute or oakum of the diameter required to support the spigot end of the pipe at the proper grade and to make the joint concentric. Joint packing shall be in one piece of sufficient length to pass around the pipe and lap at top. This gasket shall be thoroughly saturated with neat cement grout. The bell of the pipe shall be thoroughly cleaned with a wet brush, and the gasket shall be laid in the bell for the lower third of the circumference and covered with mortar. The spigot of the pipe shall be thoroughly cleaned with a wet brush, inserted in the bell, and carefully driven home. A small amount of mortar shall be inserted in the annular space for the upper two-thirds of the circumference. The gasket shall be lapped at the top of the pipe and driven home in the annular space with a caulking tool. The remainder of the annular space shall be filled completely with mortar and beveled at an angle of approximately 45 degrees with the outside of the bell. If mortar is not sufficiently stiff to prevent appreciable slump before setting, the outside of the joint thus made shall be wrapped with cheesecloth. Placing of this type of joint shall be kept at least five joints behind laying operations. # 3.5 DRAINAGE STRUCTURES ### 3.5.1 Manholes and Inlets Construction shall be of reinforced concrete, plain concrete, brick, precast reinforced concrete, precast concrete segmental blocks, prefabricated corrugated metal, or bituminous coated corrugated metal; complete with frames and covers or gratings; and with fixed galvanized steel ladders where indicated. Pipe studs and junction chambers of prefabricated corrugated metal manholes shall be fully bituminous-coated and paved when the connecting branch lines are so treated. ### 3.6 STEEL LADDER INSTALLATION Ladder shall be adequately anchored to the wall by means of steel inserts spaced not more than 6 feet vertically, and shall be installed to provide at least 6 inches of space between the wall and the rungs. The wall along the line of the ladder shall be vertical for its entire length. # 3.7 BACKFILLING # 3.7.1 Backfilling Pipe in Trenches After the pipe has been properly bedded, selected material from excavation or borrow, at a moisture content that will facilitate compaction, shall be placed along both sides of pipe in layers not exceeding 6 inches in compacted depth. The backfill shall be brought up evenly on both
sides of pipe for the full length of pipe. The fill shall be thoroughly compacted under the haunches of the pipe. Each layer shall be thoroughly compacted with mechanical tampers or rammers. This method of filling and compacting shall continue until the fill has reached an elevation of at least 12 inches above the top of the pipe. The remainder of the trench shall be backfilled and compacted by spreading and rolling or compacted by mechanical rammers or tampers in layers not exceeding 8 inches. Tests for density shall be made as necessary to ensure conformance to the compaction requirements specified below. Where it is necessary, in the opinion of the Contracting Officer, that sheeting or portions of bracing used be left in place, the contract will be adjusted accordingly. Untreated sheeting shall not be left in place beneath structures or pavements. # 3.7.2 Backfilling Pipe in Fill Sections For pipe placed in fill sections, backfill material and the placement and compaction procedures shall be as specified below. The fill material shall be uniformly spread in layers longitudinally on both sides of the pipe, not exceeding 6 inches in compacted depth, and shall be compacted by rolling parallel with pipe or by mechanical tamping or ramming. Prior to commencing normal filling operations, the crown width of the fill at a height of 12 inches above the top of the pipe shall extend a distance of not less than twice the outside pipe diameter on each side of the pipe or 12 feet, whichever is less. After the backfill has reached at least 12 inches above the top of the pipe, the remainder of the fill shall be placed and thoroughly compacted in layers not exceeding 8 inches. ### 3.7.3 Movement of Construction Machinery When compacting by rolling or operating heavy equipment parallel with the pipe, displacement of or injury to the pipe shall be avoided. Movement of construction machinery over a culvert or storm drain at any stage of construction shall be at the Contractor's risk. Any damaged pipe shall be repaired or replaced. # 3.7.4 Compaction # 3.7.4.1 General Requirements Cohesionless materials include gravels, gravel-sand mixtures, sands, and gravelly sands. Cohesive materials include clayey and silty gravels, gravel-silt mixtures, clayey and silty sands, sand-clay mixtures, clays, silts, and very fine sands. When results of compaction tests for moisture-density relations are recorded on graphs, cohesionless soils will show straight lines or reverse-shaped moisture-density curves, and cohesive soils will show normal moisture-density curves. # 3.7.4.2 Minimum Density Backfill over and around the pipe and backfill around and adjacent to drainage structures shall be compacted at the approved moisture content to the following applicable minimum density, which will be determined as specified below. - a. Under airfield and heliport pavements, paved roads, streets, parking areas, and similar-use pavements including adjacent shoulder areas, the density shall be not less than 90 percent of maximum density for cohesive material and 95 percent of maximum density for cohesionless material, up to the elevation where requirements for pavement subgrade materials and compaction shall control. - b. Under unpaved or turfed traffic areas, density shall not be less than 90 percent of maximum density for cohesive material and 95 percent of maximum density for cohesionless material. - c. Under nontraffic areas, density shall be not less than that of the surrounding material. ### 3.7.5 Determination of Density Testing shall be the responsibility of the Contractor and performed at no additional cost to the Government. Testing shall be performed by an approved commercial testing laboratory or by the Contractor subject to approval. Tests shall be performed in sufficient number to ensure that specified density is being obtained. Laboratory tests for moisture-density relations shall be made in accordance with ASTM D 1557 except that mechanical tampers may be used provided the results are correlated with those obtained with the specified hand tamper. Field density tests shall be determined in accordance with ASTM D 2167. ### 3.8 PIPELINE TESTING Lines shall be tested for leakage by low pressure air or water testing or exfiltration tests, as appropriate. Low pressure air testing for concrete pipes shall conform to ASTM C 924. Low pressure air testing procedures for other pipe materials shall use the pressures and testing times prescribed in ASTM C 828 or ASTM C 924, after consultation with the pipe manufacturer. Testing of individual joints for leakage by low pressure air or water shall conform to ASTM C 1103. Prior to exfiltration tests, the trench shall be backfilled up to at least the lower half of the pipe. If required, sufficient additional backfill shall be placed to prevent pipe movement during testing, leaving the joints uncovered to permit inspection. Visible leaks encountered shall be corrected regardless of leakage test results. When the water table is 2 feet or more above the top of the pipe at the upper end of the pipeline section to be tested, infiltration shall be measured using a suitable weir or other device acceptable to the Contracting Officer. An exfiltration test shall be made by filling the line to be tested with water so that a head of at least 2 feet is provided above both the water table and the top of the pipe at the upper end of the pipeline to be tested. The filled line shall be allowed to stand until the pipe has reached its maximum absorption, but not less than 4 hours. After absorption, the head shall be reestablished. The amount of water required to maintain this water level during a 2-hour test period shall be measured. Leakage as measured by the exfiltration test shall not exceed 250 gallons per inch in diameter per mile of pipeline per day, 0.2 gallons per inch in 00029/11 REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 diameter per 100 feet of pipeline per hour. When leakage exceeds the maximum amount specified, satisfactory correction shall be made and retesting accomplished. Testing, correcting, and retesting shall be made at no additional cost to the Government. END OF SECTION THIS PAGE INTENTIONALLY LEFT BLANK # SECTION 02722 # GRADED-CRUSHED AGGREGATE BASE COURSE # PART 1 GENERAL # 1.1 REFERENCES DACA67-00-R-0222 The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. # AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | ASTM C 88 | (1990) Soundness of Aggregates by Use of
Sodium Sulfate or Magnesium Sulfate | |-------------|--| | ASTM C 117 | (1995) Materials Finer Than 75 micrometer (No. 200) Sieve in Mineral Aggregates by Washing | | ASTM C 127 | (1988; R 1993) Specific Gravity and
Absorption of Course Aggregate | | ASTM C 128 | (1993) Specific Gravity and Absorption of Fine Aggregate | | ASTM C 131 | (1996) Resistance to Degradation of Small-
Size Coarse Aggregate by Abrasion and Impact
in the Los Angeles Machine | | ASTM D 75 | (1987; R 1992) Sampling Aggregates | | ASTM D 422 | (1963; R 1990) Particle-Size Analysis of Soils | | ASTM D 1556 | (1990; R 1996) Density and Unit Weight of
Soil in Place by the Sand-Cone Method | | ASTM D 1557 | (1991) Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/cu. ft. (2,700 kN-m/cu. m.)) | | ASTM D 2487 | (1993) Classification of Soils for
Engineering Purposes (Unified Soil
Classification System) | | ASTM D 2922 | (1996) Density of Soil and Soil-Aggregate in Place by Nuclear Methods (Shallow Depth) | | ASTM D 3017 | (1996) Water Content of Soil and Rock in Place by Nuclear Methods (Shallow depth) | SECTION 02722 - Page 1 00029/11 REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 ASTM D 4318 (1995a) Liquid Limit, Plastic Limit, and Plasticity Index of Soils ASTM E 11 (1995) Wire Cloth Sieves for Testing Purposes #### 1.2 DEFINITIONS For the purposes of this specification, the following definitions apply. # 1.2.1 Graded-crushed Aggregate Base Course Graded-crushed aggregate (GCA) base course is well graded, crushed, durable aggregate uniformly moistened and mechanically stabilized by compaction. GCA is similar to ABC (Aggregate Base Course), but it has more stringent requirements and it produces a base course with higher strength and stability. ### 1.2.2 Degree of Compaction Degree of compaction shall be expressed as a percentage of the maximum density obtained by the test procedure presented in ASTM D 1557. #### 1.3 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-09 Reports All tests in Section 1.4.2; GA. Calibration curves and related test results prior to using the device or equipment being calibrated. Copies of field test results within 24 hours after the tests are performed. Certified copies of test results for approval not less than 30 days before material is required for the work. ### 1.4 SAMPLING AND TESTING Sampling and testing shall be the responsibility of the Contractor. Sampling and testing shall be performed by a testing laboratory approved in accordance with Section 01451 CONTRACTOR QUALITY CONTROL. Work requiring testing will not be permitted until the testing laboratory has been inspected and approved. The materials shall be tested to establish compliance with the specified requirements; testing shall be performed at the specified frequency. The Contracting Officer may specify the time and location of the tests. Copies of test results shall be furnished to the Contracting Officer within 24 hours of completion of
the tests. REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 ### 1.4.1 Sampling Samples for laboratory testing shall be taken in conformance with ASTM D 75. When deemed necessary, the sampling will be observed by the Contracting Officer. #### 1.4.2 Tests The following tests shall be performed in conformance with the applicable standards listed. # 1.4.2.1 Sieve Analysis Sieve analysis shall be made in conformance with ASTM C 117 and ASTM D 422. Sieves shall conform to ASTM E 11. ### 1.4.2.2 Liquid Limit and Plasticity Index Liquid limit and plasticity index shall be determined in accordance with ASTM D 4318. # 1.4.2.3 Moisture-Density Determinations The maximum density and optimum moisture content shall be determined in accordance with ASTM D 1557 or ASTM D 3017. # 1.4.2.4 Field Density Tests Density shall be field measured in accordance with ASTM D 1556 or ASTM D 2922. For the method presented in ASTM D 1556 the base plate as shown in the drawing shall be used. ### 1.4.2.5 Wear Test Wear tests shall be made on GCA course material in conformance with ASTM C 131. ### 1.4.2.6 Soundness Soundness tests shall be made on GCA in accordance with ASTM C 88. # 1.4.3 Testing Frequency # 1.4.3.1 Initial Tests One of each of the following tests shall be performed on the proposed material prior to commencing construction to demonstrate that the proposed material meets all specified requirements when furnished. If materials from more than one source are going to be utilized, this testing shall be completed for each source. a. Sieve Analysis including No. 635 size material. REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 - b. Liquid limit and plasticity index moisture-density relationship. - c. Moisture-density relationship. - d. Wear. #### 1.4.3.2 In Place Tests One of each of the following tests shall be performed on samples taken from the placed and compacted GCA. Samples shall be taken and tested at the rates indicated. - a. Density tests shall be performed on every lift of material placed and at a frequency of one set of tests for every 250 square yards, or portion thereof, of completed area. - b. Sieve Analysis including No. 635 size material shall be performed for every 500 tons or two samples minimum, or portion thereof, of material placed. - c. Liquid limit and plasticity index tests shall be performed at the same frequency as the sieve analysis. # 1.4.4 Approval of Material The source of the material shall be selected 30 days prior to the time the material will be required in the work. Tentative approval of material will be based on initial test results. Final approval of the materials will be based on sieve analysis, liquid limit, and plasticity index tests performed on samples taken from the completed and fully compacted GCA. # 1.5 WEATHER LIMITATIONS Construction shall be done when the atmospheric temperature is above 35 degrees F. When the temperature falls below 35 degrees F, the Contractor shall protect all completed areas by approved methods against detrimental effects of freezing. Completed areas damaged by freezing, rainfall, or other weather conditions shall be corrected to meet specified requirements. ### 1.6 PLANT, EQUIPMENT, AND TOOLS All plant, equipment, and tools used in the performance of the work will be subject to approval before the work is started and shall be maintained in satisfactory working condition at all times. The equipment shall be adequate and shall have the capability of producing the required compaction, meeting grade controls, thickness control, and smoothness requirements as set forth herein. #### PART 2 PRODUCTS #### 2.1 AGGREGATES The GCA shall consist of clean, sound, durable particles of crushed stone, crushed slag, crushed gravel, crushed recycled concrete, angular sand, or other approved material. GCA shall be free of silt and clay as defined by ASTM D 2487, organic matter, and other objectionable materials or coatings. The portion retained on the No. 4 sieve shall be known as coarse aggregate; that portion passing the No. 4 sieve shall be known as fine aggregate. # 2.1.1 Coarse Aggregate Coarse aggregates shall be angular particles of uniform density. When the coarse aggregate is supplied from more than one source, aggregate from each source shall meet the specified requirements and shall be stockpiled separately. - a. Crushed Gravel: Crushed gravel shall be manufactured by crushing gravels, and shall meet all the requirements specified below. - b. Crushed Stone: Crushed stone shall consist of freshly mined quarry rock, and shall meet all the requirements specified below. ### 2.1.1.1 Graded-Crushed Aggregate Base Course GCA coarse aggregate shall not show more than 40 percent loss when subjected to the Los Angeles abrasion test in accordance with ASTM C 131. GCA coarse aggregate shall not exhibit a loss greater than 40 percent weighted average, at five cycles, when tested for soundness in magnesium sulfate in accordance with ASTM C 88. The amount of flat and elongated particles shall not exceed 20 percent for the fraction retained on the 1/2 inch sieve nor 20 percent for the fraction passing the 1/2 inch sieve. A flat particle is one having a ratio of width to thickness greater than 3; an elongated particle is one having a ratio of length to width greater than 3. In the portion retained on each sieve specified, the crushed aggregate shall contain at least 90 percent by weight of crushed pieces having two or more freshly fractured faces with the area of each face being at least equal to 75 percent of the smallest midsectional area of the piece. When two fractures are contiguous, the angle between planes of the fractures must be at least 30 degrees in order to count as two fractured faces. Crushed gravel shall be manufactured from gravel particles 90 percent of which by weight are retained on the maximum size sieve listed in TABLE 1. # 2.1.2 Fine Aggregate Fine aggregates shall be angular particles of uniform density. When the fine aggregate is supplied from more than one source, aggregate from each source shall meet the specified requirements. ### 2.1.2.1 Graded-Crushed Aggregate Base Course GCA fine aggregate shall consist of angular particles produced by crushing stone, slag, recycled concrete, or gravel that meets the requirements for wear and soundness specified for GCA coarse aggregate. Fine aggregate shall be produced by crushing only particles larger than No. 4 sieve in size. The fine aggregate shall contain at least 90 percent by weight of particles having two or more freshly fractured faces in the portion passing the No. 4 sieve and retained on the No. 10 sieve, and in the portion passing the No. 10 sieve and retained on the No. 40 sieve. # 2.1.3 Gradation Requirements The specified gradation requirements shall apply to the completed base course. The aggregates shall have a maximum size of 3 inches and shall be continuously well graded within the limits specified in TABLE 1. Sieves shall conform to ASTM E 11. TABLE I. GRADATION OF AGGREGATES Percentage by Weight Passing Square-Mesh Sieve | Sieve
Designation | No. 2 | |----------------------|--------| | | | | 2 inch | | | 1-1/2 inch | 100 | | 1 inch | 60-100 | | 1/2 inch | 30-65 | | No. 4 | 20-50 | | No. 10 | 15-40 | | No. 40 | 5-25 | | No. 200 | 0-10 | | No. 635 | 0-03 | NOTE 1: Particles having diameters less than 0.0008 inch shall not be in excess of 3 percent by weight of the total sample tested. NOTE 2: The values are based on aggregates of uniform specific gravity. If materials from different sources are used for the coarse and fine aggregates, they shall be tested in accordance with ASTM C 127 and ASTM C 128 to determine their specific gravities. If the specific gravities vary by more than 10 percent, the percentages passing the various sieves shall be corrected as directed by the Contracting Officer. # 2.1.4 Liquid Limit and Plasticity Index Liquid limit and plasticity index requirements shall apply to the completed course and shall also apply to any component that is blended to meet the required gradation. The portion of any component or of the completed course REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 passing the No. 40 sieve shall be either nonplastic or have a liquid limit not greater than 25 and a plasticity index not greater than 5. ### PART 3 EXECUTION ### 3.1 GENERAL REQUIREMENTS Base shall not be constructed when the atmospheric temperature is less than 35 degrees F. Base shall not be constructed on subgrades that are frozen or contain frost. If the temperature falls below 35 degrees F, completed areas shall be protected against any detrimental effects of freezing. April 1 through November 15 are average year construction periods for planning purposes. When the GCA is constructed in more than one layer, the previously constructed layer shall be cleaned of loose and foreign matter by sweeping with power sweepers or power brooms, except that hand brooms may be used in areas where power cleaning is not practicable. Adequate drainage shall be provided during the entire period of construction to prevent water from collecting or standing on the working area. Line and grade stakes shall be provided as necessary for control. Grade stakes shall be in lines parallel to the centerline of the area under construction and suitably spaced for string lining. #### 3.2 STOCKPILING MATERIAL Aggregates shall be stockpiled on the cleared and sloped to drain areas designated by the Contracting Officer to prevent segregation. Materials obtained from different sources shall be stockpiled separately. ### 3.3 PREPARATION OF UNDERLYING COURSE Prior to constructing the GCA, the underlying course or subgrade shall be cleaned of all foreign substances. At the time of construction of the GCA, the underlying course shall contain no frozen material. The surface of the underlying course or subgrade shall meet
specified compaction and surface tolerances. The underlying course shall conform to Section 02300 EARTHWORK. Ruts or soft yielding spots in the underlying courses, areas having inadequate compaction, and deviations of the surface from the requirements set forth herein shall be corrected by loosening and removing soft or unsatisfactory material and by adding approved material, reshaping to line and grade, and recompacting to specified density requirements. For cohesionless underlying courses containing sands or gravels, as defined in ASTM D 2487, the surface shall be stabilized prior to placement of the GCA. Stabilization shall be accomplished by mixing GCA into the underlying course and compacting by approved methods. The stabilized material shall be considered as part of the underlying course and shall meet all requirements of the underlying course. The finished underlying course shall not be disturbed by traffic or other operations and shall be maintained by the Contractor in a satisfactory condition until the GCA is placed. #### 3.4 INSTALLATION # 3.4.1 Mixing the Materials The coarse and fine aggregates shall be mixed in a stationary plant, or in a traveling plant or bucket loader on an approved paved working area. The Contractor shall make adjustments in mixing procedures or in equipment as directed to obtain true grades, to minimize segregation or degradation, to obtain the required water content, and to insure a satisfactory GCA meeting all requirements of this specification. ### 3.4.2 Placing The mixed material shall be placed on the prepared subgrade or subbase in layers of uniform thickness with an approved spreader. When a compacted layer 6 inches or less in thickness is required, the material shall be placed in a single layer. When a compacted layer in excess of 6 inches is required, the material shall be placed in layers of equal thickness. No layer shall exceed 6 inches or less than 3 inches when compacted. The layers shall be so placed that when compacted they will be true to the grades or levels required with the least possible surface disturbance. Where the ABC and GCA is placed in more than one layer, the previously constructed layers shall be cleaned of loose and foreign matter by sweeping with power sweepers, power brooms, or hand brooms, as directed. Such adjustments in placing procedures or equipment shall be made as may be directed to obtain true grades, to minimize segregation and degradation, to adjust the water content, and to insure an acceptable GCA. ### 3.4.3 Grade Control The finished and completed GCA shall conform to the lines, grades, and cross sections shown. Underlying material(s) shall be excavated and prepared at sufficient depth for the required GCA thickness so that the finished GCA with the subsequent surface course will meet the designated grades. # 3.4.4 Edges of Base Course The GCA shall be placed so that the completed section will be a minimum of 5 feet wider, on all sides, than the next layer that will be placed above it. Additionally, approved fill material shall be placed along the outer edges of GCA in sufficient quantities to compact to the thickness of the course being constructed, or to the thickness of each layer in a multiple layer course, allowing in each operation at least a 2 foot width of this material to be rolled and compacted simultaneously with rolling and compacting of each layer of GCA. If this base course material is to be placed adjacent to another pavement section, then the layers for both of these sections shall be placed and compacted along this edge at the same time. # 3.4.5 Compaction Each layer of the GCA shall be compacted as specified with approved compaction equipment. Water content shall be maintained during the compaction procedure to within plus or minus 5 percent of the optimum water content determined from laboratory tests as specified in paragraph SAMPLING AND TESTING. Rolling shall begin at the outside edge of the surface and proceed to the center, overlapping on successive trips at least one-half the width of the roller. Alternate trips of the roller shall be slightly different lengths. Speed of the roller shall be such that displacement of the aggregate does not occur. In all places not accessible to the rollers, the mixture shall be compacted with hand-operated power tampers. Compaction shall continue until each layer has a degree of compaction that is at least 100 percent of laboratory maximum density through the full depth of the layer. The Contractor shall make such adjustments in compacting or finishing procedures as may be directed to obtain true grades, to minimize segregation and degradation, to reduce or increase water content, and to ensure a satisfactory GCA. Any materials that are found to be unsatisfactory shall be removed and replaced with satisfactory material or reworked, as directed, to meet the requirements of this specification. # 3.4.6 Thickness Compacted thickness of the aggregate course shall be as indicated. No individual layer shall exceed 8 inches nor be less than 3 inches in compacted thickness. The total compacted thickness of the GCA course shall be within 1/2 inch of the thickness indicated. Where the measured thickness is more than 1/2 inch deficient, such areas shall be corrected by scarifying, adding new material of proper gradation, reblading, and recompacting as directed. Where the measured thickness is more than 1/2 inch thicker than indicated, the course shall be considered as conforming to the specified thickness requirements. Average job thickness shall be the average of all thickness measurements taken for the job, but shall be within 1/4 inch of the thickness indicated. The total thickness of the GCA course shall be measured at intervals in such a manner as to ensure one measurement for each 500 square yards of base course or two measurements minimum. Measurements shall be made in 3 inch diameter test holes penetrating the base course. # 3.4.7 Proof Rolling Proof rolling of the areas indicated shall be in addition to the compaction specified and shall consist of the application of 30 coverages with a heavy pneumatic-tired roller having four or more tires, each loaded to a minimum of 30,000 pounds and inflated to a minimum of 150 psi. In areas designated, proof rolling shall be applied to the top of the underlying material on which GCA is laid and to each layer of GCA. Water content of the underlying material shall be maintained at optimum or at the percentage directed from start of compaction to completion of proof rolling of that layer. Water content of each layer of the GCA shall be maintained at the optimum percentage directed from start of compaction to completion of proof rolling. Any GCA materials or any underlying materials that produce unsatisfactory results by proof rolling shall be removed and replaced with satisfactory materials, recompacted, and proof rolled to meet these specifications. ### 3.4.8 Finishing The surface of the top layer of GCA shall be finished after proof rolling by cutting any overbuild to grade and rolling with a steel-wheeled roller. Thin layers of material shall not be added to the top layer of base course to meet grade. If the elevation of the top layer of GCA is 1/2 inch or more below grade, then the top layer should be scarified to a depth of at least 3 inches and new material shall be blended in compacted and proof rolled to bring to grade. Adjustments to rolling and finishing procedures shall be made as directed to minimize segregation and degradation, obtain grades, maintain moisture content, and insure an acceptable base course. Should the surface become rough, corrugated, uneven in texture, or traffic marked prior to completion, the unsatisfactory portion shall be scarified, reworked and recompacted or it shall be replaced as directed. #### 3.4.9 Smoothness The surface of the top layer shall show no deviations in excess of 3/8 inch when tested with a 12 foot straightedge. Measurements shall be taken in successive positions parallel to the centerline of the area to be paved. Measurements shall also be taken perpendicular to the centerline at 50 foot intervals. Deviations exceeding this amount shall be corrected by removing material and replacing with new material, or by reworking existing material and compacting it to meet these specifications. # 3.5 TRAFFIC Traffic shall not be allowed on the completed GCA course. ### 3.6 MAINTENANCE The GCA shall be maintained in a satisfactory condition until the full pavement section is completed and accepted. Maintenance shall include immediate repairs to any defects and shall be repeated as often as necessary to keep the area intact. Any GCA that is not paved over prior to the onset of winter, shall be retested to verify that it still complies with the requirements of this specification. Any area of GCA that is damaged shall be reworked or replaced as necessary to comply with this specification. ### 3.7 DISPOSAL OF UNSATISFACTORY MATERIALS Any unsuitable materials that must be removed shall be disposed of as directed. No additional payments will be made for materials that must be replaced. END OF SECTION # SECTION 02741 # BITUMINOUS PAVING FOR ROADS, STREETS AND OPEN STORAGE AREAS # PART 1 GENERAL # 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. # AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | ASTM C 29/C 29M | (1997) Bulk Density (Unit Weight) and Voids in Aggregate | |-----------------|--| | ASTM C 88 | (1990) Soundness of Aggregates by Use of
Sodium Sulfate or Magnesium Sulfate | | ASTM C 127 | (1988; R 1993) Specific Gravity and
Absorption of Coarse Aggregate | | ASTM C 128 | (1993) Specific Gravity and Absorption of Fine Aggregate | | ASTM C 131 |
(1996) Resistance to Degradation of Small-
Size Coarse Aggregate by Abrasion and Impact
in the Los Angeles Machine | | ASTM C 183 | (1995a) Sampling and the Amount of Testing of Hydraulic Cement | | ASTM D 5 | (1995) Penetration of Bituminous Materials | | ASTM D 75 | (1987; R 1992) Sampling Aggregates | | ASTM D 140 | (1993) Sampling Bituminous Materials | | ASTM D 242 | (1995) Mineral Filler for Bituminous Paving
Mixtures | | ASTM D 422 | (1963; R 1990) Particle-Size Analysis of Soils | | ASTM D 1856 | (1995a) Recovery of Asphalt from Solution by
Abson Method | | ASTM D 2041 | (1995) Theoretical Maximum Specific Gravity and Density of Bituminous Paving Mixtures | ### 00029/11 # REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 | ASTM D 2172 | (1995) Quantitative Extraction of Bitumen from Bituminous Paving Mixtures | |-------------|---| | ASTM D 2216 | (1992) Laboratory Determination of Water (Moisture) Content of Soil and Rock | | ASTM D 3017 | (1996) Water Content of Soil and Rock in Place by Nuclear Methods (Shallow Depth) | | ASTM D 3381 | (1992) Viscosity-Graded Asphalt Cement for Use in Pavement Construction | | ASTM D 3515 | (1996) Hot-Mixed, Hot-Laid Bituminous Paving Mixtures | | ASTM D 4791 | (1995) Flat Particles, Elongated Particles,
or Flat and Elongated Particles in Coarse
Aggregate | # WASHINGTON DEPARTMENT OF TRANSPORTATION (WDOT) WDOT M 41-10 (2000 Edition) Standard Specifications for Road, Bridge, and Municipal Construction #### 1.2 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-09 Reports Bituminous Pavement; GA. Aggregates for Asphalt; GA. Copies of test results. SD-14 Samples Bituminous Pavement; GA. Samples of the materials in the quantities indicated below for the job mix formula. Aggregate and mineral filler (if needed) 200 pounds to be blended in approximately the same proportions as used in the project Asphalt Cement 5 gallons REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 ### 1.3 PLANT, EQUIPMENT, MACHINES, AND TOOLS #### 1.3.1 General The bituminous plant shall be of such capacity to produce the quantities of bituminous mixtures required. Hauling equipment, paving machines, rollers, miscellaneous equipment, and tools shall be provided in sufficient numbers and capacity and in proper working condition to place the bituminous paving mixtures at a rate equal to the plant output. # 1.3.2 Mixing Plants The mixing plant shall be an automatic or semiautomatic controlled commercially manufactured unit designed and operated to consistently produce a mixture within the job-mix formula (JMF). The plant shall have a minimum capacity of 100 tons per hour. Drum mixers shall be prequalified at the production rate to be used during actual mix production. The prequalification tests will include extraction and recovery of the asphalt cement in accordance with ASTM D 2172 and ASTM D 1856. The penetration of the recovered asphalt binder shall not be less than 60 percent of the original penetration, as measured in accordance with ASTM D 5. # 1.3.3 Straightedge The Contractor shall furnish and maintain at the site, in good condition, one 12-foot straightedge for each bituminous paver. Straightedge shall be made available for Government use. Straightedges shall be constructed of aluminum or other lightweight metal and shall have blades of box or box-girder cross section with flat bottom reinforced to ensure rigidity and accuracy. Straightedges shall have handles to facilitate movement on pavement. # 1.4 WEATHER LIMITATIONS Unless otherwise directed, bituminous courses shall not be constructed when temperature of the surface of the existing pavement or base course is below 40 degrees F. ### 1.5 PROTECTION OF PAVEMENT After final rolling, no vehicular traffic of any kind shall be permitted on the pavement until the pavement has cooled to 140 degrees F. # 1.6 GRADE AND SURFACE-SMOOTHNESS REQUIREMENTS Finished surface of bituminous courses, when tested as specified below and in paragraph ACCEPTABILITY OF WORK, shall conform to gradeline and elevations shown and to surface-smoothness requirements specified. ### 1.6.1 Plan Grade The grade of the completed surface shall not deviate more than 0.05 foot from the plan grade. ### 1.6.2 Surface Smoothness When a 12-foot straightedge is laid on the surface parallel with the centerline of the paved area or transverse from crown to pavement edge, the surface shall vary not more than 1/4 inch from the straightedge. ### 1.7 GRADE CONTROL Lines and grades shall be established and maintained by means of line and grade stakes placed at site of work in accordance with the Special Contract Requirements. Elevations of bench marks used by the Contractor for controlling pavement operations at the site of work will be determined, established, and maintained by the Government. Finished pavement elevations shall be established and controlled at the site of work by the Contractor in accordance with bench mark elevations furnished by the Contracting Officer. #### 1.8 SAMPLING AND TESTING # 1.8.1 Aggregates ### 1.8.1.1 General Samples of aggregates shall be furnished by the Contractor for approval of aggregate sources and stockpiles prior to the start of production and at times during production of the bituminous mixtures. Times and points of sampling will be designated by the Contracting Officer. Samples will be the basis of approval of specific sources or stockpiles of aggregates for aggregate requirements. Unless otherwise directed, ASTM D 75 shall be used in sampling coarse and fine aggregate, and ASTM C 183 shall be used in sampling mineral filler. All tests necessary to determine compliance with requirements specified herein will be made by the Contractor. ### 1.8.1.2 Sources Sources of aggregates shall be selected well in advance of the time the materials are required in the work. If a previously developed source is selected, evidence shall be submitted 30 days before starting production, indicating that the central-plant hot-mix bituminous pavements constructed with the aggregates have had a satisfactory service record of at least five years under similar climatic and traffic conditions. The Contractor will make such tests and other investigations as required by WSDOT M41-10, Section 9-038 to determine whether aggregates meeting requirements specified herein can be produced from proposed sources. If a sample of material from a new source fails to meet specification requirements, the material represented by the sample shall be replaced, and the cost of testing the replaced sample will be at the expense of the Contractor. Approval of the source of aggregate does not relieve the Contractor of responsibility for delivery at the jobsite of aggregates that meet the requirements specified herein. ### 1.8.2 Bituminous Materials Samples of bituminous materials shall be obtained by the Contractor; sampling shall be in accordance with ASTM D 140. Tests necessary to determine conformance with requirements specified herein will be performed by the Government without cost to the Contractor. Sources where bituminous materials are obtained shall be selected in advance of the time when materials will be required in the work. In addition to initial qualification testing of bituminous materials, samples shall be taken before and during construction when shipments of bituminous materials are received or when necessary to assure some condition of handling or storage has not been detrimental to the bituminous material. The samples will be taken and tested by the Contractor. # 1.8.3 Bituminous Mixtures Sampling and testing of bituminous mixtures will be accomplished by the Contractor in accordance with WSDOT M41-10, Section 5-04.3(8)A. # 1.9 DELIVERY, STORAGE, AND HANDLING OF MATERIALS ### 1.9.1 Mineral Aggregates Mineral aggregates shall be delivered to the site of the bituminous mixing plant and stockpiled in such manner as to preclude fracturing of aggregate particles, segregation, contamination, or intermingling of different materials in the stockpiles or cold-feed hoppers. Mineral filler shall be delivered, stored, and introduced into the mixing plant in a manner to preclude exposure to moisture or other detrimental conditions. ### 1.9.2 Bituminous Materials Bituminous materials shall be maintained at appropriate temperature during storage but shall not be heated by application of direct flame to walls of storage tanks or transfer lines. Storage tanks, transfer lines, and weigh buckets shall be thoroughly cleaned before a different type or grade of bitumen is introduced into the system. The asphalt cement shall be heated sufficiently to allow satisfactory pumping of the material; however, the storage temperature shall be maintained below 300 degrees F. ### 1.10 ACCESS TO PLANT AND EQUIPMENT The Contracting Officer shall have access at all times to all parts of the paving plant for checking adequacy of the equipment in use; inspecting operation of the plant; verifying weights, proportions, and character of materials; and checking temperatures maintained in preparation of the mixtures. #### PART 2 PRODUCTS #### 2.1 BITUMINOUS HOT MIX Bituminous hot mix shall consist of coarse aggregate, fine aggregate, mineral filler, bituminous material, and approved additives, if required, of the qualities and in the proportions specified and shall conform to the requirements contained in paragraphs PROPORTIONING OF MIXTURE and ACCEPTABILITY OF WORK. # 2.1.1 Aggregates Aggregates shall consist of crushed stone, crushed gravel, crushed slag, screening, sand, and mineral filler, as required. The portion of materials retained on
the No. 4 sieve shall be known as coarse aggregate, the portion passing the No. 4 sieve and retained on the No. 200 sieve as fine aggregate, and the portion passing the No. 200 sieve as mineral filler. Aggregate gradation shall conform to gradation(s) specified in TABLE I. TABLE I is based on aggregates of uniform specific gravity; the percentage passing various sieves may be changed by the Contracting Officer when aggregates of varying specific gravities are used. Adjustments of percentage passing various sieves may be changed by the Contracting Officer when aggregates vary by more than 0.2 in specific gravity. TABLE I. AGGREGATE GRADATION | | Sieve
Size | Percent
Passing | |------------|---------------|--------------------| | Washington | 3/4 inch | 100 | | | 1/2 inch | 90-100 | | | 3/8 inch | 75-90 | | | 1/4 inch | 55-75 | | | No. 10 | 30-42 | | | No. 40 | 11-24 | | | No. 200 | 3.0-7.0 | # 2.1.1.1 Coarse Aggregate Coarse aggregate shall consist of clean, sound, durable particles meeting the following requirements. - a. Percentage of loss shall not exceed 30 after 500 revolutions, as determined in accordance with ASTM C 131. - b. Percentage of loss shall not exceed 18 after five cycles performed in accordance with ASTM C 88, using magnesium sulfate. - c. The dry weight of crushed slag shall not be less than 75 pcf, as determined in accordance with ASTM C 29/C 29M. - d. Crushed gravel retained on the No. 4 sieve and each coarser sieve shall contain at least 75 percent by weight of crushed pieces having one or REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 more fractured faces with the area of each face equal to at least 90 percent of the smallest midsectional area of piece. When two fractures are contiguous, the angle between planes of fractures shall be at least 30 degrees to count as two fractured faces. e. Particle shape of crushed aggregates shall be essentially cubical. The quantity of flat and elongated particles in any sieve size shall not exceed 20 percent by weight, when determined in accordance with ASTM D 4791. # 2.1.1.2 Fine Aggregate Fine aggregate shall consist of clean, sound, durable particles, including natural sand or crushed stone, slag, or gravel that meets requirements for wear and soundness specified for coarse aggregate. Fine aggregate produced by crushing gravel shall have at least 90 percent by weight of crushed particles having two or more fractured faces in the portion retained on the No. 30 sieve. This requirement shall apply to the material before blending with natural sand when blending is necessary. Quantity of natural sand to be added to the wearing- and intermediate-course mixtures shall not exceed 25 percent by weight of coarse and fine aggregate and material passing the No. 200 sieve. Natural sand shall be clean and free from clay and organic matter. Percentage of loss shall not exceed 15 after five cycles of the soundness test performed in accordance with ASTM C 88, using magnesium sulfate. # 2.1.1.3 Mineral Filler Mineral filler shall conform to ASTM D 242. ### 2.1.2 Bituminous Material Asphalt cement shall conform to ASTM D 3381 Grade AR4000. ### 2.1.3 Additives The use of additives such as anti-stripping and antifoaming agents is subject to approval. ### 2.2 PROPORTIONING OF MIXTURE #### 2.2.1 Job-Mix Formula The Job-Mix Formula shall be WSDOT M41-10 Class A Asphalt. The job-mix formula will be allowed tolerances given in WSDOT M41-10 paragraph 9-03.8(6)A. The final evaluation of aggregate gradation and asphalt content will be based on paragraph ACCEPTABILITY OF WORK. Bituminous mix that deviates more than 25 degrees F from the JMF shall be rejected. The JMF may be adjusted during construction to improve paving mixtures, as directed, without adjustments in the contract unit prices. REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 ### 2.2.2 Test Properties of Bituminous Mixtures Finished mixture shall meet requirements described below when tested in accordance with WSDOT Test Method 712. When bituminous mixture fails to meet the requirements, the paving operation shall be stopped until the cause of noncompliance is determined and corrected. ### PART 3 EXECUTION ### 3.1 BASE COURSE CONDITIONING The surface of the base course will be inspected for adequate compaction and surface tolerances specified in Section 02722 AGGREGATE AND/OR GRADED-CRUSHED AGGREGATE BASE COURSE. Unsatisfactory areas shall be corrected. ### 3.2 EXISTING PAVEMENT CONDITIONING ### 3.3 PREPARATION OF BITUMINOUS MIXTURES Rates of feed of aggregates shall be regulated so that the moisture content and temperature of aggregates will be within specified tolerances. Aggregates, mineral filler, and bitumen shall be conveyed into the mixer in proportionate quantities required to meet the JMF. Mixing time shall be as required to obtain a uniform coating of the aggregate with the bituminous material. Temperature of bitumen at time of mixing shall not exceed 300 degrees F. Temperature of aggregate and mineral filler in the mixer shall not exceed 325 degrees F when bitumen is added. Overheated and carbonized mixtures or mixtures that foam shall not be used. ### 3.4 WATER CONTENT OF AGGREGATES Drying operations shall reduce the water content of mixture to less than 0.75 percent. The water content test will be conducted in accordance with ASTM D 3017 or ASTM D 2216; the weight of the sample shall be at least 500 grams. If the water content is determined on hot bin samples, the water content will be a weighted average based on composition of blend. # 3.5 STORAGE OF BITUMINOUS PAVING MIXTURE Storage shall conform to the applicable requirements of ASTM D 3515; however, in no case shall the mixture be stored for more than 4 hours. ### 3.6 TRANSPORTATION OF BITUMINOUS MIXTURE Transportation from paving plant to site shall be in trucks having tight, clean, smooth beds lightly coated with an approved releasing agent to prevent adhesion of the mixture to the truck bodies. Excessive releasing agent shall be drained prior to loading. Each load shall be covered with canvas or other approved material of ample size to protect mixture from weather and to prevent loss of heat. Loads that have crusts of cold, unworkable material or that have become wet will be rejected. Hauling over freshly placed material will not be permitted. #### 3.7 SURFACE PREPARATION OF UNDERLYING COURSE Prior to placing of the intermediate or wearing course, the underlying course shall be cleaned of all foreign or objectionable matter with power brooms and hand brooms. #### 3.8 PRIME COATING Surfaces of previously constructed base course shall be sprayed with a coat of bituminous material conforming to Section $02748\ BITUMINOUS\ TACK\ AND\ PRIME\ COATS.$ ### 3.9 TACK COATING Contact surfaces of previously constructed pavement, curbs, manholes, and other structures shall be sprayed with a thin coat of bituminous material conforming to Section 02748 BITUMINOUS TACK AND PRIME COATS. ### 3.10 PLACING Bituminous courses shall be constructed only when the base course or existing pavement has no free water on the surface. Bituminous mixtures shall not be placed without ample time to complete spreading and rolling during daylight hours, unless approved satisfactory artificial lighting is provided. # 3.10.1 Offsetting Joints The wearing course shall be placed so that longitudinal joints of the wearing course will be offset from joints in the intermediate course by at least 1 foot. Transverse joints in the wearing course shall be offset by at least 2 feet from transverse joints in the intermediate course. # 3.10.2 General Requirements for Use of Mechanical Spreader Range of temperatures of mixtures, when dumped into the mechanical spreader, shall be as determined by the Contracting Officer. Mixtures having temperatures less than 225 degrees F when dumped into the mechanical spreader shall not be used. The mechanical spreader shall be adjusted and the speed regulated so that the surface of the course being laid will be smooth and continuous without tears and pulls, and of such depth that, when compacted, the surface will conform to the cross section indicated. Placing with respect to center line areas with crowned sections or high side of areas with one-way slope shall be as directed. Each lot of material placed shall conform to requirements specified in paragraph ACCEPTABILITY OF WORK. Placing of the mixture shall be as nearly continuous as possible, and speed of placing shall be adjusted, as directed, to permit proper rolling. When segregation occurs in the mixture during placing, the spreading operation shall be suspended until the cause is determined and corrected. ### 3.10.3 Placing Strips Succeeding Initial Strips In placing each succeeding strip after initial strip has been spread and compacted as specified below, the screed of the mechanical spreader shall overlap the previously placed strip 2 to 3 inches and be sufficiently high so that compaction produces a smooth dense joint. Mixture placed on the edge of a previously placed strip by the mechanical spreader shall be pushed back to the edge of the strip by use of a lute. Excess mixture shall be removed and wasted. # 3.10.4 Handspreading in Lieu of Machine Spreading In areas where the use of machine spreading is impractical, the mixture shall be spread by hand. Spreading shall be in a manner to prevent segregation. The mixture shall be spread uniformly with hot rakes in a loose layer of thickness that, when compacted, will conform to required grade, density, and thickness. ### 3.11 COMPACTION OF MIXTURE Rolling shall begin as soon after placing as the mixture will bear a roller without undue displacement. Delays in rolling freshly spread mixture will not be permitted. After initial rolling, preliminary tests of crown, grade, and smoothness shall be made by the Contractor. Deficiencies shall be corrected so that the finished
course will conform to requirements for grade and smoothness specified herein. Crown, grade, and smoothness will be checked in each lot of completed pavement by the Contracting Officer for compliance and will be evaluated as specified in paragraph ACCEPTABILITY OF WORK. After the Contractor is assured of meeting crown, grade, and smoothness requirements, rolling shall be continued until a mat density of 97.0 to 100.0 percent and a joint density of 95.0 to 100.0 percent of density of laboratory-compacted specimens of the same mixture is obtained. The density will be determined and evaluated as specified in paragraph ACCEPTABILITY OF WORK. Places inaccessible to rollers shall be thoroughly compacted with hot hand tampers. # 3.11.1 Testing of Mixture At the start of the plant operation, a quantity of mixture shall be prepared that is sufficient to construct a test section at least 50 feet long, two spreader widths wide and of thickness to be used in the project. Mixture shall be placed, spread, and rolled with equipment to be used in the project and in accordance with the requirements specified above. This test section shall be tested and evaluated as a lot and shall conform to all specified requirements. If test results are satisfactory, the test section shall remain in place as part of the completed pavement. If tests indicate that the pavement does not conform to specification requirements, necessary adjustments to plant operations and rolling procedures shall be made immediately, and test section will be evaluated as specified in paragraph ACCEPTABILITY OF WORK. Additional test sections, as directed, shall be constructed and sampled for conformance to specification requirements. In no case shall the Contractor start full production of an intermediate or wearing course mixture without approval. # 3.11.2 Correcting Deficient Areas Mixtures that become contaminated or are defective shall be removed to the full thickness of the course. Edges of the area to be removed shall be cut so that sides are perpendicular and parallel to the direction of traffic and so that the edges are vertical. Edges shall be sprayed with bituminous materials conforming to Section 02748 BITUMINOUS TACK AND PRIME COATS. Fresh paving mixture shall be placed in the excavated areas in sufficient quantity so that the finished surface will conform to grade and smoothness requirements. Paving mixture shall be compacted to the density specified herein. Skin patching of an area that has been rolled shall not be permitted. ### 3.12 JOINTS ### 3.12.1 General Joints between old and new pavements, between successive work days, or joints that have become cold (less than 175 degrees F) shall be made to ensure continuous bond between the old and new sections of the course. All joints shall have the same texture and smoothness as other sections of the course. Contact surfaces of previously constructed pavements coated by dust, sand, or other objectionable material shall be cleaned by brushing or shall be cut back as directed. When directed by the Contracting Officer, the surface against which new material is placed shall be sprayed with a thin, uniform coat of bituminous material conforming to Section 02748 BITUMINOUS TACK AND PRIME COATS. Material shall be applied far enough in advance of placement of a fresh mixture to ensure adequate curing. Care shall be taken to prevent damage or contamination of the sprayed surface. ### 3.12.2 Transverse Joints The roller shall pass over the unprotected end of a strip of freshly placed material only when placing is discontinued or delivery of the mixture is interrupted to the extent that the material in place may become cold. In all cases, prior to continuing placement, the edge of previously placed pavement shall be cut back to expose an even vertical surface for full thickness of the course. In continuing placement of a strip, the mechanical spreader shall be positioned on the transverse joint so that sufficient hot mixture will be spread to obtain a joint after rolling that conforms to the required density and smoothness specified herein. # 3.12.3 Longitudinal Joints Edges of a previously placed strip shall be prepared such that the pavement in and immediately adjacent to the joint between this strip and the succeeding strip meets the requirements for grade, smoothness, and density specified in paragraph ACCEPTABILITY OF WORK. #### 3.13 ACCEPTABILITY OF WORK #### 3.13.1 General A lot shall be that quantity of construction that will be evaluated for compliance with specification requirements. A lot shall be equal to 40 tons. The Government will conduct all initial acceptance tests. Additional tests required to determine acceptability of nonconforming material will be preformed by the Government at the expense of the Contractor. ### 3.13.1.1 Lot Evaluation In order to evaluate aggregate gradation, asphalt content, and density, each lot shall be divided into four equal sublots. For density determination, one random sample shall be taken from the mat, and one random sample shall be taken from the joint of each sublot. A coring machine will be used for taking mat and joint samples from the completed pavement. Core samples will be taken with the coring machine centered over the joint. After air drying to a constant weight, random samples obtained from the mat shall be used for density determination in accordance with ASTM D 2041. Samples for determining asphalt content and aggregate gradation shall be taken from loaded trucks within each sublot. Asphalt content shall be determined in accordance with ASTM D 2172, Method A or B. Aggregate gradation shall be determined for the mix by testing the recovered aggregate in accordance with ASTM C 136 and ASTM C 117. # 3.13.1.2 Lot Failure When a lot of material fails to meet the specification requirements, that lot shall be removed and replaced. # 3.13.2 Aggregate Gradation The mean absolute deviation of the four sublot aggregate gradations from the JMF for each sieve size will be evaluated and compared with TABLE V. The percent payment based on aggregate gradation shall be the lowest value determined for any sieve size in TABLE V. All tests for aggregate gradation will be completed and reported within 24 hours after completion of construction of each lot. The computation of mean absolute deviation for one sieve size is illustrated below: Example: Assume the following JMF and sublot test results for aggregate gradation Percent by Weight Passing Sieves | Sieve | JMF | Test | Test | Test | Test | |----------|-----|-------|-------|-------|-------| | Size | | No. 1 | No. 2 | No. 3 | No. 4 | | | | | | | | | 3/4 inch | 100 | 100 | 100 | 100 | 100 | | 1/2 inch | 88 | 87 | 88 | 90 | 88 | | 3/8 | inch | 75 | 72 | 77 | 78 | 74 | |-----|------|----|----|----|----|----| | No. | 4 | 64 | 60 | 65 | 67 | 62 | | No. | 8 | 53 | 50 | 56 | 57 | 52 | | No. | 16 | 42 | 39 | 44 | 45 | 41 | | No. | 30 | 32 | 30 | 34 | 35 | 32 | | No. | 50 | 20 | 17 | 20 | 22 | 21 | | No. | 100 | 10 | 8 | 10 | 10 | 11 | | No. | 200 | 6 | 4 | 7 | 8 | 6 | Mean Absolute Deviation (for No. 200 sieve) = ((Absolute value of 4-6) + (Absolute value of 7-6) + (Absolute value of 8-6) + (Absolute value of 6-6))/4 = (2 + 1 + 2 + 0)/4 = 1.25 The mean absolute deviation for other sieve sizes can be determined in a similar way for this example to be: | Sieve | 3/4 | 1/2 | 3/8 | | | | | | | |----------------------------|------|------|------|-------|-------|--------|--------|--------|---------| | Size | inch | inch | inch | No. 4 | No. 8 | No. 16 | No. 30 | No. 50 | No. 100 | | | | | | | | | | | | | Mean
Absolut
Deviati | .e | 0.75 | 2.25 | 2.50 | 2.75 | 2.25 | 1.75 | 1.50 | 0.75 | # 3.13.3 Asphalt Content The mean absolute deviation of the four asphalt contents from the JMF will be evaluated and compared with TABLE VI. The percent payment based on asphalt content shall be the value determined in TABLE VI. Asphalt content tests shall be completed and reported within 24 hours after construction of the lot. TABLE VI. PERCENT PAYMENT BASED ON ASPHALT CONTENT | Mean Absolute Deviation of Extracted Asphalt Content from JMF | Percent
Payment | |---|--------------------| | less than 0.25 | 100 | | 0.25-0.30 | 98 | | 0.31-0.35 | 95 | | 0.36-0.40 | 90 | | above 0.40 | reject | # 3.13.4 Density The average mat and joint densities will be expressed as a percentage of the laboratory density. The laboratory density for each lot will be determined in accordance with CRD C-649 from four sets of laboratory samples. One sample will be obtained from each of the four sublots and will be divided into three specimens to produce one set of laboratory samples. Laboratory 00029/11 REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 samples will be prepared from asphalt mixture which has not been reheated. Samples will be compacted at 250 degrees F within 2 hours of the time the mixture was prepared at the asphalt plant. Laboratory samples will be prepared in accordance with CRD C-649. ## 3.13.4.1 Field Density The field density will be determined and compared with TABLE VII. The percent payment based on density shall be the lowest value determined from TABLE VII. The percent payment based on mat density will be for all of the material placed in the lot. The percent payment based on joint density will be for the amount of material represented by an area equal to the lot joint length by 10 feet wide not to exceed the lot size. TABLE VII. PERCENT PAYMENT BASED ON DENSITY | Average Mat Density | Percent | Average Joint Density | |---------------------|---------|-----------------------| | (4 Cores) | Payment | (4 Cores) | | 07 0 100 0 | 100.0 | 05 0 100 0 | | 97.0-100.0 | 100.0 | 95.0-100.0 | | 96.9 | 100.0 | 94.9 | | 96.8-100.1 | 99.9 | 94.8 | | 96.7 | 99.8 | 94.7 | | 96.6-100.2 | 99.6 | 94.6 | | 96.5 | 99.4 | 94.5 | | 96.4-100.3 | 99.1 | 94.4 | | 96.3 |
98.7 | 94.3 | | 96.2-100.4 | 98.3 | 94.2 | | 96.1 | 97.8 | 94.1 | | 96.0-100.5 | 97.3 | 94.0 | | 95.9 | 96.3 | 93.9 | | 95.8-100.6 | 94.1 | 93.8 | | 95.7 | 92.2 | 93.7 | | 95.6-100.7 | 90.3 | 93.6 | | 95.5 | 87.9 | 93.5 | | 95.4-100.8 | 85.7 | 93.4 | | 95.3 | 83.3 | 93.3 | | 95.2-100.9 | 80.6 | 93.2 | | 95.1 | 78.0 | 93.1 | | 95.0-101.0 | 75.0 | 93.0 | | below 95.0, | | | | above 101.0 | reject | below 93.0 | # 3.13.4.2 Lot Density All density results on a lot will be completed and reported within 24 hours after construction of that lot. When the Contracting Officer considers it necessary to take additional samples for density measurements, samples will be taken in groups of four (one for each sublot). The percent payment will be determined for each additional group of four samples and averaged with the percent payment for the original group to determine the final percent payment. The Contractor shall fill all sample holes with hot mix and compact. ## 3.13.5 Grade Grade-conformance tests will be conducted by the Government. The finished surface of the pavement will be tested for conformance with plan-grade requirements. Within 5 working days after completion of placement of a particular lot, the Contracting Officer will inform the Contractor in writing of results of grade-conformance tests. The finished grade of each pavement area shall be determined by running lines of levels at intervals of 25 feet or less longitudinally and transversely to determine the elevation of the completed pavement. In areas where the grade exceeds the plan-grade tolerances given in paragraph GRADE AND SURFACE-SMOOTHNESS REQUIREMENTS by more than 50 percent, the Contractor shall remove the deficient area and replace with fresh paving mixture at no additional cost to the Government. Sufficient material shall be removed to allow at least 1 inch of asphalt concrete to be placed. Skin patching for correcting low areas or planing for correcting high areas shall not be permitted. #### 3.13.6 Surface Smoothness After completion of final rolling of a lot, the compacted surface will be tested by the Contracting Officer with a 12-foot straightedge. Measurements will be made perpendicular to and across all mats at distances along the mat not to exceed 25 feet. Location and deviation from straightedge of all measurements will be recorded. When more than 5 percent of all measurements along the mat within a lot exceed the specified tolerance, the Contractor shall remove the deficient area and replace with fresh paving mixture at no additional cost to the Government. Sufficient material shall be removed to allow at least 1 inch of asphalt concrete to be placed. Skin patching for correcting low areas or planing for correcting high areas shall not be permitted. END OF SECTION SECTION 02748 ### BITUMINOUS TACK AND PRIME COATS ### PART 1 GENERAL #### 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. # AMERICAN SOCIETY OF TESTING AND MATERIALS (ASTM) | ASTM D 140 | (1993) Sampling Bituminous Materials | |-------------|--| | ASTM D 2028 | (1976; R 1992) Cutback Asphalt (Rapid-Curing Type) | | ASTM D 2995 | (1993) Determining Application Rate of Bituminous Distributors | #### 1.2 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-09 Reports Tests; FIO. Copies of all test results for bituminous materials, within 24 hours of completion of tests. Certified copies of the manufacturer's test reports indicating compliance with applicable specified requirements, not less than 30 days before the material is required in the work. # 1.3 PLANT, EQUIPMENT, MACHINES AND TOOLS # 1.3.1 General Requirements Plant, equipment, machines and tools used in the work shall be subject to approval and shall be maintained in a satisfactory working condition at all times. # 1.3.2 Bituminous Distributor The distributor shall have pneumatic tires of such size and number to prevent rutting, shoving or otherwise damaging the base surface or other layers in the pavement structure. The distributor shall be designed and equipped to spray the bituminous material in a uniform coverage at the specified temperature, at readily determined and controlled rates with an allowable variation from the specified rate of not more than plus or minus 5 percent, and at variable widths. Distributor equipment shall include a separate power unit for the bitumen pump, full-circulation spray bars, tachometer, pressure gauges, volume-measuring devices, adequate heaters for heating of materials to the proper application temperature, a thermometer for reading the temperature of tank contents, and a hand hose attachment suitable for applying bituminous material manually to areas inaccessible to the distributor. The distributor shall be equipped to circulate and agitate the bituminous material during the heating process. #### 1.3.3 Power Brooms and Power Blowers Power brooms and power blowers shall be suitable for cleaning the surfaces to which the bituminous coat is to be applied. ### 1.4 WEATHER LIMITATIONS Bituminous coat shall be applied only when the surface to receive the bituminous coat is dry. Bituminous coat shall be applied only when the atmospheric temperature in the shade is 50 degrees For above and when the temperature has not been below 35 degrees F for the 12 hours prior to application. ### PART 2 PRODUCTS # 2.1 TACK COAT Cutback asphalt shall conform to ASTM D 2028 Grade CSS-1. ### 2.2 PRIME COAT Cutback asphalt shall conform to ASTM D 2028, Grade CSS-1. ## PART 3 EXECUTION # 3.1 PREPARATION OF SURFACE Immediately before applying the bituminous coat, all loose material, dirt, clay, or other objectionable material shall be removed from the surface to be treated. The surface shall be dry and clean at the time of treatment. # 3.2 APPLICATION RATE The exact quantities within the range specified, which may be varied to suit field conditions, will be determined by the Contracting Officer. # 3.2.1 Tack Coat Bituminous material for the tack coat shall be applied in quantities of not less than 0.05 gallon nor more than 0.10 gallon per square yard of pavement surface. #### 3.2.2 Prime Coat Bituminous material for the prime coat shall be applied in quantities of not less than 0.15 gallon nor more than 0.25 gallon per square yard of pavement surface. #### 3.3 APPLICATION TEMPERATURE # 3.3.1 Viscosity Relationship Asphalt application temperature shall provide an application viscosity between 10 and 60 seconds, Saybolt Furol, or between 20 and 120 centistokes, kinematic. The temperature viscosity relation shall be furnished to the Contracting Officer. # 3.3.2 Temperature Ranges The viscosity requirements shall determine the application temperature to be used. The following is a normal range of application temperatures: Liquid Asphalts CSS-1 70-140 degrees F* *These temperature ranges exceed the flash point of the material and care should be taken in their heating. ## 3.4 APPLICATION Following preparation and subsequent inspection of the surface, the bituminous coat shall be applied at the specified rate with uniform distribution over the surface to be treated. All areas and spots missed by the distributor shall be properly treated with the hand spray. Until the succeeding layer of pavement is placed, the surface shall be maintained by protecting the surface against damage and by repairing deficient areas at no additional cost to the Government. If required, clean dry sand shall be spread to effectively blot up any excess bituminous material. No smoking, fires, or flames other than those from the heaters that are a part of the equipment shall be permitted within 25 feet of heating, distributing, and transferring operations of bituminous material other than bituminous emulsions. To obtain uniform application of the prime coat on the surface treated at the junction of previous and subsequent applications, building paper shall be spread on the surface for a sufficient distance back from the ends of each application to start and stop the prime coat on the paper. Immediately after application, the building paper shall be removed and destroyed. ### 3.5 CURING PERIOD Following application of the bituminous material and prior to application of the succeeding layer of pavement, the bituminous coat shall be allowed to cure and to obtain evaporation of any volatiles or moisture. [Prime coat shall be allowed to cure without being disturbed for a period of at least 48 hours or longer, as may be necessary to attain penetration into the treated course.] # 3.6 FIELD QUALITY CONTROL Two samples of the bituminous material shall be tested for compliance with the applicable specified requirements. A sample shall be obtained and tested by the Contractor. # 3.7 SAMPLING AND TESTING Sampling and testing shall be performed by an approved commercial testing laboratory or by facilities furnished by the Contractor. No work requiring testing will be permitted until the facilities have been inspected and approved. # 3.7.1 Sampling The samples of bituminous material, unless otherwise specified, shall be in accordance with ASTM D 140. Sources from which bituminous materials are to be obtained shall be selected and notification furnished the Contracting Officer within 15 days after the award of the contract. ### 3.7.2 Calibration Test The Contractor shall furnish all equipment, materials, and labor necessary to calibrate the bituminous distributor. Calibration shall be made with the approved job material and prior to applying the bituminous coat material to the prepared surface. Calibration of the bituminous distributor shall be in accordance with ASTM D 2995. # 3.7.3
Trial Applications Before providing the complete bituminous coat, three lengths of at least 100 feet for the full width of the distributor bar shall be applied to evaluate the amount of bituminous material that can be satisfactorily applied. # 3.7.3.1 Tack Coat Trial Application Rate Unless otherwise authorized, the trial application rate of bituminous tack coat materials shall be applied in the amount of 0.05 gallons per square yard. Other trial applications shall be made using various amounts of material as may be deemed necessary. # 3.7.3.2 Prime Coat Trial Application Rate Unless otherwise authorized, the trial application rate of bituminous materials shall be applied in the amount of 0.25 gallon per square yard. Other trial applications shall be made using various amounts of material as may be deemed necessary. Sampling and Testing During Construction Quality control sampling and testing shall be performed as required in paragraph FIELD QUALITY CONTROL. END OF SECTION SECTION 02935 TURF #### PART 1 GENERAL #### 1.1 SUMMARY Seed varieties and quantities specified shall be uniformly distributed over all ground areas disturbed by grading and/or trenching and not otherwise surfaced and in such manner that will produce an even stand of grass over the entire area seeded, as shown on attached Standard Drawings and as specified. The Contractor shall notify the Contracting Officer at least 2 weeks prior to seeding operations. ### 1.2 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. AGRICULTURAL MARKETING SERVICE (AMS) AMS-01(Amended Thru: Aug 1988) Federal Seed Act Regulations (Part 201- AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) ASTM D 2607 (1969) Peats, Mosses, Humus, and Related Products COMMERCIAL ITEM DESCRIPTION (CID) CID A-A-1909 (Basic) Fertilizer ### 1.3 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with SECTION $\=01330=\$ SUBMITTALS PROCEDURES: SD-01 Data Erosion Control Material; FIO. Manufacturer's literature discussing physical characteristics, application and installation instructions. Equipment; FIO. The equipment to be used and calibration test for seed application. SD-07 Schedules Delivery; FIO. Delivery schedule, at least 10 days prior to the intended date of the first delivery. 00029/11 REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 SD-08 Statements Application of Pesticide; FIO. Pesticide treatment plan with proposed sequence of pesticide treatment work. The pesticide trade name, chemical composition, formulation, concentration, application rate of active ingredients and method of application for all materials; and the name and state license number of the state certified applicator shall be included. Maintenance Report; FIO. Written record of all maintenance work performed during the turf establishment period shall be submitted to the Contracting Officer. Turf Establishment Period; FIO. Written calendar time period for the turf establishment period. When there is more than one turf establishment period, the boundaries of the turfed area covered for each period shall be described. SD-13 Certificates Certificates of compliance certifying that materials meet the requirements specified, in accordance with paragraph MATERIALS, prior to the delivery of materials. Certified copies of the reports for the following materials shall be included: Seed; GA. For mixture, percent pure live seed, minimum percent germination and hard seed, maximum percent weed seed content, date tested, and state certification. Peat; FIO. For compliance with ASTM D 2607 Fertilizer; FIO. Soil amendments shall be delivered to the site in the original, unopened containers bearing the manufacturer's chemical analysis and percent composition. In lieu of containers, soil amendments may be furnished in bulk. A chemical analysis shall be provided for bulk deliveries. Pesticide; FIO. Pesticide material shall be delivered to the site in the original, unopened containers bearing legible labels indicating the Environmental Protection Agency (EPA) registration number and the manufacturer's registered uses. # 1.4 DELIVERY, INSPECTION, STORAGE, AND HANDLING # 1.4.1 Delivery Notify the Contracting Officer, in writing, 10 days prior to the first delivery. ### 1.4.2 Inspection Seed, shall be inspected upon arrival at the job site by the Contracting Officer for conformity to type and quality in accordance with paragraph MATERIALS. Topsoil, Fertilizer, Peat shall be inspected for meeting specified requirements and unacceptable materials shall be removed from the job site. # 1.4.3 Storage Materials shall be stored in areas designated by the Contracting Officer. Seed, Fertilizer, shall be stored in cool, dry locations away from contaminants. Pesticides shall not be stored with other landscape materials. ### 1.4.4 Handling ### 1.4.4.1 Materials Except for bulk deliveries, materials shall not be dropped or dumped from vehicles. ### PART 2 PRODUCTS ### 2.1 MATERIALS ### 2.1.1 Seed ### 2.1.1.1 Seed Classification State Certified seed of the latest season's crop shall be provided in original sealed packages bearing the producer's guaranteed analysis for percentages of mixture, purity, germination, hard seed, weed seed content, and inert material. Labels shall be in conformance with AMS-01 and applicable state seed laws. # 2.1.1.2 Seed Mixtures Seed mixtures shall be proportioned by weight as follows: # Irrigated Seed Mix: | Botanical Name | Common Name | Mixture % | by Weight | % Pure Live | Seed | |----------------------|---------------------|-----------|-----------|-------------|------| | | | | | | | | Festuca arundinacea | | | 35 | 87 | | | 'Coyote' 'Tulsa' 'Pi | xie' 'Falcon II' eq | ual parts | | | | | Poa preatensis | Kentucky Bluegrass | | 45 | 68 | | | Lolium perenne | Perennial Ryegrass | | 20 | 88 | | # Dryland Seed Mix: | Botanical Name | Common Name | Mixture % by Weight | % Pure Live | | | |---------------------|-----------------|---------------------|-------------|--|--| | Seed | | | | | | | | | | | | | | Lolium multiflorum | Annual Ryegrass | 10 | 88 | | | | Festuca ovina | Sheep Fescue | 60 | 78 | | | | Poa compressa | Rubens Canadian | 30 | 64 | | | | 'Reubens' Bluegrass | | | | | | # 2.1.1.3 Quality Weed seed shall not exceed 1 percent by weight of the total mixture. Wet, moldy, or otherwise damaged seed shall be rejected. ### 2.1.1.4 Temporary Seed The temporary seed for erosion control shall be as Annual ryegrass seeded at a rate of 2 lbs per 1,000 square feet. ### 2.1.1.5 Seed Mixing The mixing of the seed shall be done by the Seed Supplier prior to delivery to the site. Bulk quantities of seed shall be labeled as required in the paragraph Seed Classification. ### 2.1.1.6 Commercial Seed Formula The following formula shall be used to determine the amount of commercial seed required to provide in each kind of seed the specified quantities of Pure Live Seed with Purity and Germination expressed as whole numbers: $\frac{\text{Pounds Pure Live Seed x 100 x 100}}{\text{Purity x Germination}} = \text{Pounds of Seed Required}$ ## 2.1.2 Soil Amendments Soil amendments shall consist of fertilizer, peat, manure, decomposed wood derivatives, meeting the following requirements. # 2.1.2.1 Fertilizer Fertilizer shall be commercial grade, free flowing, low in salts, uniform in composition and conforming to CID A-AA-1909. Granular fertilizer shall consist of nitrogen- phosphorus-potassium, ratio: 21 parts nitrogen, 14 parts phosphorus, and 14 parts potassium. When Slow release nitrogen forms are used in the fertilizer mixture they shall be derived from sulphur coated urea, urea formaldehyde, plastic or polymer coated prills, or isobutylenediurea (IBDU). ## 2.1.2.2 Peat Peat moss derived from a bog, swampland or marsh shall conform to ASTM D 2607 ### 2.1.2.3 Manure Well rotted a minimum of 6 months, horse or cattle manure containing a maximum 25 percent by volume of straw, sawdust, or other bedding materials, free of stones, sticks, soil and containing no chemicals or ingredients harmful to plants. Manure shall be well composted and screened to pass a 1/4 inch sieve. ### 2.1.2.4 Manure\Peat Mixture Manure\Peat mixture shall be a locally produced mixture of well manure, topsoil and peat moss. Mixture shall be approximately 80 percent manure, 10 percent topsoil, and 10 percent peat moss. Percentages may vary depending on local experience and availability. # 2.1.2.5 Decomposed Wood Derivatives Ground bark, sawdust, or other wood waste material free of stones, sticks, soil, and toxic substances harmful to plants, stabilized with nitrogen and having the following properties: Particle Size: Minimum percent by weight passing: | Sci | ree | en Siz | ze | Percent | |-----|-----|--------|--------|---------| | No. | 4 | mesh | Screen | 95 | | No. | 8 | mesh | screen | 80 | Nitrogen Content: Minimum percent based on dry weight: | <u>Material</u> | Percent | |------------------|---------| | Redwood Sawdust | 0.5 | | Fir Sawdust | 0.7 | | Fir or Pine Bark | 1.0 | # 2.1.3 Topsoil Topsoil shall be delivered from off-site. Delivered topsoil shall conform to topsoil requirements specified herein. Topsoil shall be a sandy loam as described by USDA textural class. Topsoil shall have a maximum particle size of 1 inch with a maximum of 3 percent retained on a 1/4 inch screen and a minimum of 5 percent passing thru a 120 mesh screen. The sand content shall not exceed 60%. Topsoil shall contain a minimum of 4% of organic matter composed of fine particle matter. It shall be obtained from well-drained areas and shall be free of any admixture of subsoil, foreign matter, objects larger than 1 inch in any dimension, toxic substances, and any material or
substance that may be harmful to plant growth. The pH shall be between 5.5 and 7.5. Soluble salts shall not exceed 500 ppm. ### 2.1.4 Mulch All other mulch materials and/or methods of application shall be approved by the Contracting Officer. Mulch shall be free from weeds, mold, and other objectionable materials. Contractor may use Hydromulch with tackifier applied simultaneously with grass, seed, and fertilizer by the use of hydroseeding machinery on all surfaces. # 2.1.4.1 Hydromulch for Hydroseeding Hydromulch shall be made of virgin, long fiber wood cellulose made from whole wood chips or lumber remnants and not contain any growth or germination-inhibiting factors and shall be dyed an appropriate color to facilitate visual metering during application. Composition on air-dry weight basis: 9 to 15 percent moisture, pH range from 4.5 to 6.0. Hydromulch shall include a tackifier to provide added bonding between cellulose fibers and to help hold seed, fertilizer and soil in place and to promote seed germination. Tackifier shall weigh a minimum 3%, on an air dry weight basis, of the mulch mix. # 2.1.4.2 Hydromulch Tackifier Hydromulch tackifier shall be a natural vegetable gum, blended with gelling and hardening agents. When mixed with water this material becomes a tackifier/binder to act as an agent for erosion control and provides a stable bed for seed germination. #### 2.1.5 Water Water shall not contain elements toxic to plant life and shall be obtained from an approved source prior to use. ### 2.1.6 Pesticide The pesticide material shall be EPA registered and approved Insecticide, Herbicide, Fungicide,. For the purpose of this specification, soil fumigant shall have the same requirements as a pesticide. ### 2.1.7 Erosion Control Material Soil erosion control shall conform to the following: ### 2.1.7.1 Soil Erosion Control Fence Silt fencing shall be made of a strong rot-proof synthetic fiber. The fibers shall be resistant to deterioration due to ultraviolet light and heat exposure. The synthetic fibers shall be woven into a fabric. No additional fencing or wire backing is required. The fencing material shall have a strong tie cord in the top of the material. Low porosity silt fence shall be the same as or equal to Propex-Silt Stop, Mirafi 700x, or Beltech 755 or approved equal. # PART 3 EXECUTION ### 3.1 SEEDING TIMES AND CONDITIONS # 3.1.1 Seeding Time # 3.1.1.1 Lawn Seed Seed shall be from April 1 to October 1. ## 3.1.2 Environmental Conditions Turfing operations shall be performed only during periods when beneficial results can be obtained. When drought, excessive moisture or other unsatisfactory conditions prevail, the work shall be stopped when directed. When special conditions warrant a variance to the operations, proposed times shall be submitted to and approved by the Contracting Officer. ## 3.2 SITE PREPARATION # 3.2.1 Grading The Contracting Officer shall verify that finished grades are as indicated on the drawings, and the placing of topsoil and smooth grading have been completed in accordance with SECTION 02300 EARTHWORK. Any deviations therefrom shall be corrected prior to turfing. Soil used for repair of erosion and correction of grade deficiencies shall conform to that specified in the paragraph Topsoil. # 3.2.2 Tillage ## 3.2.2.1 Minimum Depth Soil on slopes gentler than 3-horizontal-to-1-vertical shall be tilled to a minimum depth of 6 inches. Slopes between 3-horizontal-to-1-vertical and 1-horizontal-to-1 vertical, the soil shall be tilled to a minimum depth of 2 inches by scarifying with heavy rakes, rotating chains drawn by tractor from the top of the slope, or rototillers when soil conditions and length of slope permit. On slopes 1-horizontal-to-1 vertical and steeper, no tillage is required. ### 3.2.3 Finished Grading # 3.2.3.1 Preparation Turf areas shall be filled as needed or have surplus soil removed to attain the finished grade. Drainage patterns shall be maintained as indicated on drawings. Turf areas compacted by construction operations shall be completely pulverized by tillage. Finished grades adjacent to walks, curbs, pavements, shall be 1 inch below the adjoining surfaced area. New soil surfaces shall be blended to meet existing soil surfaces. #### 3.2.3.2 Lawn Area Debris Lawn areas shall have debris and stones larger than 1 inch in any dimension removed from the surface. # 3.2.3.3 Protection Finished graded areas shall be protected from damage by vehicular or pedestrian traffic and erosion. ### 3.2.4 Application of Soil Amendments # 3.2.4.1 Fertilizer Fertilizer shall be applied at a rate of 600 pounds of fertilizer mix per acre. Fertilizer may be applied simultaneously with seed and hydromulch when hydroseeding. ### 3.2.4.2 Organic Soil Amendments Manure, Peat, Decomposed wood derivatives shall be spread uniformly over the soil to a minimum depth of 1 inch and thoroughly incorporated by tillage into the soil to a minimum depth of 6 inches. ## 3.3 SEEDING Contractor may distribute grass seed by drilling or hydroseeding. Mulching shall be hydromulch with tackifier. If hydroseeding is used to apply the seed the contractor shall apply the seed at one and a half times the rate specified. Dryland seed mix shall be applied at a rate of 150 pounds per acre. Irrigated seed mix shall be applied at a rate of 450 pounds per acre. ### 3.3.1 General Prior to seeding, any previously prepared seedbed areas compacted or damaged by interim rain, traffic or other cause, shall be reworked to restore the ground condition previously specified. Seeding operations shall not take place when the wind velocity will prevent uniform seed distribution. # 3.3.2 Equipment The equipment to be used and the methods of seeding shall be subject to the inspection and approval of the Contracting Officer prior to commencement of seeding operations. Immediately prior to the commencement of seeding operations, the Contractor shall conduct seeding equipment calibration tests in the presence of the Contracting Officer. ## 3.3.3 Applying Seed # 3.3.3.1 Broadcast Seeding Broadcast seeding shall be used for small areas not practical with drill seeding equipment. Seed shall be uniformly broadcast at twice the rates specified using broadcast seeders. Half of seed shall be broadcast in one direction, and the remainder at right angles to the first direction. Seed shall be covered to an average depth of 1/4 inch but no more than 3/4 inch by disk harrow, steel mat drag, cultipacker, or other approved device. # 3.3.3.2 Drill Seeding Lawn seed shall be uniformly drilled to an average depth of 1/2 inch at the rate specified using a Brillon type seeder. Row markers shall be used with the drill seeder. Drill seeding shall be done in two directions, 90 degrees in direction from the other, each direction at half the rate specified. # 3.3.4 Hydroseeding Seed and fertilizer shall be added to water and thoroughly mixed. Hydromulch and Tackifier shall be added after the seed, fertilizer and water have been thoroughly mixed. Mix shall include a minimum of 2,000 pounds of mulch and tackifier, per acre. Slurry shall be uniformly applied to all seeded surfaces. Adequate soil moisture shall be ensured by spraying water on the entire hydroseeded area and moisten the soil to a minimum depth of 2 inches prior to hydroseeding. The hydroseeded area shall not be rolled. ### 3.3.5 Mulching Mulching shall be performed the same day as seeding. # 3.3.5.1 Hydromulch Hydromulch for use with the hydraulic application of seed, fertilizer and tackifier shall be applied as part of the hydroseeding operation. # 3.3.6 Watering Irrigated Seed Mix Areas Seeded areas to be watered are indicated on the drawings. Watering shall be started within 24 hours after completing the seeded area. Water shall be applied at a rate sufficient to ensure moist soil conditions to a minimum depth of 2 inches. Run-off and puddling shall be prevented. Soil shall be maintained in a moist condition for the first four weeks after the start of the watering program. Thereafter the seeded areas shall be watered every other day for a total of 1/2 inch of water per day over all seeded areas. ### 3.3.7 Watering Dryland Mix Seeded Areas Watering of dryland mix seeded areas shall not be required. ## 3.4 EROSION CONTROL MATERIAL ## 3.4.1 Erosion Control Fence Soil Erosion Control Fence shall be installed where indicated on the plans and in those areas required by the Contracting Officer for control of sheet or gully erosion. A six inch deep trench shall be dug just outside the posts for the full length of the silt fence. Set the studded "T" posts a maximum of 6 feet on center. Incline the posts toward the runoff source at angle of not more than 20 degrees from vertical. Drive the posts into the ground so that no more than 3 feet protrude above the ground. Attach the fabric to the posts, and place the fabric into the trench and backfill and compact the soil. All splice joints shall overlap a minimum of 18 inches. Erosion control fence shall be installed in accordance with the manufacturer's recommendations if a premanufactured product is used or as indicated on the drawings if the fences need to be made from separate fencing and staking. ### 3.4.2 Maintenance The erosion control material shall be maintained until all work on the entire contract or designated portion thereof has been completed and accepted. Maintenance shall consist of the repair of eroded areas and the repair or replacement and restapling of loose or undermined erosion control material, including reseeding. The Contractor shall remove the silt on the uphill side of the Silt Fence whenever the silt is within 18 inches of the top of the fence. The silt fence shall be removed at the completion of the project. # 3.4.3 Temporary Turf Cover #### 3.4.3.1 General When there are contract delays in the turfing operation or a quick cover is required to prevent erosion, the areas designated for turf shall be seeded with a temporary seed
as directed by the Contracting Officer. ## 3.4.3.2 Application When no other turfing materials have been applied, the quantity of one half of the required soil amendments shall be applied and the area tilled in accordance with paragraph SITE PREPARATION. Seed shall be uniformly broadcast and applied at the rate specified. The area shall be watered as required. ### 3.5 APPLICATION OF PESTICIDE When necessary to remove a pest or disease, a state-certified applicator shall apply required pesticide in accordance with EPA label restrictions and recommendations. Hydraulic equipment shall be provided for the liquid application of a pesticide with a leak-proof tank, positive agitation methods, controlled application pressure and metering gauges. A pesticide plan shall be provided to the Contracting Officer as stated in paragraph SUBMITTALS. Cost for pesticide application will be paid for under the CHANGES, CONTRACT CLAUSES CONSTRUCTION. # 3.6 RESTORATION AND CLEAN UP # 3.6.1 Restoration Existing turf areas, pavements and facilities that have been damaged from the turfing operation shall be restored to original condition at Contractor's expense. ## 3.6.2 Clean Up Excess and waste material shall be removed from the planting operation and shall be disposed of off the site. Adjacent paved areas shall be cleaned. # 3.7 PROTECTION OF TURFED AREAS Immediately after turfing operations have been completed, the area shall be protected against traffic or other use by erecting barricades and providing signage as required or as directed by the Contracting Officer to provide protection against traffic and trespass. ### 3.8 TURF ESTABLISHMENT PERIOD ### 3.8.1 Commencement The Turf Establishment Period for establishing a healthy stand of turf shall begin on the first day of work under this contract and shall end 60 days after the last day of turfing operations required by this contract or until all work on this entire Contract has been completed and accepted, whichever period is longer. ## 3.8.1.1 Satisfactory Stand of Turf A satisfactory stand of turf for a lawn seeded area is defined as having a minimum of 100 grass plants per square foot and having a mat like appearance. Bare spots shall be no larger than 6 square inches per foot. The total bare spots shall not exceed 2 percent of the total seeded area. # 3.8.2 Maintenance During Turf Establishment Period ### 3.8.2.1 General Maintenance of the turfed areas shall include eradicating weeds, eradicating insects and diseases, protecting embankments and ditches from erosion, maintaining erosion control materials and mulch, protecting turfed areas from traffic, mowing, watering, post-fertilization.. # 3.8.2.2 Mowing Lawn Areas: Lawn areas shall be moved to a minimum height of 2-1/2 inches when the average height of the turf becomes 4 inches. Clippings shall be removed when the amount of cut turf is heavy enough to damage the turfed areas. ## 3.8.2.3 Watering Frequency of watering and quantity of water shall be adjusted in accordance with the growth of the turf. Run-off, puddling and wilting shall be prevented. Overwatering of the grass shall be prevented to avoid drowning Landscape Material. # 3.8.2.4 Post-Fertilization Nitrogen carrier fertilizer shall be applied at the rate of one pound of actual nitrogen per 1,000 square feet after the first month and again in 3 months prior to the final acceptance. The application shall be timed prior to the advent of winter dormancy and shall avoid excessively high nitrogen levels. # 3.8.2.5 Pesticide Treatment for disease or pest shall be in accordance with paragraph APPLICATION OF PESTICIDE. Pesticide shall not be applied within 3 weeks of grass seed germination and shall meet all Federal, DOD and State guidelines. ### 3.8.2.6 Repair The Contractor shall re-establish as specified herein, eroded, damaged or barren areas. Mulch shall also be repaired or replaced as required. # 3.8.2.7 Maintenance Report > ${\tt A}$ written record shall be furnished to the Contracting Officer of the maintenance work performed. # 3.9 FINAL ACCEPTANCE See specification SECTION 01451 CONTRACTOR QUALITY CONTROL, for final inspection and acceptance. END OF SECTION SECTION 03100 ### STRUCTURAL CONCRETE FORMWORK ### PART 1 GENERAL #### 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. ACI INTERNATIONAL (ACI) ACI 347R (1994) Guide to Form-work for Concrete AMERICAN HARDBOARD ASSOCIATION (AHA) AHA ANSI/AHA A135.4 (1995) Basic Hardboard DEPARTMENT OF COMMERCE (DOC) DOC PS 1 (1996) Voluntary Product Standard - Construction and Industrial Plywood ## 1.2 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-06 Instructions Form Releasing Agents; FIO. Manufacturer's recommendation on method and rate of application of form releasing agents. ## 1.3 DESIGN Formwork shall be designed in accordance with methodology of ACI 347R for anticipated loads, lateral pressures, and stresses. Forms shall be capable of producing a surface which meets the requirements of the class of finish specified in Section 03300 CAST-IN-PLACE STRUCTURAL CONCRETE. Forms shall be capable of withstanding the pressures resulting from placement and vibration of concrete. #### PART 2 PRODUCTS #### 2.1 FORM MATERIALS # 2.1.1 Forms For Class A and Class B Finish Forms for Class A and Class B finished surfaces shall be plywood panels conforming to DOC PS 1, Grade B-B concrete form panels, Class I or II. Other form materials or liners may be used provided the smoothness and appearance of concrete produced will be equivalent to that produced by the plywood concrete form panels. #### 2.1.2 Forms For Class C Finish Forms for Class C finished surfaces shall be shiplap lumber; plywood conforming to DOC PS 1, Grade B-B concrete form panels, Class I or II; tempered concrete form hardboard conforming to AHA ANSI/AHA A135.4; other approved concrete form material; or steel, except that steel lining on wood sheathing shall not be used. ### 2.1.3 Forms For Class D Finish Forms for Class D finished surfaces, except where concrete is placed against earth, shall be wood or steel or other approved concrete form material. # 2.1.4 Retain-In-Place Metal Forms Retain-in-place metal forms for concrete slabs shall be as specified in Section 05300 STEEL DECKING. ### 2.1.5 Form Ties Form ties shall be factory-fabricated metal ties, shall be of the removable or internal disconnecting or snap-off type, and shall be of a design that will not permit form deflection and will not spall concrete upon removal. Solid backing shall be provided for each tie. Except where removable tie rods are used, ties shall not leave holes in the concrete surface less than 1/4 inch nor more than 1 inch deep and not more than 1 inch in diameter. Removable tie rods shall be not more than 1-1/2 inches in diameter. ## 2.1.6 Form Releasing Agents Form releasing agents shall be commercial formulations that will not bond with, stain or adversely affect concrete surfaces. Agents shall not impair subsequent treatment of concrete surfaces depending upon bond or adhesion nor impede the wetting of surfaces to be cured with water or curing compounds. #### PART 3 EXECUTION ### 3.1 INSTALLATION #### 3.1.1 Formwork Forms shall be mortar tight, properly aligned and adequately supported to produce concrete surfaces meeting the surface requirements specified in Section 03300 CAST-IN-PLACE STRUCTURAL CONCRETE and conforming to construction tolerance given in TABLE 1. Where concrete surfaces are to have a Class A or Class B finish, joints in form panels shall be arranged as approved. Where forms for continuous surfaces are placed in successive units, the forms shall fit over the completed surface to obtain accurate alignment of the surface and to prevent leakage of mortar. Forms shall not be reused if there is any evidence of surface wear and tear or defects which would impair the quality of the surface. Surfaces of forms to be reused shall be cleaned of mortar from previous concreting and of all other foreign material before reuse. Form ties that are to be completely withdrawn shall be coated with a nonstaining bond breaker. ### 3.2 CHAMFERING Except as otherwise shown, external corners that will be exposed shall be chamfered, beveled, or rounded by moldings placed in the forms. # 3.3 COATING Forms for Class A and Class B finished surfaces shall be coated with a form releasing agent before the form or reinforcement is placed in final position. The coating shall be used as recommended in the manufacturer's printed or written instructions. Forms for Class C and D finished surfaces may be wet with water in lieu of coating immediately before placing concrete, except that in cold weather with probable freezing temperatures, coating shall be mandatory. Surplus coating on form surfaces and coating on reinforcing steel and construction joints shall be removed before placing concrete. # 3.4 REMOVAL OF FORMS Forms shall be removed preventing injury to the concrete and ensuring the complete safety of the structure. Form-work for parts not supporting the weight of concrete may be removed when the concrete has attained sufficient strength to resist damage from the removal operation but not before at least 24 hours has elapsed since concrete placement. Supporting forms and shores shall not be removed from beams, floors and walls until the structural units are strong enough to carry their own weight and any other construction or natural loads. Supporting forms or shores shall not be removed before the concrete strength has reached 70 percent of design strength, as determined by field cured cylinders or other approved methods. This strength shall be demonstrated by job-cured test specimens, and
by a structural analysis considering the proposed loads in relation to these test strengths and the strength of forming and shoring system. The job-cured test specimens for form removal purposes shall be provided in numbers as directed and shall be 00029/11 REPAIR FUEL SYSTEM MAINTENANCE DOCK - Building 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 in addition to those required for concrete quality control. The specimens shall be removed from molds at the age of 24 hours and shall receive, insofar as possible, the same curing and protection as the structures they represent. # TABLE 1 # TOLERANCES FOR FORMED SURFACES | 1. | Variations from the plumb: | In any 10 feet of length 1/4 inch | |----|---|--| | | a. In the lines and
surfaces of walls
and in arises | Maximum for entire length 1 inch | | | b. For exposed
control-joint
grooves, and other
conspicuous lines | In any 20 feet of length 1/4 inch Maximum for entire length 1/2 inch | | 2. | Variation from the level or from the grades indicated on the drawings | In any 10 feet of length1/4 inch In any bay or in any 20 feet of length 3/8 inch | | 3. | Variation of the linear building lines from established position in plan | In any 20 feet 1/2 inch Maximum1 inch | | 4. | Variation of distance
between walls,
partitions | 1/4 inch per 10 feet of distance,
but not more than 1/2 inch in any
one bay, and not more than 1 inch
total variation | | 5. | Variation in the sizes and locations of sleeves, floor openings, and wall opening | Minus 1/4 inch
Plus 1/2 inch | | 6. | Variation in
the thickness
of slabs and walls | Minus 1/4 inch
Plus 1/2 inch | | 7. | Footings: | | | | a. Variation of dimensions in plan | Minus 1/2 inch Plus 2 inches when formed or plus 3 inches when placed against unformed excavation | | | b. Misplacement of eccentricity | 2 percent of the footing width in the direction of misplacement but not more than | 2 inches c. Reduction in thickness Minus ----- 5 percent of specified thickness END OF SECTION 00029/11 REPAIR FUEL SYSTEM MAINTENANCE DOCK - Building 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 SECTION 03200 #### CONCRETE REINFORCEMENT ### PART 1 GENERAL #### 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. ACI INTERNATIONAL (ACI) ACI 318/318R (1995) Building Code Requirements for Structural Concrete and Commentary AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) ASTM A 185 (1997) Steel Welded Wire Fabric, Plain, for Concrete Reinforcement ASTM A 615/A 615M (1996a) Deformed and Plain Billet-Steel Bars for Concrete Reinforcement ASTM A 706/A 706M (1995b) Low-Alloy Steel Deformed and Plain Bars for Concrete Reinforcement AMERICAN WELDING SOCIETY (AWS) AWS D1.4 (1992) Structural Welding Code - Reinforcing Steel CONCRETE REINFORCING STEEL INSTITUTE (CRSI) CRSI MSP-1 (1996) Manual of Standard Practice ## 1.2 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-04 Drawings Concrete Reinforcement System; GA. Detail drawings showing reinforcing steel placement, schedules, sizes, grades, and splicing and bending details. Drawings shall show support details including types, sizes and spacing. 00029/11 REPAIR FUEL SYSTEM MAINTENANCE DOCK - Building 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 SD-08 Statements Welding; FIO. A list of qualified welders names. SD-13 Certificates Reinforcing Steel; FIO. Certified copies of mill reports attesting that the reinforcing steel furnished contains no less than 25 percent recycled scrap steel and meets the requirements specified herein, prior to the installation of reinforcing steel. # 1.3 WELDING Welders shall be qualified in accordance with AWS D1.4. Qualification test shall be performed at the worksite and the Contractor shall notify the Contracting Officer 24 hours prior to conducting tests. Special welding procedures and welders qualified by others may be accepted as permitted by AWS D1.4. #### 1.4 DELIVERY AND STORAGE Reinforcement and accessories shall be stored off the ground on platforms, skids, or other supports. # PART 2 PRODUCTS # 2.1 REINFORCING STEEL Reinforcing steel shall be deformed bars conforming to ASTM A 615/A 615M or ASTM A 706/A 706M, grades and sizes as indicated. ## 2.2 WIRE TIES Wire ties shall be 16 gauge or heavier black annealed steel wire. ## 2.3 SUPPORTS Bar supports for formed surfaces shall be designed and fabricated in accordance with CRSI MSP-1 and shall be steel or precast concrete blocks. Precast concrete blocks shall have wire ties and shall be not less than 4 inches square when supporting reinforcement on ground. Precast concrete block shall have compressive strength equal to that of the surrounding concrete. Where concrete formed surfaces will be exposed to weather or where surfaces are to be painted, steel supports within 1/2 inch of concrete surface shall be galvanized, plastic protected or of stainless steel. Concrete supports used in concrete exposed to view shall have the same color and texture as the finish surface. For slabs on grade, supports shall be precast concrete blocks, plastic coated steel fabricated with bearing plates, or specifically designed wire-fabric supports fabricated of plastic. 00029/11 REPAIR FUEL SYSTEM MAINTENANCE DOCK - Building 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 ## 2.4 DOWEL BARS Smooth dowel bars shall be plain steel bars conforming to ASTM A617 and shall be free from burring or other deformation restricting slippage in the concrete. Before delivery to the construction site, a minimum of two-thirds of the length of each dowel bar shall be painted with one coat of tar paint. #### 2.5 WELDED WIRE FABRIC Welded wire fabric shall conform to ASTM A185. #### PART 3 EXECUTION #### 3.1 REINFORCEMENT Reinforcement shall be fabricated to shapes and dimensions shown and shall conform to the requirements of ACI 318/318R. Reinforcement shall be cold bent unless otherwise authorized. Bending may be accomplished in the field or at the mill. Bars shall not be bent after embedment in concrete. Safety caps shall be placed on all exposed ends of vertical concrete reinforcement bars that pose a danger to life safety. Wire tie ends shall face away from the forms. #### 3.1.1 Placement Reinforcement shall be free from loose rust and scale, dirt, oil, or other deleterious coating that could reduce bond with the concrete. Reinforcement shall be placed in accordance with ACI 318/318R at locations shown plus or minus one bar diameter. Reinforcement shall not be continuous through expansion joints and shall be as indicated through construction or contraction joints. Concrete coverage shall be as indicated or as required by ACI 318/318R. If bars are moved more than one bar diameter to avoid interference with other reinforcement, conduits or embedded items, the resulting arrangement of bars, including additional bars required to meet structural requirements, shall be approved before concrete is placed. # 3.1.2 Splicing Splices of reinforcement shall conform to ACI 318/318R and shall be made only as required or indicated. Splicing shall be by lapping or by mechanical or welded butt connection; except that lap splices shall not be used for bars larger than No. 11 unless otherwise indicated. Welding shall conform to AWS D1.4. Welded butt splices shall be full penetration butt welds. Lapped bars shall be placed in contact and securely tied or spaced transversely apart to permit the embedment of the entire surface of each bar in concrete. Lapped bars shall not be spaced farther apart than one-fifth the required length of lap or 6 inches. Mechanical butt splices shall be in accordance with the recommendation of the manufacturer of the mechanical splicing device. Butt splices shall develop 125 percent of the specified minimum yield tensile strength of the spliced bars or of the smaller bar in transition splices. Bars shall be flame-dried before butt splicing. Adequate jigs and clamps or other devices shall be provided to support, 00029/11 REPAIR FUEL SYSTEM MAINTENANCE DOCK - Building 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 align, and hold the longitudinal centerline of the bars to be butt spliced in a straight line. #### 3.2 DOWEL BARS Dowel Bars: Dowel bars or other load-transfer units of an approved type shall be placed across joints in the manner as specified on the drawings. They shall be of the dimensions and spacings as shown and held rigidly in the middle of the slab depth in the proper horizontal and vertical alignment by an approved assembly device to be left permanently in place. The dowel or load-transfer and joint devices shall be rigid enough to permit complete assembly as a unit ready to be lifted and placed into position. The portion of each dowel painted with rust preventative paint shall be thoroughly coated with asphalt MC-70, or equal lubricant, to prevent the concrete from binding to that portion of the dowel. END OF SECTION # SECTION 03300 # CAST-IN-PLACE STRUCTURAL CONCRETE # PART 1 GENERAL ## 1.1 REFERENCES DACA67-00-R-0222 The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. ## ACI INTERNATIONAL (ACI) | TICE INTERCENTED (TICE) | | | |---|---|--| | ACI 117/117R | (1990; Errata) Standard Tolerances for Concrete
Construction and Materials | | | ACI 211.1 | (1991) Standard Practice for Selecting
Proportions for Normal, Heavyweight, and Mass
Concrete | | | ACI 214.3R | (1988) Simplified Version of the Recommended Practice for Evaluation of Strength Test Results | | | ACI 301 | (1996) Standard Specifications for Structural Concrete | | | ACI 305R | (1991) Hot Weather Concreting | | | ACI 306R | (1988) Cold Weather Concreting | | | ACI 318/318R | (1995) Building Code Requirements for
Reinforced Concrete and Commentary | | | AMERICAN ASSOCIATION OF (AASHTO) | STATE HIGHWAY AND TRANSPORTATION OFFICIALS | | | AASHTO M 182 | (1991) Burlap Cloth Made From Jute or Kenaf | | | AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | | | | ASTM C 31 | (1991) Making and Curing Concrete Test
Specimens in the Field | | | ASTM C 33 | (1993) Concrete Aggregates | | | ASTM C 39 | (1994) Compressive Strength of Cylindrical Concrete Specimens | | | ASTM C 42 | (1994) Obtaining and Testing Drilled Cores and Sawed Beams of Concrete | | SECTION 03300 - Page 1 # 00029/11 REPAIR FUEL SYSTEM MAINTENANCE DOCK - Building 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 | ASTM C 78 | (1994) Flexural Strength of Concrete (Using Simple Beam With Third-Point Loading) | |-------------|---| | ASTM C 94 | (1996) Ready-Mixed Concrete | | ASTM C 136 | (1995a) Test Method for Sieve Analysis of
Fine and Coarse Aggregates | | ASTM C 143 | (1990a) Slump of Hydraulic Cement Concrete | | ASTM C 150 | (1995) Portland Cement | | ASTM C 172 | (1990) Sampling Freshly Mixed Concrete | | ASTM C 173 | (1994a) Air Content of Freshly Mixed Concrete
by the Volumetric Method | | ASTM C 192 | (1990a) Making and Curing Concrete Test
Specimens in the Laboratory | | ASTM C 231 | (1991b) Air Content of Freshly Mixed Concrete
by the Pressure Method | | ASTM C 260 | (1995) Air-Entraining Admixtures for Concrete | | ASTM C 494 | (1992) Chemical Admixtures for Concrete | | ASTM C 552 | (1991) Cellular Glass Thermal Insulation | | ASTM C 578 | (1995) Rigid, Cellular Polystyrene Thermal Insulation | | ASTM C 591 | (1994) Unfaced Preformed Rigid Cellular
Polyisocyanurate Thermal Insulation | | ASTM C 618 | (1996a) Coal Fly Ash and Raw or Calcined
Natural Pozzolan for Use as a Mineral
Admixture in Portland Cement Concrete | | ASTM C 685 | (1994) Specification for Concrete Made By
Volumetric Batching and Continuous Mixing | | ASTM C 881 | (1990) Epoxy-Resin-Base Bonding Systems for Concrete | | ASTM C 940 | (1989) Test Method for Expansion and Bleeding
of Freshly Mixed Grouts for Preplaced-
Aggregate Concrete in Laboratory | | ASTM C 1017 | (1992) Chemical Admixtures for Use in Producing Flowing Concrete | | ASTM C 1059 | (1991) Latex Agents for Bonding Fresh to Hardened Concrete | | |---|---|--| | ASTM C 1064 | (1986; R 1993) Temperature of Freshly Mixed Portland Cement Concrete | | | ASTM C 1077 | (1995a) Practice for Laboratories Testing
Concrete and Concrete Aggregates for use in
Construction and Criteria for Laboratory | | | ASTM C 1107 | (1991a) Packaged Dry, Hydraulic-Cement Grout (Nonshrink) | | | ASTM D 75 | (1987; R 1992) Sampling Aggregates | | | ASTM E 96 | (1995) Water Vapor Transmission of Materials | | | CORPS OF ENGINEERS (COE) | | | | COE CRD-C 94 | (1995) Surface Retarders | | | COE CRD-C 104 | (1980) Method of Calcultaion of the Fineness
Modulus of Aggregate | | | COE CRD-C 300 | (1972) Membrane-Forming Compounds for Curing Concrete | | | COE CRD-C 400 | (1963) Requirements for Water for Use in Mixing or Curing Concrete | | | COE CRD-C 521 | (1981) Standard Test Method for Frequency and Amplitude of Vibrators for Concrete | | | NATIONAL READY-MIXED CONCRETE ASSOCIATION (NRMCA) | | | | NRMCA TMMB-01 | (1992) Truck Mixer Agitator and Front
Discharge Concrete Carrier Standards of the
Truck Mixer Manufacturers Bureau | | | NRMCA CPMB 100 | (1990) Concrete Plant Standards | | | NRMCA QC 3 | (1984) Quality Control Manual: Section 3,
Plant Certifications Checklist: Certification
of Ready Mixed Concrete Production Facilities | | # 1.2 LUMP SUM CONTRACT Under this type of contract concrete items will be paid for by lump sum and will not be measured. The work covered by these items consists of furnishing all concrete materials, reinforcement, miscellaneous embedded materials, and equipment, and performing all labor for the forming, manufacture, transporting, placing, finishing, curing, and protection of concrete in these structures. #### 1.3 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-08 Statements Mixture Proportions; GA. The results of trial mixture design studies along with a statement giving the maximum nominal coarse aggregate size and the proportions of ingredients that will be used in the manufacture of each strength or class of concrete, at least 14 days prior to commencing concrete placing operations. Aggregate weights shall be based on the saturated surface dry condition. The statement shall be accompanied by test results from an approved independent commercial testing laboratory, showing that mixture design studies have been made with materials proposed for the project and that the proportions selected will produce concrete of the qualities indicated. No substitutions shall be made in the materials used in the mixture design studies without additional tests to show that the quality of the concrete is satisfactory. SD-09 Reports Testing and Inspection for Contractor Quality Control; FIO. Certified copies of laboratory test reports, including mill tests and all other test data, for portland cement, blended cement, pozzolan, ground granulated blast furnace slag, silica fume, aggregate admixtures, and curing compound proposed for use on this project. SD-13 Certificates Qualifications; FIO. Written documentation for Contractor Quality Control personnel. SD-14 Samples Surface Retarder; FIO. Surface retarder material with manufacturer's instructions for application in conjunction with air-water cutting. # 1.4 QUALIFICATIONS Contractor Quality Control personnel assigned to concrete construction shall be American Concrete Institute (ACI) Certified Workmen in one of the following grades or shall have written evidence of having completed similar qualification programs: REPAIR FUEL SYSTEM MAINTENANCE DOCK - Building 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 Concrete Field Testing Technician, Grade I Concrete Laboratory Testing Technician, Grade I or II Concrete Construction Inspector, Level II The foreman or lead journeyman of the flatwork finishing crew shall have similar qualification for ACI Concrete Flatwork Technician/Finisher or equal, with written documentation. ## 1.5 GENERAL REQUIREMENTS #### 1.5.1 Tolerances Except as otherwise specified herein, tolerances for concrete batching, mixture properties, and construction as well as definition of terms and application practices shall be in accordance with ACI 117/117R. Level and grade tolerance measurements of slabs shall be made as soon as possible after finishing; when forms or shoring are used, the measurements shall be made prior to removal. ## 1.5.1.1 Floors For the purpose of this Section the following terminology correlation between ACI 117/117R and this Section shall apply: 00029/11 REPAIR FUEL SYSTEM MAINTENANCE DOCK - Building 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 Floor Profile Quality Classification From ACI 117/117R This Section ----- Conventional Straight-edged Flat Same Float Finish or Trowel Finish Levelness tolerance shall not apply where design requires floors to be sloped to drains or sloped for other reasons. # 1.5.1.2 Floors by the Straightedge System The flatness of the floors shall be carefully controlled and the tolerances shall be measured by the straightedge system as specified in paragraph 4.5.7 of ACI 117/117R, using a 10 foot straightedge, within 72 hours after floor slab installation and before shores and/or forms are removed. The listed tolerances shall be met at any and every location at which the straightedge can be placed. Straight-edged 1/8" Float Finish 1/8" Trowel Finish 1/8" 1.5.2 Strength Requirements and w/c Ratio ## 1.5.2.1 Strength Requirements Specified compressive strength (f'c) shall be as follows: COMPRESSIVE STRENGTH STRUCTURE OR PORTION OF STRUCTURE 4000 PSI at 28 Days All Concrete Concrete made with high-early strength cement shall have a 7-day strength equal to the specified 28-day strength for concrete made with Type I or II portland cement. Compressive strength shall be determined in accordance with ASTM C 39. a. Evaluation of Concrete Compressive Strength. Compressive strength specimens (6 by 12 inch cylinders) shall be fabricated by the Contractor and laboratory cured in accordance with ASTM C 31 and tested in accordance with ASTM C 39. The strength of the concrete will be considered satisfactory so long as the average of all sets of three consecutive test results equals or exceeds the specified compressive strength f'c and no individual test result falls below the specified strength f'c by more than 500 psi. A "test" is defined as the average of two companion cylinders, or if only one cylinder is tested, the results of the single cylinder test. Additional analysis or testing, including taking cores and/or load tests may be required at the Contractor's expense when the strength of the concrete in the structure is considered potentially deficient. - b. Investigation of Low-Strength Compressive Test Results. When any strength test
of standard-cured test cylinders falls below the specified strength requirement by more than 500 psi or if tests of field-cured cylinders indicate deficiencies in protection and curing, steps shall be taken to assure that the load-carrying capacity of the structure is not jeopardized. When the strength of concrete in place is considered potentially deficient, cores shall be obtained and tested in accordance with ASTM C 42. At least three representative cores shall be taken from each member or area of concrete in place that is considered potentially deficient. The location of cores will be determined by the Contracting Officer to least impair the strength of the structure. Concrete in the area represented by the core testing will be considered adequate if the average strength of the cores is equal to at least 85 percent of the specified strength requirement and if no single core is less than 75 percent of the specified strength requirement. Nondestructive tests (tests other than test cylinders or cores) shall not be used as a basis for acceptance or rejection. The Contractor shall perform the coring and repair the holes. Cores will be tested by the Government. - c. Load Tests. If the core tests are inconclusive or impractical to obtain or if structural analysis does not confirm the safety of the structure, load tests may be directed by the Contracting Officer in accordance with the requirements of ACI 318/318R. Concrete work evaluated by structural analysis or by results of a load test as being understrength shall be corrected in a manner satisfactory to the Contracting Officer. All investigations, testing, load tests, and correction of deficiencies shall be performed by and at the expense of the Contractor and must be approved by the Contracting Officer, except that if all concrete is found to be in compliance with the drawings and specifications, the cost of investigations, testing, and load tests will be at the expense of the Government. #### 1.5.2.2 Water-Cement Ratio Maximum water-cement ratio (w/c) for normal weight concrete shall be as follows: WATER-CEMENT RATIO, BY WEIGHT STRUCTURE OR PORTION OF STRUCTURE 0.45 All Concrete This w/c may cause higher strength than that required above for compressive strength. The maximum w/c required will be the equivalent w/c as determined by conversion from the weight ratio of water to cement plus pozzolan, silica fume, and ground granulated blast furnace slag (GGBF slag) by the weight equivalency method as described in ACI 211.1. In the case where silica fume or GGBF slag is used, the weight of the silica fume and GGBF slag shall be included in the equations of ACI 211.1 for the term P which is used to denote the weight of pozzolan. #### 1.5.3 Air Entrainment Normal weight concrete shall be air entrained to contain between 4 and 7 percent total air, except that when the nominal maximum size coarse aggregate is 3/4 inch or smaller it shall be between 4.5 and 7.5 percent. Specified air content shall be attained at point of placement into the forms. Air content for normal weight concrete shall be determined in accordance with ASTM C 231. #### 1.5.4 Slump Slump of the concrete, as delivered to the point of placement into the forms, shall be within the following limits. Slump shall be determined in accordance with ASTM C 143. | | Slump | | |--|---------|---------| | Structural Element | Minimum | Maximum | | | | | | Foundation walls, substructure | | | | walls, footings, slabs | 1 in. | 3 in. | | Any structural concrete approved for placement by pumping: | | | | At pump | 2 in. | 6 in. | | At discharge of line | 1 in. | 4 in. | When use of a plasticizing admixture conforming to ASTM C 1017 or when a Type F or G high range water reducing admixture conforming to ASTM C 494 is permitted to increase the slump of concrete, concrete shall have a slump of 2 to 4 inches before the admixture is added and a maximum slump of 8 inches at the point of delivery after the admixture is added. #### 1.5.5 Concrete Temperature The temperature of the concrete as delivered shall not exceed 90 degrees F. When the ambient temperature during placing is 40 degrees F or less, or is expected to be at any time within 6 hours after placing, the temperature of the concrete as delivered shall be between 55 and 75 degrees F. ## 1.5.6 Size of Coarse Aggregate The largest feasible nominal maximum size aggregate (NMSA) specified in paragraph AGGREGATES shall be used in each placement. However, nominal maximum size of aggregate shall not exceed any of the following: three-fourths of the minimum cover for reinforcing bars, three-fourths of the minimum clear spacing between reinforcing bars, one-fifth of the narrowest dimension between sides of forms, or one-third of the thickness of slabs or toppings. ### 1.5.7 Special Properties and Products Concrete may contain admixtures other than air entraining agents, such as water reducers, superplasticizers, or set retarding agents to provide special properties to the concrete, if specified or approved. Any of these materials to be used on the project shall be used in the mix design studies. #### 1.6 MIXTURE PROPORTIONS Concrete shall be composed of portland cement, other cementitious and pozzolanic materials as specified, aggregates, water and admixtures as specified. ## 1.6.1 Proportioning Studies for Normal Weight Concrete Trial design batches, mixture proportioning studies, and testing requirements for various classes and types of concrete specified shall be the responsibility of the Contractor. Mixture proportions shall be based on compressive strength as determined by test specimens fabricated in accordance with ASTM C 192 and tested in accordance with ASTM C 39. Samples of all materials used in mixture proportioning studies shall be representative of those proposed for use in the project and shall be accompanied by the manufacturer's or producer's test reports indicating compliance with these specifications. Trial mixtures having proportions, consistencies, and air content suitable for the work shall be made based on methodology described in ACI 211.1, using at least three different watercement ratios for each type of mixture, which will produce a range of strength encompassing those required for each class and type of concrete required on the project. The maximum water-cement ratios required in the paragraph Maximum Allowable w/c Ratio will be the equivalent water-cement ratio as determined by conversion from the weight ratio of water to cement plus pozzolan, silica fume, and ground granulated blast furnace slag (GGBF slag) by the weight equivalency method as described in ACI 211.1. In the case where silica fume or GGBF slag is used, the weight of the silica fume and GGBF slag shall be included in the equations in ACI 211.1 for the term P, which is used to denote the weight of pozzolan. If pozzolan is used in the concrete mixture, the minimum pozzolan content shall be 15 percent by weight of the total cementitious material, and the maximum shall be 35 percent. Laboratory trial mixtures shall be designed for maximum permitted slump and air content. Separate sets of trial mixture studies shall be made for each combination of cementitious materials and each combination of admixtures proposed for use. No combination of either shall be used until proven by such studies, except that, if approved in writing and otherwise permitted by these specifications, an accelerator or a retarder may be used without separate trial mixture study. Separate trial mixture studies shall also be made for concrete for any conveying or placing method proposed which requires special properties and for concrete to be placed in unusually difficult placing locations. The temperature of concrete in each trial batch shall be reported. For each water-cement ratio, at least three test cylinders for each test age shall be made and cured in accordance with ASTM C 192. They shall be tested at 7 and 28 days in accordance with ASTM C 39. From these test results, a curve shall be plotted showing the relationship between water-cement ratio and strength for each set of trial mix studies. In addition, a curve shall be plotted showing the relationship between 7 day and 28 day strengths. Each mixture shall be designed to promote easy and suitable concrete placement, consolidation and finishing, and to prevent segregation and excessive bleeding. ### 1.6.2 Average Compressive Strength Required for Mixtures The mixture proportions selected during mixture design studies shall produce a required average compressive strength (f'cr) exceeding the specified compressive strength (f'c) by the amount indicated below. This required average compressive strength, f'cr, will not be a required acceptance criteria during concrete production. However, whenever the daily average compressive strength at 28 days drops below f'cr during concrete production, or daily average 7-day strength drops below a strength correlated with the 28-day f'cr, the mixture shall be adjusted, as approved, to bring the daily average back up to f'cr. During production, the required f'cr shall be adjusted, as appropriate, based on the standard deviation being attained on the job. # 1.6.2.1 Computations from Test Records Where a concrete production facility has test records, a standard deviation shall be established in accordance with the applicable provisions of ACI 214.3R. Test records from which a standard deviation is calculated shall represent materials, quality control procedures, and conditions similar to those expected; shall represent concrete produced to meet a specified strength or strengths (f'c) within 1,000 psi of that specified for proposed work; and shall consist of at least 30 consecutive tests. A strength test shall be the average of the strengths of two cylinders made from the same sample of concrete and tested at 28 days. Required average compressive strength f'cr used as
the basis for selection of concrete proportions shall be the larger of the equations that follow using the standard deviation as determined above: f'cr = f'c + 1.34S where units are in psi f'cr = f'c + 2.33S - 500 where units are in psi Where S = standard deviation Where a concrete production facility does not have test records meeting the requirements above but does have a record based on 15 to 29 consecutive tests, a standard deviation shall be established as the product of the calculated standard deviation and a modification factor from the following table: | NUMBER OF TESTS | MODIFICATION FACTOR
FOR STANDARD DEVIATION | |------------------|---| | 15 | 1.16 | | 20 | 1.08 | | 25 | 1.03 | | 30 or more | 1.00 | | | | | DACA67-00-R-0222 | SECTION 03300 - Page 10 | ## 1.6.2.2 Computations without Previous Test Records When a concrete production facility does not have sufficient field strength test records for calculation of the standard deviation, the required average strength f'cr shall be determined as follows: a. If the specified compressive strength f'c is less than 3,000 psi, f'cr = f'c + 1000 psi b. If the specified compressive strength f'c is 3,000 to 5,000 psi, f'cr = f'c + 1,200 psi c. If the specified compressive strength f'c is over 5,000 psi, f'cr = f'c + 1,400 psi #### 1.7 STORAGE OF MATERIALS Cement and other cementitious materials shall be stored in weathertight buildings, bins, or silos which will exclude moisture and contaminants and keep each material completely separated. Aggregate stockpiles shall be arranged and used in a manner to avoid excessive segregation and to prevent contamination with other materials or with other sizes of aggregates. Aggregate shall not be stored directly on ground unless a sacrificial layer is left undisturbed. Reinforcing bars and accessories shall be stored above the ground on platforms, skids or other supports. Other materials shall be stored in such a manner as to avoid contamination and deterioration. Admixtures which have been in storage at the project site for longer than 6 months or which have been subjected to freezing shall not be used unless retested and proven to meet the specified requirements. Materials shall be capable of being accurately identified after bundles or containers are opened. # 1.8 GOVERNMENT ASSURANCE INSPECTION AND TESTING Day-to day inspection and testing shall be the responsibility of the Contractor Quality Control (CQC) staff. However, representatives of the Contracting Officer can and will inspect construction as considered appropriate and will monitor operations of the Contractor's CQC staff. Government inspection or testing will not relieve the Contractor of any of his CQC responsibilities. #### 1.8.1 Materials The Government will sample and test aggregates, cementitious materials, other materials, and concrete to determine compliance with the specifications as considered appropriate. The Contractor shall provide facilities and labor as may be necessary for procurement of representative test samples. Samples of aggregates will be obtained at the point of REPAIR FUEL SYSTEM MAINTENANCE DOCK - Building 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 batching in accordance with ASTM D 75. Other materials will be sampled from storage at the jobsite or from other locations as considered appropriate. Samples may be placed in storage for later testing when appropriate. #### 1.8.2 Fresh Concrete Fresh concrete will be sampled as delivered in accordance with ASTM C 172 and tested in accordance with these specifications, as considered necessary. #### 1.8.3 Hardened Concrete Tests on hardened concrete will be performed by the Government when such tests are considered necessary. # 1.8.4 Inspection Concrete operations may be tested and inspected by the Government as the project progresses. Failure to detect defective work or material will not prevent rejection later when a defect is discovered nor will it obligate the Government for final acceptance. #### PART 2 PRODUCTS #### 2.1 CEMENTITIOUS MATERIALS Cementitious Materials shall be portland cement, portland-pozzolan cement or portland cement in combination with pozzolan and shall conform to appropriate specifications listed below. Use of cementitious materials in concrete which will have surfaces exposed in the completed structure shall be restricted so there is no change in color, source, or type of cementitious material. ### 2.1.1 Portland Cement ASTM C 150, Type I low alkali with a maximum 15 percent amount of tricalcium aluminate, or Type II low alkali including false set requirements or Type V. White portland cement shall meet the above requirements except that it may be Type I or Type II low alkali. # 2.1.2 Pozzolan (Fly Ash) ASTM C 618, Class F with the optional requirements for multiple factor, drying shrinkage, and uniformity from Table 2A of ASTM C 618. If pozzolan is used, it shall never be less than 15 percent nor more than 35 percent by weight of the total cementitious material. #### 2.2 AGGREGATES Aggregates shall conform to the following. 00029/11 REPAIR FUEL SYSTEM MAINTENANCE DOCK - Building 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 # 2.2.1 Fine Aggregate Fine aggregate shall conform to the quality and gradation requirements of ASTM C 33. ### 2.2.2 Coarse Aggregate Coarse aggregate shall conform to ASTM C 33, Class 5S, size designation 67 (3/4 inch nominal maximum size) except for concrete topping on steel deck which shall be size designation 8 (3/8 inch nominal maximum size). #### 2.3 CHEMICAL ADMIXTURES Chemical admixtures, when required or permitted, shall conform to the appropriate specification listed. Admixtures shall be furnished in liquid form and of suitable concentration for easy, accurate control of dispensing. ## 2.3.1 Air-Entraining Admixture ASTM C 260 and shall consistently entrain the air content in the specified ranges under field conditions. ## 2.3.2 Accelerating Admixture ASTM C 494, Type C or E, except that calcium chloride or admixtures containing calcium chloride shall not be used. #### 2.3.3 Water-Reducing or Retarding Admixture ASTM C 494, Type A, B, or D, except that the 6-month and 1-year compressive and flexural strength tests are waived. ## 2.3.4 High-Range Water Reducer ASTM C 494, Type F or G, except that the 6-month and 1-year strength requirements are waived. The admixture shall be used only when approved in writing, such approval being contingent upon particular mixture control as described in the Contractor's Quality Control Plan and upon performance of separate mixture design studies. #### 2.3.5 Surface Retarder COE CRD-C 94. # 2.3.6 Other Chemical Admixtures Chemical admixtures for use in producing flowing concrete shall comply with ASTM C 1017, Type I or II. These admixtures shall be used only when approved in writing, such approval being contingent upon particular mixture control as described in the Contractor's Quality Control Plan and upon performance of separate mixture design studies. #### 00029/11 REPAIR FUEL SYSTEM MAINTENANCE DOCK - Building 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 #### 2.4 CURING MATERIALS ## 2.4.1 Burlap and Cotton Mat Burlap and cotton mat used for curing shall conform to AASHTO M 182. ## 2.4.2 Membrane-Forming Compound COE CRD-C 300 ## 2.5 WATER Water for mixing and curing shall be fresh, clean, potable, and free of injurious amounts of oil, acid, salt, or alkali, except that non-potable water may be used if it meets the requirements of COE CRD-C 400. #### 2.6 NONSHRINK GROUT Nonshrink grout shall conform to ASTM C 1107, Grade A, and shall be a commercial formulation suitable for the proposed application. #### 2.7 LATEX BONDING AGENT Latex agents for bonding fresh to hardened concrete shall conform to ASTM C 1059. ## 2.8 EPOXY RESIN Epoxy resins for use in repairs shall conform to ASTM C 881, Type V, Grade 2. Class as appropriate to the existing ambient and surface temperatures. #### 2.9 EMBEDDED ITEMS Embedded items shall be of the size and type indicated or as needed for the application. # 2.10 FLOOR HARDENER Floor hardener shall be a colorless aqueous solution containing zinc silicofluoride, magnesium silicofluoride, or sodium silicofluoride. These silicofluorides can be used individually or in combination. Proprietary hardeners may be used if approved in writing by the Contracting Officer. # 2.11 PERIMETER RIGID INSULATION Perimeter insulation shall be polystyrene conforming to ASTM C 578, Type II; polyurethane conforming to ASTM C 591, Type II; or cellular glass conforming to ASTM C 552, Type I or IV. #### 2.12 VAPOR BARRIER Vapor barrier shall be polyethylene sheeting with a minimum thickness of 6 mils or other equivalent material having a vapor permeance rating not exceeding 0.5 perms as determined in accordance with ASTM E 96. #### 2.13 JOINT MATERIALS Materials for and sealing of joints shall conform to the requirements of Section 07900 JOINT SEALING. #### PART 3 EXECUTION #### 3.1 PREPARATION FOR PLACING Before commencing concrete placement, the following shall be performed. Surfaces to receive concrete shall be clean and free from frost, ice, mud, and water. Forms shall be in place, cleaned, coated, and adequately supported, in accordance with Section 03100 STRUCTURAL CONCRETE FORMWORK. Reinforcing steel shall be in place, cleaned, tied, and adequately supported, in accordance with Section 03200 CONCRETE REINFORCEMENT. Transporting and conveying equipment shall be in-place, ready for use, clean, and free of hardened concrete and foreign material. Equipment for consolidating concrete shall be at the placing site and in proper working order. Equipment and material for curing and for protecting concrete from weather or mechanical damage shall be at the placing site, in proper working condition and in sufficient amount for the entire placement. When hot, windy conditions during concreting appear probable, equipment and material shall be at the placing site to
provide windbreaks, shading, fogging, or other action to prevent plastic shrinkage cracking or other damaging drying of the concrete. #### 3.1.1 Foundations #### 3.1.1.1 Concrete on Earth Foundations Earth (subgrade, base, or subbase courses) surfaces upon which concrete is to be placed shall be clean, damp, and free from debris, frost, ice, and standing or running water. Prior to placement of concrete, the foundation shall be well drained and shall be satisfactorily graded and uniformly compacted. ## 3.1.2 Previously Placed Concrete Concrete surfaces to which additional concrete is to be bonded shall be prepared for receiving the next horizontal lift by cleaning the construction joint surface with either air-water cutting, sandblasting, high-pressure water jet, or other approved method. Concrete at the side of vertical construction joints shall be prepared as approved by the Contracting Officer. Air-water cutting shall not be used on formed surfaces or surfaces congested with reinforcing steel. Regardless of the method used, the resulting surfaces shall be free from all laitance and inferior concrete so that clean surfaces of well bonded coarse aggregate are exposed and make up at least 10-percent of the surface area, distributed uniformly throughout the surface. The edges of the coarse aggregate shall not be undercut. The surface of horizontal construction joints shall be kept continuously wet for the first 12 hours during the 24-hour period prior to placing fresh concrete. The surface shall be washed completely clean as the last operation prior to placing the next lift. #### 3.1.2.1 Air-Water Cutting Air-water cutting of a fresh concrete surface shall be performed at the proper time and only on horizontal construction joints. The air pressure used in the jet shall be 100 psi plus or minus, 10 psi, and the water pressure shall be just sufficient to bring the water into effective influence of the air pressure. When approved by the Contracting Officer, a surface retarder complying with the requirements of COE CRD-C 94 may be applied to the surface of the lift in order to prolong the period of time during which air-water cutting is effective. After cutting, the surface shall be washed and rinsed as long as there is any trace of cloudiness of the wash water. Where necessary to remove accumulated laitance, coatings, stains, debris, and other foreign material, high-pressure waterjet or sandblasting shall be used as the last operation before placing the next lift. ## 3.1.2.2 High-Pressure Water Jet A stream of water under a pressure of not less than 3,000 psi shall be used for cutting and cleaning. Its use shall be delayed until the concrete is sufficiently hard so that only the surface skin or mortar is removed and there is no undercutting of coarse-aggregate particles. If the waterjet is incapable of a satisfactory cleaning, the surface shall be cleaned by sandblasting. ## 3.1.2.3 Wet Sandblasting Wet sandblasting shall be used after the concrete has reached sufficient strength to prevent undercutting of the coarse aggregate particles. After wet sandblasting, the surface of the concrete shall then be washed thoroughly to remove all loose materials. # 3.1.2.4 Waste Disposal The method used in disposing of waste water employed in cutting, washing, and rinsing of concrete surfaces shall be such that the waste water does not stain, discolor, or affect exposed surfaces of the structures, or damage the environment of the project area. The method of disposal shall be subject to approval. # 3.1.2.5 Preparation of Previously Placed Concrete Concrete surfaces to which other concrete is to be bonded shall be abraded in an approved manner that will expose sound aggregate uniformly without damaging the concrete. Laitance and loose particles shall be removed. Surfaces shall be thoroughly washed and shall be moist but without free water when concrete is placed. ## 3.1.3 Vapor Barrier Vapor barrier shall be provided beneath the interior on-grade concrete floor slabs. The greatest widths and lengths practicable shall be used to eliminate joints wherever possible. Joints shall be lapped a minimum of 12 inches. Torn, punctured, or damaged vapor barrier material shall be removed and new vapor barrier shall be provided prior to placing concrete. For minor repairs, patches may be made using laps of at least 12 inches. Lapped joints shall be sealed and edges patched with pressure-sensitive adhesive or tape not less than 2 inches wide and compatible with the membrane. Vapor barrier shall be placed directly on underlying subgrade, base course, or capillary water barrier, unless it consists of crushed material or large granular material which could puncture the vapor barrier. In this case, the surface shall be choked with a light layer of sand, as approved, before placing the vapor barrier. A 2 inch layer of compacted, clean concrete sand (fine aggregate) shall be placed on top of the vapor barrier before placing concrete. Concrete placement shall be controlled so as to prevent damage to the vapor barrier, or any covering sand. #### 3.1.4 Perimeter Insulation Perimeter insulation shall be installed at locations indicated. Adhesive shall be used where insulation is applied to the interior surface of foundation walls and may be used for exterior application. #### 3.1.5 Embedded Items Before placement of concrete, care shall be taken to determine that all embedded items are firmly and securely fastened in place as indicated on the drawings, or required. Conduit and other embedded items shall be clean and free of oil and other foreign matter such as loose coatings or rust, paint, and scale. The embedding of wood in concrete will be permitted only when specifically authorized or directed. Voids in sleeves, inserts, and anchor slots shall be filled temporarily with readily removable materials to prevent the entry of concrete into voids. Welding shall not be performed on embedded metals within 1 feet of the surface of the concrete. Tack welding shall not be performed on or to embedded items. ## 3.2 CONCRETE PRODUCTION, SMALL PROJECTS Batch-type equipment shall be used for producing concrete. Ready-mixed concrete shall be batched, mixed, and transported in accordance with ASTM C 94, except as otherwise specified. Truck mixers, agitators, and nonagitating transporting units shall comply with NRMCA TMMB-01. Ready-mix plant equipment and facilities shall be certified in accordance with NRMCA QC 3. Approved batch tickets shall be furnished for each load of ready-mixed concrete. Site-mixed concrete shall be produced in accordance with ACI 301, and plant shall conform to NRMCA CPMB 100. In lieu of batch-type equipment, concrete may be produced by volumetric batching and continuous mixing, which shall conform to ASTM C 685. #### 3.3 TRANSPORTING CONCRETE TO PROJECT SITE Concrete shall be transported to the placing site in truck mixers. #### 3.4 CONVEYING CONCRETE ON SITE Concrete shall be conveyed from mixer or transporting unit to forms as rapidly as possible and within the time interval specified by methods which will prevent segregation or loss of ingredients using following equipment. Conveying equipment shall be cleaned before each placement. #### 3.4.1 Trucks Truck mixers operating at agitating speed or truck agitators used for transporting plant-mixed concrete shall conform to the requirements of ASTM C 94. Nonagitating equipment shall be used only for transporting plant-mixed concrete over a smooth road and when the hauling time is less than 15 minutes. Bodies of nonagitating equipment shall be smooth, watertight, metal containers specifically designed to transport concrete, shaped with rounded corners to minimize segregation, and equipped with gates that will permit positive control of the discharge of the concrete. #### 3.4.2 Chutes When concrete can be placed directly from a truck mixer, agitator, or nonagitating equipment, the chutes normally attached to this equipment by the manufacturer may be used. A discharge deflector shall be used when required by the Contracting Officer. Separate chutes and other similar equipment will not be permitted for conveying concrete. # 3.4.3 Concrete Pumps Concrete may be conveyed by positive displacement pump when approved. The pumping equipment shall be piston or squeeze pressure type; pneumatic placing equipment shall not be used. The pipeline shall be rigid steel pipe or heavy-duty flexible hose. The inside diameter of the pipe shall be at least 3 times the nominal maximum-size coarse aggregate in the concrete mixture to be pumped but not less than 4 inches. Aluminum pipe shall not be used. #### 3.5 PLACING CONCRETE Mixed concrete shall be discharged within 1-1/2 hours or before the mixer drum has revolved 300 revolutions, whichever comes first after the introduction of the mixing water to the cement and aggregates. When the concrete temperature exceeds 85 degrees F, the time shall be reduced to 45 minutes. Concrete shall be placed within 15 minutes after it has been discharged from the transporting unit. Concrete shall be handled from mixer or transporting unit to forms in a continuous manner until the approved unit of operation is completed. Adequate scaffolding, ramps and walkways shall be provided so that personnel and equipment are not supported by in-place reinforcement. Placing will not be permitted when the sun, heat, wind, or limitations of facilities furnished by the Contractor prevent proper consolidation, finishing and curing. Sufficient placing capacity shall be provided so that concrete can be kept free of cold joints. # 3.5.1 Depositing Concrete Concrete shall be deposited as close as possible to its final position in the forms, and there shall be no vertical drop greater than 5 feet except where suitable equipment is provided to prevent segregation and where specifically authorized. Depositing of the concrete shall be so regulated that it will be effectively consolidated in horizontal
layers not more than 12 inches thick, except that all slabs shall be placed in a single layer. Concrete to receive other construction shall be screeded to the proper level. Concrete shall be deposited continuously in one layer or in layers so that fresh concrete is deposited on in-place concrete that is still plastic. Fresh concrete shall not be deposited on concrete that has hardened sufficiently to cause formation of seams or planes of weakness within the section. Concrete that has surface dried, partially hardened, or contains foreign material shall not be used. When temporary spreaders are used in the forms, the spreaders shall be removed as their service becomes unnecessary. #### 3.5.2 Consolidation Immediately after placing, each layer of concrete shall be consolidated by internal vibrators, except for slabs 4 inches thick or less. The vibrators shall at all times be adequate in effectiveness and number to properly consolidate the concrete; a spare vibrator shall be kept at the jobsite during all concrete placing operations. The vibrators shall have a frequency of not less than 10,000 vibrations per minute, an amplitude of at least 0.025 inch, and the head diameter shall be appropriate for the structural member and the concrete mixture being placed. Vibrators shall be inserted vertically at uniform spacing over the area of placement. The distance between insertions shall be approximately 1-1/2 times the radius of action of the vibrator so that the area being vibrated will overlap the adjacent just-vibrated area by a reasonable amount. The vibrator shall penetrate rapidly to the bottom of the layer and at least 6 inches into the preceding layer if there is such. Vibrator shall be held stationary until the concrete is consolidated and then vertically withdrawn slowly while operating. Form vibrators shall not be used unless specifically approved and unless forms are constructed to withstand their use. Vibrators shall not be used to move concrete within the forms. Slabs 4 inches and less in thickness shall be consolidated by properly designed vibrating screeds or other approved technique. Excessive vibration of lightweight concrete resulting in segration or flotation of coarse aggregate shall be prevented. Frequency and amplitude of vibrators shall be determined in accordance with COE CRD-C 521. Grate tampers ("jitterbugs") shall not be used. ## 3.5.3 Cold Weather Requirements Special protection measures, approved by the Contracting Officer, shall be used if freezing temperatures are anticipated before the expiration of the specified curing period. The ambient temperature of the air where concrete is to be placed and the temperature of surfaces to receive concrete shall be not less than 40 degrees F. The temperature of the concrete when placed shall be not less than 50 degrees F nor more than 75 degrees F. Heating of the mixing water or aggregates will be required to regulate the concrete placing temperature. Materials entering the mixer shall be free from ice, snow, or frozen lumps. Salt, chemicals or other materials shall not be incorporated in the concrete to prevent freezing. Upon written approval, an accelerating admixture conforming to ASTM C 494, Type C or E may be used, provided it contains no calcium chloride. Calcium chloride shall not be used. If the average daily air temperature is less than 40 degrees F and the air temperature is not greater than 50 degrees F for more than half of any 24-hour period, special requirements by ACI 306R shall be followed. ## 3.5.4 Hot Weather Requirements When the ambient temperature during concrete placing is expected to exceed 85 degrees F, the concrete shall be placed and finished with procedures previously submitted, ACI 305R, and as specified herein. The concrete temperature at time of delivery to the forms shall not exceed the temperature shown in the table below when measured in accordance with ASTM C 1064. Cooling of the mixing water or aggregates or placing concrete in the cooler part of the day may be required to obtain an adequate placing temperature. A retarder may be used, as approved, to facilitate placing and finishing. Steel forms and reinforcements shall be cooled as approved prior to concrete placement when steel temperatures are greater than 120 degrees F. Conveying and placing equipment shall be cooled if necessary to maintain proper concrete-placing temperature. Maximum Allowable Concrete Placing Temperature Relative Humidity, Percent, During Time of Temperature Concrete Placement Degrees Greater than 60 90 F 40-60 85 F Less than 80 F ### 3.5.5 Prevention of Plastic Shrinkage Cracking During hot weather with low humidity, and particularly with appreciable wind, as well as interior placements when space heaters produce low humidity, the Contractor shall be alert to the tendency for plastic shrinkage cracks to develop and shall institute measures to prevent this. Particular care shall be taken if plastic shrinkage cracking is potentially imminent and especially if it has developed during a previous placement. Periods of high potential for plastic shrinkage cracking can be anticipated by use of Fig. 2.1.5 of ACI 305R. In addition the concrete placement shall be further protected by erecting shades and windbreaks and by applying fog sprays of water, sprinkling, ponding or wet covering. Plastic shrinkage cracks that occur shall be filled by injection of epoxy resin as directed, after the concrete hardens. Plastic shrinkage cracks shall never be troweled over or filled with slurry. ## 3.5.6 Placing Concrete in Congested Areas Special care shall be used to ensure complete filling of the forms, elimination of all voids, and complete consolidation of the concrete when placing concrete in areas congested with reinforcing bars, embedded items, waterstops and other tight spacing. An appropriate concrete mixture shall be used, and the nominal maximum size of aggregate (NMSA) shall meet the specified criteria when evaluated for the congested area. Vibrators with heads of a size appropriate for the clearances available shall be used, and the consolidation operation shall be closely supervised to ensure complete and thorough consolidation at all points. Where necessary, splices of reinforcing bars shall be alternated to reduce congestion. Where two mats of closely spaced reinforcing are required, the bars in each mat shall be placed in matching alignment to reduce congestion. Reinforcing bars may be temporarily crowded to one side during concrete placement provided they are returned to exact required location before concrete placement and consolidation are completed. ## 3.5.7 Placing Flowable Concrete If a plasticizing admixture conforming to ASTM C 1017 is used or if a Type F or G high range water reducing admixture is permitted to increase the slump, the concrete shall meet all requirements of paragraph GENERAL REQUIREMENTS in PART 1. Extreme care shall be used in conveying and placing the concrete to avoid segregation. Consolidation and finishing shall meet all requirements of paragraphs Placing Concrete, Finishing Formed Surfaces, and Finishing Unformed Surfaces. No relaxation of requirements to accommodate flowable concrete will be permitted. ## 3.6 JOINTS Joints shall be located and constructed as indicated or approved. Joints not indicated on the drawings shall be located and constructed to minimize the impact on the strength of the structure. In general, such joints shall be located near the middle of the spans of supported slabs. Joints shall be perpendicular to the main reinforcement. All reinforcement shall be continued across joints; except that reinforcement or other fixed metal items shall not be continuous through expansion joints, or through construction or contraction joints in slabs on grade. Reinforcement shall be 2 inches clear from each joint. Except where otherwise indicated, construction joints between interior slabs on grade and vertical surfaces shall consist of 30 pound asphalt-saturated felt, extending for the full depth of the slab. The perimeters of the slabs shall be free of fins, rough edges, spalling, or other unsightly appearance. Reservoir for sealant for construction and contraction joints in slabs shall be formed to the dimensions shown on the drawings by removing snap-out joint-forming inserts, by sawing sawable inserts, or by sawing to widen the top portion of sawed joints. Joints to be sealed shall be cleaned and sealed as indicated and in accordance with Section 07900 JOINT SEALING. #### 3.6.1 Construction Joints For concrete other than slabs on grade, construction joints shall be located so that the unit of operation does not exceed 25 feet. Concrete shall be placed continuously so that each unit is monolithic in construction. Fresh concrete shall not be placed against adjacent hardened concrete until it is at least 24 hours old. Construction joints shall be located as indicated or approved. Where concrete work is interrupted by weather, end of work shift or other similar type of delay, location and type of construction joint shall be subject to approval of the Contracting Officer. Unless otherwise indicated and except for slabs on grade, reinforcing steel shall extend through construction joints. #### 3.7 FINISHING FORMED SURFACES Forms, form materials, and form construction are specified in Section 03100 STRUCTURAL CONCRETE FORMWORK. Finishing of formed surfaces shall be as specified herein. Unless another type of architectural or special finish is specified, surfaces shall be left with the texture imparted by the forms except that defective surfaces shall be repaired. Unless painting of surfaces is required, uniform color of the concrete shall be maintained by use of only one mixture without changes in materials or proportions for any structure or portion of structure that requires a Class A or B finish. Except for major defects, as defined hereinafter, surface defects shall be repaired as specified herein within 24
hours after forms are removed. Repairs of the so-called "plaster-type" will not be permitted in any location. Tolerances of formed surfaces shall conform to the requirements of ACI 117/117R. These tolerances apply to the finished concrete surface, not to the forms themselves; forms shall be set true to line and grade. Form tie holes requiring repair and other defects whose depth is at least as great as their surface diameter shall be repaired as specified in paragraph Damp-Pack Mortar Repair. Defects whose surface diameter is greater than their depth shall be repaired as specified in paragraph Repair of Major Defects. Repairs shall be finished flush with adjacent surfaces and with the same surface texture. The cement used for all repairs shall be a blend of job cement with white cement proportioned so that the final color after curing and aging will be the same as the adjacent concrete. Concrete with excessive honeycomb, or other defects which affect the strength of the member, will be rejected. Repairs shall be demonstrated to be acceptable and free from cracks or loose or drummy areas at the completion of the contract and, for Class A and B Finishes, shall be inconspicuous. Repairs not meeting these requirements will be rejected and shall be replaced. # 3.7.1 Class B Finish Class B finish is required for all exposed vertical surfaces. Fins, ravelings, and loose material shall be removed, all surface defects over 1/2 inch in diameter or more than 1/2 inch deep, shall be repaired and, except as otherwise indicated or as specified in Section 03100 STRUCTURAL CONCRETE FORMWORK, holes left by removal of form ties shall be reamed and filled. Defects more than 1/2 inch in diameter shall be cut back to sound concrete, but in all cases at least 1 inch deep. The Contractor shall prepare a sample panel for approval (as specified in PART 1) before commencing repair, showing that the surface texture and color match will be attained. #### 3.7.2 Class C and Class D Finish Class C finish is required for all vertical surfaces receiving rigid insulation. Class D finish is required for walls and foundation surfaces against which backfill will be placed. Fins, ravelings, and loose material shall be removed, and, except as otherwise indicated or as specified in Section 03100 STRUCTURAL CONCRETE FORMWORK, holes left by removal of form ties shall be reamed and filled. Honeycomb and other defects more than 1/2 inch deep or more than 2 inches in diameter shall be repaired. Defects more than 2 inches in diameter shall be cut back to sound concrete, but in all cases at least 1 inch deep. #### 3.8 REPAIRS ## 3.8.1 Damp-Pack Mortar Repair Form tie holes requiring repair and other defects whose depth is at least as great as their surface diameter but not over 4 inches shall be repaired by the damp-pack mortar method. Form tie holes shall be reamed and other similar defects shall be cut out to sound concrete. The void shall then be thoroughly cleaned, thoroughly wetted, brush-coated with a thin coat of neat cement grout and filled with mortar. Mortar shall be a stiff mix of 1 part portland cement to 2 parts fine aggregate passing the No. 16 mesh sieve, and minimum amount of water. Only sufficient water shall be used to produce a mortar which, when used, will stick together on being molded into a ball by a slight pressure of the hands and will not exude water but will leave the hands damp. Mortar shall be mixed and allowed to stand for 30 to 45 minutes before use with remixing performed immediately prior to use. Mortar shall be thoroughly tamped in place in thin layers using a hammer and hardwood block. Holes passing entirely through walls shall be completely filled from the inside face by forcing mortar through to the outside face. All holes shall be packed full. Damp-pack repairs shall be moist cured for at least 48 hours. # 3.8.2 Repair of Major Defects Major defects will be considered to be those more than 1/2 inch deep or, for Class A and B finishes, more than 1/2 inch in diameter and, for Class C and D finishes, more than 2 inches in diameter. Also included are any defects of any kind whose depth is over 4 inches or whose surface diameter is greater than their depth. Major defects shall be repaired as specified below. # 3.8.2.1 Surface Application of Mortar Repair Defective concrete shall be removed, and removal shall extend into completely sound concrete. Approved equipment and procedures which will not cause cracking or microcracking of the sound concrete shall be used. If reinforcement is encountered, concrete shall be removed so as to expose the reinforcement for at least 2 inches on all sides. All such defective areas REPAIR FUEL SYSTEM MAINTENANCE DOCK - Building 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 greater than 12 square inches shall be outlined by saw cuts at least 1 inch deep. Defective areas less than 12 square inches shall be outlined by a 1 inch deep cut with a core drill in lieu of sawing. All saw cuts shall be straight lines in a rectangular pattern in line with the formwork panels. After concrete removal, the surface shall be thoroughly cleaned by high pressure washing to remove all loose material. Surfaces shall be kept continually saturated for the first 12 of the 24 hours immediately before placing mortar and shall be damp but not wet at the time of commencing mortar placement. The Contractor, at his option, may use either hand-placed mortar or mortar placed with a mortar gun. If hand-placed mortar is used, the edges of the cut shall be perpendicular to the surface of the concrete. The prepared area shall be brush-coated with a thin coat of neat cement grout. The repair shall then be made using a stiff mortar, preshrunk by allowing the mixed mortar to stand for 30 to 45 minutes and then remixed, thoroughly tamped into place in thin layers. If hand-placed mortar is used, the Contractor shall test each repair area for drumminess by firm tapping with a hammer and shall inspect for cracks, both in the presence of the Contracting Officer's representative, immediately before completion of the contract, and shall replace any showing drumminess or cracking. If mortar placed with a mortar gun is used, the gun shall be a small compressed airoperated gun to which the mortar is slowly hand fed and which applies the mortar to the surface as a high-pressure stream, as approved. Repairs made using shotcrete equipment will not be accepted. The mortar used shall be the same mortar as specified for damp-pack mortar repair. If gun-placed mortar is used, the edges of the cut shall be beveled toward the center at a slope of 1:1. All surface applied mortar repairs shall be continuously moist cured for at least 7 days. Moist curing shall consist of several layers of saturated burlap applied to the surface immediately after placement is complete and covered with polyethylene sheeting, all held closely in place by a sheet of plywood or similar material rigidly braced against it. Burlap shall be kept continually wet. # 3.8.2.2 Repair of Deep and Large Defects Deep and large defects will be those that are more than 6 inches deep and also have an average diameter at the surface more than 18 inches or that are otherwise so identified by the Project Office. Such defects shall be repaired as specified herein or directed, except that defects which affect the strength of the structure shall not be repaired and that portion of the structure shall be completely removed and replaced. Deep and large defects shall be repaired by procedures approved in advance including forming and placing special concrete using applied pressure during hardening. Preparation of the repair area shall be as specified for surface application of mortar. In addition, the top edge (surface) of the repair area shall be sloped at approximately 20 degrees from the horizontal, upward toward the side from which concrete will be placed. The special concrete shall be a concrete mixture with low water content and low slump, and shall be allowed to age 30 to 60 minutes before use. Concrete containing a specified expanding admixture may be used in lieu of the above mixture; the paste portion of such concrete mixture shall be designed to have an expansion between 2.0 and 4.0 percent when tested in accordance with ASTM C 940. A full width "chimney" shall be provided at the top of the form on the placing side to ensure filling to the top of the opening. A pressure cap shall be used on the concrete in the chimney with simultaneous tightening and revibrating the form during hardening to ensure a tight fit for the repair. The form shall be removed after 24 hours and immediately the chimney shall be carefully chipped away to avoid breaking concrete out of the repair; the surface of the repair concrete shall be dressed as required. #### 3.9 FINISHING UNFORMED SURFACES The finish of all unformed surfaces shall meet the requirements of paragraph Tolerances in PART 1, when tested as specified herein. #### 3.9.1 General The ambient temperature of spaces adjacent to unformed surfaces being finished and of the base on which concrete will be placed shall be not less than 50 degrees F. In hot weather all requirements of paragraphs Hot Weather Requirements and Prevention of Plastic Shrinkage Cracking shall be met. Unformed surfaces that are not to be covered by additional concrete or backfill shall have a float finish, with additional finishing as specified below, and shall be true to the elevation shown on the drawings. Surfaces to receive additional concrete or backfill shall be brought to the elevation shown on the drawings, properly consolidated, and left true and regular. Unless otherwise shown on the drawings, exterior surfaces shall be sloped for drainage, as directed. Where drains are provided, interior floors shall be evenly sloped to the drains. Joints shall be carefully made with a jointing or edging tool. The finished surfaces shall be protected from stains or abrasions. Grate tampers
or "jitterbugs" shall not be used for any surfaces. The dusting of surfaces with dry cement or other materials or the addition of any water during finishing shall not be permitted. If bleedwater is present prior to finishing, the excess water shall be carefully dragged off or removed by absorption with porous materials such as burlap. During finishing operations, extreme care shall be taken to prevent over finishing or working water into the surface; this can cause "crazing" (surface shrinkage cracks which appear after hardening) of the surface. Any slabs with surfaces which exhibit significant crazing shall be removed and replaced. During finishing operations, surfaces shall be checked with a 10 foot straightedge, applied in both directions at regular intervals while the concrete is still plastic, to detect high or low areas. # 3.9.2 Rough Slab Finish As a first finishing operation for unformed surfaces, the surface shall receive a rough slab finish prepared as follows. The concrete shall be uniformly placed across the slab area, consolidated as previously specified, and then screeded with straightedge strikeoffs immediately after consolidation to bring the surface to the required finish level with no coarse aggregate visible. Side forms and screed rails shall be provided, rigidly supported, and set to exact line and grade. Allowable tolerances for finished surfaces apply only to the hardened concrete, not to forms or screed rails. Forms and screed rails shall be set true to line and grade. "Wet screeds" shall not be used. #### 3.9.3 Floated Finish Slabs to receive more than a rough slab finish shall next be given a wood float finish. The screeding shall be followed immediately by darbying or bull floating before bleeding water is present, to bring the surface to a true, even plane. Then, after the concrete has stiffened so that it will withstand a man's weight without imprint of more than 1/4 inch and the water sheen has disappeared, it shall be floated to a true and even plane free of ridges. Floating shall be performed by use of suitable hand floats or power driven equipment. Sufficient pressure shall be used on the floats to bring a film of moisture to the surface. Hand floats shall be made of wood, magnesium, or aluminum. Concrete that exhibits stickiness shall be floated with a magnesium float. Care shall be taken to prevent over-finishing or incorporating water into the surface. ## 3.9.4 Troweled Finish All slab surfaces shall be given a trowel finish. After floating is complete and after the surface moisture has disappeared, unformed surfaces shall be steel-troweled to a smooth, even, dense finish, free from blemishes including trowel marks. In lieu of hand finishing, an approved power finishing machine may be used in accordance with the directions of the machine manufacturer. Additional trowelings shall be performed, either by hand or machine until the surface has been troweled 2 times, with waiting period between each. Care shall be taken to prevent blistering and if such occurs, troweling shall immediately be stopped and operations and surfaces corrected. A final hard steel troweling shall be done by hand, with the trowel tipped, and using hard pressure, when the surface is at a point that the trowel will produce a ringing sound. The finished surface shall be thoroughly consolidated and shall be essentially free of trowel marks and be uniform in texture and appearance. The concrete mixture used for troweled finished areas shall be adjusted, if necessary, in order to provide sufficient fines (cementitious material and fine sand) to finish properly. # 3.10 FLOOR HARDENER All floor slabs shall be treated with floor hardener. Floor hardener shall be applied after the concrete has been cured and then air dried for 28 days. Three coats shall be applied, each the day after the preceding coat was applied. For the first application, one pound of the silicofluoride shall be dissolved in one gallon of water. For subsequent applications, the solution shall be two pounds of silicofluoride to each gallon of water. Floor should be mopped with clear water shortly after the preceding application has dried to remove encrusted salts. Proprietary hardeners shall be applied in accordance with the manufacturer's instructions. During application, area should be well ventilated. Precautions shall be taken when applying silicofluorides due to the toxicity of the salts. Any compound that contacts glass or aluminum should be immediately removed with clear water. #### 3.11 CURING AND PROTECTION #### 3.11.1 General Concrete shall be cured by an approved method for 7 days. Immediately after placement, concrete shall be protected from premature drying, extremes in temperatures, rapid temperature change, mechanical injury and damage from rain and flowing water for the duration of the curing period. Air and forms in contact with concrete shall be maintained at a temperature above 50 degrees F for the first 3 days and at a temperature above 32 degrees F for the remainder of the specified curing period. Exhaust fumes from combustion heating units shall be vented to the outside of the enclosure, and heaters and ducts shall be placed and directed so as not to cause areas of overheating and drying of concrete surfaces or to create fire hazards. Materials and equipment needed for adequate curing and protection shall be available and at the site prior to placing concrete. No fire or excessive heat, including welding, shall be permitted near or in direct contact with the concrete at any time. Except as otherwise permitted by paragraph Membrane Forming Curing Compounds, moist curing shall be provided for any areas to receive floor hardener, any paint or other applied coating, or to which other concrete is to be bonded. Concrete containing silica fume shall be initially cured by fog misting during finishing, followed immediately by continuous moist curing. Except for plastic coated burlap, impervious sheeting alone shall not be used for curing. ## 3.11.2 Moist Curing Concrete to be moist-cured shall be maintained continuously wet for the entire curing period, commencing immediately after finishing. If water or curing materials used stain or discolor concrete surfaces which are to be permanently exposed, the concrete surfaces shall be cleaned as approved. When wooden forms are left in place during curing, they shall be kept wet at all times. If steel forms are used in hot weather, nonsupporting vertical forms shall be broken loose from the concrete soon after the concrete hardens and curing water continually applied in this void. If the forms are removed before the end of the curing period, curing shall be carried out as on unformed surfaces, using suitable materials. Surfaces shall be cured by ponding, by continuous sprinkling, by continuously saturated burlap or cotton mats, or by continuously saturated plastic coated burlap. Burlap and mats shall be clean and free from any contamination and shall be completely saturated before being placed on the concrete. The Contractor shall have an approved work system to ensure that moist curing is continuous 24 hours per day. # 3.11.3 Ponding or Immersion Concrete shall be continually immersed throughout the curing period. Water shall not be more than 20 degrees F less than the temperature of the concrete. ## 3.11.4 Membrane Curing Membrane curing shall not be used on surfaces that are to receive any subsequent treatment depending on adhesion or bonding to the concrete; except a styrene acrylate or chlorinated rubber compound meeting CRD C-300, Class B requirement may be used for surfaces which are to be painted, or floors that are to receive adhesive applications of resilient flooring. The curing compound selected shall be compatible with any subsequent paint, roofing, waterproofing, or flooring specified. Membrane curing compound shall not be used on surfaces that are maintained at curing temperatures with free steam. Curing compound shall be applied to formed surfaces immediately after the forms are removed and prior to any patching or other surface treatment except the cleaning of loose sand, mortar, and debris from the surface. Surfaces shall be thoroughly moistened with water and the curing compound shall be applied to slab surfaces as soon as the bleeding water has disappeared, with the tops of joints being temporarily sealed to prevent entry of the compound and to prevent moisture loss during the curing period. Compound shall be applied in a one-coat continuous operation by mechanical spraying equipment, at a uniform coverage in accordance with the manufacturer's printed instructions. Concrete surfaces which have been subjected to rainfall within three hours after curing compound has been applied shall be re-sprayed by the method and at the coverage specified. On surfaces permanently exposed to view, the surface shall be shaded from direct rays of the sun for the duration of the curing period. Surfaces coated with curing compound shall be kept free of foot and vehicular traffic, and from other sources so abrasion and contamination during the curing period. ## 3.11.5 Cold Weather Curing and Protection When the daily ambient low temperature is less than 32 degrees F the temperature of the concrete shall be maintained above 40 degrees F for the first seven days after placing. During the period of protection removal, the air temperature adjacent to the concrete surfaces shall be controlled so that concrete near the surface will not be subjected to a temperature differential of more than 25 degrees F as determined by suitable temperature measuring devices furnished by the Government, as required, and installed adjacent to the concrete surface and 2 inches inside the surface of the concrete. The installation of the thermometers shall be made by the Contractor as directed. ### 3.12 SETTING BASE PLATES AND BEARING PLATES After being properly positioned, column base plates, bearing plates for beams
and similar structural members, and machinery and equipment base plates shall be set to the proper line and elevation with damp-pack bedding mortar, except where nonshrink grout is indicated. The thickness of the mortar or grout shall be approximately 1/24 the width of the plate, but not less than 3/4 inch. Concrete and metal surfaces in contact with grout shall be clean and free of oil and grease, and concrete surfaces in contact with grout shall be damp and free of laitance when grout is placed. Nonshrink grout shall be used for column base plates. #### 3.12.1 Damp-Pack Bedding Mortar Damp-pack bedding mortar shall consist of 1 part cement and 2-1/2 parts fine aggregate having water content such that a mass of mortar tightly squeezed in the hand will retain its shape but will crumble when disturbed. The space between the top of the concrete and bottom of the bearing plate or base shall be packed with the bedding mortar by tamping or ramming with a bar or rod until it is completely filled. #### 3.12.2 Nonshrink Grout Nonshrink grout shall be a ready-mixed material requiring only the addition of water. Water content shall be the minimum that will provide a flowable mixture and completely fill the space to be grouted without segregation, bleeding, or reduction of strength. ## 3.12.2.1 Mixing and Placing of Nonshrink Grout Mixing and placing shall be in conformance with the material manufacturer's instructions and as specified therein. Ingredients shall be thoroughly drymixed before adding water. After adding water, the batch shall be mixed for 3 minutes. Batches shall be of size to allow continuous placement of freshly mixed grout. Grout not used within 30 minutes after mixing shall be discarded. The space between the top of the concrete or machinery-bearing surface and the plate shall be filled solid with the grout. Forms shall be of wood or other equally suitable material for completely retaining the grout on all sides and on top and shall be removed after the grout has set. The placed grout shall be carefully worked by rodding or other means to eliminate voids; however, overworking and breakdown of the initial set shall be avoided. Grout shall not be retempered or subjected to vibration from any source. Where clearances are unusually small, placement shall be under pressure with a grout pump. Temperature of the grout, and of surfaces receiving the grout, shall be maintained at 65 to 85 degrees F until after setting. # 3.12.2.2 Treatment of Exposed Surfaces For metal-oxidizing nonshrink grout, exposed surfaces shall be cut back 1 inch and immediately covered with a parge coat of mortar consisting of 1 part portland cement and 2-1/2 parts fine aggregate by weight, with sufficient water to make a plastic mixture. The parge coat shall have a smooth finish. For other mortars or grouts, exposed surfaces shall have a smooth-dense finish and be left untreated. Curing shall comply with paragraph CURING AND PROTECTION. # 3.13 TESTING AND INSPECTION FOR CONTRACTOR QUALITY CONTROL The Contractor shall perform the inspection and tests described below and, based upon the results of these inspections and tests, shall take the action required and shall submit specified reports. When, in the opinion of the Contracting Officer, the concreting operation is out of control, concrete placement shall cease and the operation shall be corrected. The laboratory performing the tests shall be onsite and shall conform with ASTM C 1077. Materials may be subjected to check testing by the Government from samples obtained at the manufacturer, at transfer points, or at the project site. The Government will inspect the laboratory, equipment, and test procedures prior to start of concreting operations for conformance with ASTM C 1077. #### 3.13.1 Grading and Corrective Action ### 3.13.1.1 Fine Aggregate At least once during each shift when the concrete plant is operating, there shall be one sieve analysis and fineness modulus determination in accordance with ASTM C 136 and COE CRD-C 104 for the fine aggregate or for each fine aggregate if it is batched in more than one size or classification. The location at which samples are taken may be selected by the Contractor as the most advantageous for control. However, the Contractor is responsible for delivering fine aggregate to the mixer within specification limits. When the amount passing on any sieve is outside the specification limits, the fine aggregate shall be immediately resampled and retested. If there is another failure on any sieve, the fact shall immediately reported to the Contracting Officer, concreting shall be stopped, and immediate steps taken to correct the grading. ## 3.13.1.2 Coarse Aggregate At least once during each shift in which the concrete plant is operating, there shall be a sieve analysis in accordance with ASTM C 136 for each size of coarse aggregate. The location at which samples are taken may be selected by the Contractor as the most advantageous for production control. However, the Contractor shall be responsible for delivering the aggregate to the mixer within specification limits. A test record of samples of aggregate taken at the same locations shall show the results of the current test as well as the average results of the five most recent tests including the current test. The Contractor may adopt limits for control coarser than the specification limits for samples taken other than as delivered to the mixer to allow for degradation during handling. When the amount passing any sieve is outside the specification limits, the coarse aggregate shall be immediately resampled and retested. If the second sample fails on any sieve, that fact shall be reported to the Contracting Officer. Where two consecutive averages of 5 tests are outside specification limits, the operation shall be considered out of control and shall be reported to the Contracting Officer. Concreting shall be stopped and immediate steps shall be taken to correct the grading. # 3.13.2 Quality of Aggregates Thirty days prior to the start of concrete placement, the Contractor shall perform all tests for aggregate quality required by ASTM C 33. In addition, after the start of concrete placement, the Contractor shall perform tests for aggregate quality at least every three months, and when the source of aggregate or aggregate quality changes. Samples tested after the start of concrete placement shall be taken immediately prior to entering the concrete mixer. # 3.13.3 Scales, Batching and Recording The accuracy of the scales shall be checked by test weights prior to start of concrete operations and at least once every three months. Such tests shall also be made as directed whenever there are variations in properties of the fresh concrete that could result from batching errors. Once a week the accuracy of each batching and recording device shall be checked during a weighing operation by noting and recording the required weight, recorded weight, and the actual weight batched. At the same time, the Contractor shall test and ensure that the devices for dispensing admixtures are operating properly and accurately. When either the weighing accuracy or batching accuracy does not comply with specification requirements, the plant shall not be operated until necessary adjustments or repairs have been made. Discrepancies in recording accuracies shall be corrected immediately. ## 3.13.4 Batch-Plant Control The measurement of concrete materials including cementitious materials, each size of aggregate, water, and admixtures shall be continuously controlled. The aggregate weights and amount of added water shall be adjusted as necessary to compensate for free moisture in the aggregates. The amount of air-entraining agent shall be adjusted to control air content within specified limits. A report shall be prepared indicating type and source of cement used, type and source of pozzolan or slag used, amount and source of admixtures used, aggregate source, the required aggregate and water weights per cubic yard, amount of water as free moisture in each size of aggregate, and the batch aggregate and water weights per cubic yard for each class of concrete batched during each day's plant operation. # 3.13.5 Concrete Mixture a. Air Content Testing. Air content tests shall be made when test specimens are fabricated. In addition, at least two tests for air content shall be made on randomly selected batches of each separate concrete mixture produced during each 8-hour period of concrete production. Additional tests shall be made when excessive variation in workability is reported by the placing foreman or Government inspector. Tests shall be made in accordance with ASTM C 231 for normal weight concrete and ASTM C 173 for lightweight concrete. Test results shall be plotted on control charts which shall at all times be readily available to the Government and shall be submitted weekly. Copies of the current control charts shall be kept in the field by testing crews and results plotted as tests are made. When a single test result reaches either the upper or lower action limit, a second test shall immediately be made. The results of the two tests shall be averaged and this average used as the air content of the batch to plot on both the air content and the control chart for range, and for determining need for any remedial action. The result of each test, or average as noted in the previous sentence, shall be plotted on a separate control chart for each mixture on which an "average line" is set at the midpoint of the specified air content range from paragraph Air Entrainment. An upper warning limit and a lower warning limit line shall be set 1.0 percentage point above and below the average line, respectively. An upper action limit and a lower action limit line shall be set 1.5 percentage points above and below the average line, respectively. The range between each two consecutive tests shall be plotted on a secondary control chart for range
where an upper warning limit is set at 2.0 percentage points and an upper action limit is set at 3.0 percentage points. Samples for air content may be taken at the mixer, however, the Contractor is responsible for delivering the concrete to the placement site at the stipulated air content. If the Contractor's materials or transportation methods cause air content loss between the mixer and the placement, correlation samples shall be taken at the placement site as required by the Contracting Officer, and the air content at the mixer controlled as directed. - b. Air Content Corrective Action. Whenever points on the control chart for percent air reach either warning limit, an adjustment shall immediately be made in the amount of air-entraining admixture batched. As soon as practical after each adjustment, another test shall be made to verify the result of the adjustment. Whenever a point on the secondary control chart for range reaches the warning limit, the admixture dispenser shall be recalibrated to ensure that it is operating accurately and with good reproducibility. Whenever a point on either control chart reaches an action limit line, the air content shall be considered out of control and the concreting operation shall immediately be halted until the air content is under control. Additional air content tests shall be made when concreting is restarted. - c. Slump Testing. In addition to slump tests which shall be made when test specimens are fabricated, at least four slump tests shall be made on randomly selected batches in accordance with ASTM C 143 for each separate concrete mixture produced during each 8-hour or less period of concrete production each day. Also, additional tests shall be made when excessive variation in workability is reported by the placing foreman or Government inspector. Test results shall be plotted on control charts which shall at all times be readily available to the Government and shall be submitted weekly. Copies of the current control charts shall be kept in the field by testing crews and results plotted as tests are made. When a single slump test reaches or goes beyond either the upper or lower action limit, a second test shall immediately be made. The results of the two tests shall be averaged and this average used as the slump of the batch to plot on both the control charts for slump and the chart for range, and for determining need for any remedial action. Limits shall be set on separate control charts for slump for each type of mixture. The upper warning limit shall be set at 1/2 inch below the maximum allowable slump specified in paragraph Slump in PART 1 for each type of concrete and an upper action limit line and lower action limit line shall be set at the maximum and minimum allowable slumps, respectively, as specified in the same paragraph. The range between each consecutive slump test for each type of mixture shall be plotted on a single control chart for range on which an upper action limit is set at 2 inches. Samples for slump shall be taken at the mixer. However, the Contractor is responsible for delivering the concrete to the placement site at the stipulated slump. If the Contractor's materials or transportation methods cause slump loss between the mixer and the placement, correlation samples shall be taken at the placement site as required by the Contracting Officer, and the slump at the mixer controlled as directed. - d. Slump Corrective Action. Whenever points on the control charts for slump reach the upper warning limit, an adjustment shall immediately be made in the batch weights of water and fine aggregate. The adjustments are to be made so that the total water content does not exceed that amount allowed by the maximum w/c ratio specified, based on aggregates which are in a saturated surface dry condition. When a single slump reaches the upper or lower action limit, no further concrete shall be delivered to the placing site until proper adjustments have been made. Immediately after each adjustment, another test shall be made to verify the correctness of the adjustment. Whenever two consecutive individual slump tests, made during a period when there was no adjustment of batch weights, produce a point on the control chart for range at or above the upper action limit, the concreting operation shall immediately be halted, and the Contractor shall take appropriate steps to bring the slump under control. Additional slump tests shall be made as directed. - e. Temperature. The temperature of the concrete shall be measured when compressive strength specimens are fabricated. Measurement shall be in accordance with ASTM C 1064. The temperature shall be reported along with the compressive strength data. - f. Strength Specimens. At least one set of test specimens shall be made, for compressive or flexural strength as appropriate, on each different concrete mixture placed during the day for each 500 cubic yards or portion thereof of that concrete mixture placed each day. Additional sets of test specimens shall be made, as directed by the Contracting Officer, when the mixture proportions are changed or when low strengths have been detected. A truly random (not haphazard) sampling plan shall be developed by the Contractor and approved by the Contracting Officer prior to the start of construction. The plan shall assure that sampling is done in a completely random and unbiased manner. A set of test specimens for concrete with a 28-day specified strength per paragraph Strength Requirements in PART 1 shall consist of four specimens, two to be tested at 7 days and two at 28 days. Test specimens shall be molded and cured in accordance with ASTM C 31 and tested in accordance with ASTM C 39 for test cylinders and ASTM C 78 for test beams. Results of all strength tests shall be reported immediately to the Contracting Officer. Quality control charts shall be kept for individual strength "tests", ("test" as defined in paragraph Strength Requirements in PART 1) moving average of last 3 "tests" for strength, and moving average for range for the last 3 "tests" REPAIR FUEL SYSTEM MAINTENANCE DOCK - Building 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 for each mixture. The charts shall be similar to those found in $ACI\ 214.3R.$ ## 3.13.6 Inspection Before Placing Foundations, construction joints, forms, and embedded items shall be inspected by the Contractor in sufficient time prior to each concrete placement in order to certify to the Contracting Officer that they are ready to receive concrete. The results of each inspection shall be reported in writing. # 3.13.7 Placing The placing foreman shall supervise placing operations, shall determine that the correct quality of concrete or grout is placed in each location as specified and as directed by the Contracting Officer, and shall be responsible for measuring and recording concrete temperatures and ambient temperature hourly during placing operations, weather conditions, time of placement, volume placed, and method of placement. The placing foreman shall not permit batching and placing to begin until it has been verified that an adequate number of vibrators in working order and with competent operators are available. Placing shall not be continued if any pile of concrete is inadequately consolidated. If any batch of concrete fails to meet the temperature requirements, immediate steps shall be taken to improve temperature controls. # 3.13.8 Vibrators The frequency and amplitude of each vibrator shall be determined in accordance with COE CRD-C 521 prior to initial use and at least once a month when concrete is being placed. Additional tests shall be made as directed when a vibrator does not appear to be adequately consolidating the concrete. The frequency shall be determined while the vibrator is operating in concrete with the tachometer being held against the upper end of the vibrator head while almost submerged and just before the vibrator is withdrawn from the concrete. The amplitude shall be determined with the head vibrating in air. Two measurements shall be taken, one near the tip and another near the upper end of the vibrator head, and these results averaged. The make, model, type, and size of the vibrator and frequency and amplitude results shall be reported in writing. Any vibrator not meeting the requirements of paragraph Consolidation, shall be immediately removed from service and repaired or replaced. # 3.13.9 Curing Inspection - a. Moist Curing Inspections. At least once each shift, and not less than twice per day on both work and non-work days, an inspection shall be made of all areas subject to moist curing. The surface moisture condition shall be noted and recorded. - b. Moist Curing Corrective Action. When a daily inspection report lists an area of inadequate curing, immediate corrective action shall be taken, and the required curing period for those areas shall be extended by 1 day. ### 3.13.10 Cold-Weather Protection At least once each shift and once per day on non-work days, an inspection shall be made of all areas subject to cold-weather protection. Any deficiencies shall be noted, corrected, and reported. ## 3.13.11 Mixer Uniformity - a. Stationary Mixers. Prior to the start of concrete placing and once every 6 months when concrete is being placed, or once for every 75,000 cubic yards of concrete placed, whichever results in the shortest time interval, uniformity of concrete mixing shall be determined in accordance with ASTM C 94. - b. Truck Mixers. Prior to the start of concrete placing and at least once every 6 months when concrete is being placed, uniformity of concrete mixing shall be determined in accordance with ASTM C 94. The truck mixers shall be selected randomly for testing. When satisfactory performance is found in one truck mixer, the performance of mixers of substantially the same design and condition of the blades may be regarded as satisfactory. - c. Mixer Uniformity Corrective Action. When a mixer fails to
meet mixer uniformity requirements, either the mixing time shall be increased, batching sequence changed, batch size reduced, or adjustments shall be made to the mixer until compliance is achieved. ## 3.13.12 Reports All results of tests or inspections conducted shall be reported informally as they are completed and in writing daily. A weekly report shall be prepared for the updating of control charts covering the entire period from the start of the construction season through the current week. During periods of cold-weather protection, reports of pertinent temperatures shall be made daily. These requirements do not relieve the Contractor of the obligation to report certain failures immediately as required in preceding paragraphs. Such reports of failures and the action taken shall be confirmed in writing in the routine reports. The Contracting Officer has the right to examine all contractor quality control records. END OF SECTION SECTION 03360 ### CONCRETE SEALERS #### PART 1 GENERAL #### 1.1 SUMMARY Section includes floor cleaning and sealing. #### 1.2 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01300 SUBMITTAL PROCEDURES. Product Data; GA Submit manufacturer's specifications, installation instructions, and general recommendations for each major product required. Include data substantiating that products to be furnished comply with requirements of the contract documents. ## 1.3 QUALITY ASSURANCE #### 1.3.1 Manufacturer Oualifications Obtain required products from a single manufacturer for entire project, to ensure continuity of color, design, and overall product consistency. # 1.3.2 Accessories Provide accessory items only as produced or recommended by manufacturer of primary products. ## PART 2 PRODUCTS ## 2.1 LIGHT DUTY RESTORATION CLEANER 2.1.1 Gelled cleaner containing cleaning agents, detergents and inhibitors. Gel containing hydroxyacetic acid and sulfuric acid with specific gravity of 1.124 and PH of 1.6. # 2.2 SEALER 2.2.1 Silane/Siloxane Water Repellant and Sealer, using emulsion of silanes and oligomeric alkyl alkoxysiloxanes with a min. of 7% solids. #### PART 3 EXECUTION #### 3.1 EXAMINATION Inspect substrates and conditions under which the work of this section will be performed, and verify that installation properly may commence. Do not proceed with the work until unsatisfactory conditions have been resolved fully. #### 3.2 PREPARATION Clean substrate, removing projections and substances detrimental to the work; comply with recommendations of manufacturer of products to be installed for proper preparation procedures. Mask off or otherwise protect adjacent surfaces not scheduled to receive products of this section. At locations indicated as "concrete, sealed" on drawings A9.1 and A12.1, clean and seal floor. Follow manufacturer's recommendations for process and quantities. ### 3.3 INSTALLATION Comply with manufacturer's instructions, except where more stringent requirements are shown or specified, and except where project conditions require extra precautions or provisions to ensure satisfactory performance of the work. END OF SECTION # SECTION 04200 # MASONRY ## PART 1 GENERAL # 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. # ACI INTERNATIONAL (ACI) ACI SP-66 (1994) ACI Detailing Manual # AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | | AMERICAN SOCIETY FOR TE | STING AND MATERIALS (ASTM) | |------|-------------------------|---| | ASTM | A 53 | (1999) Pipe, Steel, Black and Hot-Dipped,
Zinc-Coated, Welded and Seamless | | ASTM | A 615/A 615M | (1996a) Deformed and Plain Billet-Steel Bars for Concrete Reinforcement | | ASTM | A 675/A 675M | (1990a; R 1995el) Steel Bars, Carbon, Hot-
Wrought, Special Quality, Mechanical
Properties | | ASTM | C 67 | (1996) Sampling and Testing Brick and
Structural Clay Tile | | ASTM | C 90 | (1996a) Loadbearing Concrete Masonry Units | | ASTM | C 91 | (1995) Specifications for Masonry Cement | | ASTM | C 270 | (1997) Mortar for Unit Masonry | | ASTM | C 476 | (1995) Grout for Masonry | | ASTM | C 494 | (1992) Chemical Admixtures for Concrete | | ASTM | C 641 | (1982; R 1991) Staining Materials in
Lightweight Concrete Aggregates | | ASTM | C 780 | (1996) Preconstruction and Construction
Evaluation of Mortars for Plain and
Reinforced Unit Masonry | | ASTM | C 1019 | (1989a; R 1993) Sampling and Testing Grout | REPAIR FUEL SYSTEM MAINTENANCE DOCK - Building 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 ASTM C 1072 (1994) Measurement of Masonry Flexural Bond Strength ASTM E 447 (1992b) Compressive Strength of Masonry Prisms #### 1.2 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-04 Drawings Masonry Work; GA. Drawings including plans, elevations, and details of wall reinforcement; details of reinforcing bars at corners and wall intersections; offsets; tops, bottoms, and ends of walls; control and expansion joints; and wall openings. Bar splice locations shall be shown. Bent bars shall be identified on a bending diagram and shall be referenced and located on the drawings. Wall dimensions, bar clearances, and wall openings greater than one masonry unit in area shall be shown. No approval will be given to the shop drawings until the Contractor certifies that all openings, including those for mechanical and electrical service, are shown. If, during construction, additional masonry openings are required, the approved shop drawings shall be resubmitted with the additional openings shown along with the proposed changes. Location of these additional openings shall be clearly highlighted. The minimum scale for wall elevations shall be 1/4 inch per foot. Reinforcement bending details shall conform to the requirements of ACI SP-66. SD-08 Statements Cold Weather Installation; GA. Cold weather construction procedures. SD-09 Reports Efflorescence Test; GA. Field Testing of Mortar; GA. Field Testing of Grout; GA. Prism tests; GA. Masonry Cement; GA. Test reports from an approved independent laboratory. Test reports on a previously tested material shall be certified as the same as that proposed for use in this project. Special Inspection; GA. Copies of masonry inspector reports. SD-13 Certificates Concrete Masonry Units (CMU); FIO. Anchors, Ties, and Bar Positioners; FIO. Reinforcing Steel Bars and Rods; FIO. Masonry Cement; FIO. Mortar Coloring; FIO. Mortar Admixtures; FIO. Grout Admixtures; FIO. Certificates of compliance stating that the materials meet the specified requirements. # 1.3 DELIVERY, HANDLING, AND STORAGE Materials shall be delivered, handled, stored, and protected to avoid chipping, breakage, and contact with soil or contaminating material. ## 1.3.1 Masonry Units Concrete masonry units shall be covered or protected from inclement weather and shall conform to the moisture content as specified in ASTM C 90 when delivered to the jobsite. ## 1.3.2 Reinforcement, Anchors, and Ties Steel reinforcing bars, coated anchors, ties, and joint reinforcement shall be stored above the ground. Steel reinforcing bars and uncoated ties shall be free of loose mill scale and rust. ## 1.3.3 Cementitious Materials, Sand and Aggregates Cementitious and other packaged materials shall be delivered in unopened containers, plainly marked and labeled with manufacturers' names and brands. Cementitious material shall be stored in dry, weathertight enclosures or be completely covered. Cement shall be handled in a manner that will prevent the inclusion of foreign materials and damage by water or dampness. Sand and aggregates shall be stored in a manner to prevent contamination or segregation. ## 1.4 SPECIAL INSPECTION A qualified masonry inspector approved by the Contracting Officer shall perform inspection of the masonry work. Minimum qualifications for the masonry inspector shall be 5 years of reinforced masonry inspection experience or acceptance by a State, municipality, or other governmental body having a program of examining and certifying inspectors for reinforced masonry construction. The masonry inspector shall be present during preparation of masonry prisms, sampling and placing of masonry units, placement of reinforcement (including placement of dowels in footings and foundation walls), inspection of grout space, immediately prior to closing of cleanouts, and during grouting operations. The masonry inspector shall assure Contractor compliance with the drawings and specifications. The masonry inspector shall keep a complete record of all inspections and shall submit daily written reports to the Quality Control Supervisory Representative reporting the quality of masonry construction. #### PART 2 PRODUCTS ## 2.1 GENERAL REQUIREMENTS The source of materials which will affect the appearance of the finished work shall not be changed after the work has started except with Contracting Officer's approval. # 2.2 CONCRETE MASONRY UNITS (CMU) Hollow and solid concrete masonry units shall conform to ASTM C 90, Type I. Cement shall have a low alkali content and be of one brand. ## 2.2.1 Aggregates Lightweight aggregates and blends of lightweight and heavier aggregates in proportions used in producing the units, shall comply with the following requirements when tested for stain-producing iron compounds in accordance with ASTM C 641: by visual classification method, the iron stain deposited on the filter paper shall not exceed the "light stain" classification. ## 2.2.2 Kinds and Shapes Units shall be
modular in size and shall include closer, jamb, header, lintel, and bond beam units and special shapes and sizes to complete the work as indicated. Units used in exposed masonry surfaces in any one building shall have a uniform fine to medium texture and a uniform color. ## 2.3 MORTAR Mortar shall be Type S in accordance with the proportion specification of ASTM C 270 except Type S cement-lime mortar proportions shall be 1 part cement, 1/2 part lime and 4-1/2 parts aggregate; when masonry cement ASTM C 91 is used the maximum air content shall be limited to 12 percent and performance equal to cement-lime mortar shall be verified. Verification of masonry cement performance shall be based on ASTM C 780 and ASTM C 1072. Mortar for prefaced concrete masonry unit wainscots shall contain aggregates with 100 percent passing the No. 8 sieve and 95 percent passing the No. 16 sieve. Pointing mortar in showers and kitchens shall contain ammonium stearate, or aluminum tri-stearate, or calcium stearate in an amount equal to 3 percent by weight of cement used. Cement shall have a low alkali content and be of one brand. Aggregates shall be from one source. # 2.3.1 Admixtures In cold weather, a non-chloride based accelerating admixture may be used subject to approval. Accelerating admixture shall be non-corrosive, shall contain less than 0.2 percent chlorides, and shall conform to ASTM C 494, Type C. ### 2.3.2 Coloring Mortar coloring shall be added to the mortar used for exposed masonry surfaces to produce a uniform color matching CMU. Mortar coloring shall not exceed 3 percent of the weight of cement for carbon black and ten percent of the weight of cement for all other pigments. Mortar coloring shall be chemically inert, of finely ground limeproof pigment, and furnished in accurately pre-measured and packaged units that can be added to a measured amount of cement. ## 2.4 GROUT Grout shall conform to ASTM C 476. Cement used in grout shall have a low alkali content. Grout slump shall be between 8 and 10 inches. Grout shall be used subject to the limitations of Table III. Proportions shall not be changed and materials with different physical or chemical characteristics shall not be used in grout for the work unless additional evidence is furnished that the grout meets the specified requirements. #### 2.4.1 Admixtures In cold weather, a non-chloride based accelerating admixture may be used subject to approval. Accelerating admixture shall be non-corrosive, shall contain less than 0.2 percent chlorides, and shall conform to ASTM C 494, Type C. ## 2.4.2 Grout Barriers Grout barriers for vertical cores shall consist of fine mesh wire, fiberglass, or expanded metal. ### 2.5 BAR POSITIONERS Bar positioners, used to prevent displacement of reinforcing bars during the course of construction, shall be factory fabricated from 9 gauge steel wire or equivalent, and coated with a hot-dip galvanized finish. Not more than one wire shall cross the cell. ## 2.6 REINFORCING STEEL BARS AND RODS Reinforcing steel bars and rods shall conform to ASTM A 615/A 615M, Grade 60. # 2.7 SMOOTH DOWELS Smooth dowels conform to ASTM A 675/A 675M, Grade 80. Steel pipe conforming to ASTM A 53, Schedule 80, may be used as dowels provided the ends are closed with metal or plastic inserts or with mortar. #### 2.8 EXPANSION-JOINT MATERIALS Backer rod and sealant shall be adequate to accommodate joint compression equal to 50 percent of the width of the joint. The backer rod shall be compressible rod stock of polyethylene foam, polyurethane foam, butyl rubber foam, or other flexible, nonabsorptive material as recommended by the sealant manufacturer. Sealant shall conform to Section 07900 JOINT SEALING. ### 2.9 FLASHING Flashing shall be as specified in Section 07600 SHEET METALWORK, GENERAL. ### PART 3 EXECUTION ## 3.1 ENVIRONMENTAL REQUIREMENTS # 3.1.1 Hot Weather Installation The following precautions shall be taken if masonry is erected when the ambient air temperature is more than 99 degrees F in the shade and the relative humidity is less than 50 percent. All masonry materials shall be shaded from direct sunlight; mortar beds shall be spread no more than 4 feet ahead of masonry; masonry units shall be set within one minute of spreading mortar; and after erection, masonry shall be protected from direct exposure to wind and sun for 48 hours. #### 3.1.2 Cold Weather Installation Before erecting masonry when ambient temperature or mean daily air temperature falls below 40 degrees F, a written statement of proposed cold weather construction procedures shall be submitted for approval. The following precautions shall be taken during all cold weather erection. # 3.1.2.1 Preparation Ice or snow formed on the masonry bed shall be thawed by the application of heat. Heat shall be applied carefully until the top surface of the masonry is dry to the touch. Sections of masonry deemed frozen and damaged shall be removed before continuing construction of those sections. - a. Air Temperature 40 to 32 Degrees F. Sand or mixing water shall be heated to produce mortar temperatures between 40 degrees F and 120 degrees F. - b. Air Temperature 32 to 25 Degrees F. Sand and mixing water shall be heated to produce mortar temperatures between 40 degrees F and 120 degrees F. Temperature of mortar on boards shall be maintained above freezing. - c. Air Temperature 25 to 20 Degrees F. Sand and mixing water shall be heated to provide mortar temperatures between 40 degrees F and 120 degrees F. Temperature of mortar on boards shall be maintained above freezing. Sources of heat shall be used on both sides of walls under construction. Windbreaks shall be employed when wind is in excess of 15 mph. d. Air Temperature 20 Degrees F and below. Sand and mixing water shall be heated to provide mortar temperatures between 40 degrees F and 120 degrees F. Enclosure and auxiliary heat shall be provided to maintain air temperature above 32 degrees F. Temperature of units when laid shall not be less than 20 degrees F. ## 3.1.2.2 Completed Masonry and Masonry Not Being Worked On - a. Mean daily air temperature 40 degrees F to 32 degrees F. Masonry shall be protected from rain or snow for 24 hours by covering with weather-resistive membrane. - b. Mean daily air temperature 32 degrees F to 25 degrees F. Masonry shall be completely covered with weather-resistant membrane for 24 hours. - c. Mean Daily Air Temperature 25 Degrees F to 20 Degrees F. Masonry shall be completely covered with insulating blankets or equally protected for 24 hours. - d. Mean Daily Temperature 20 Degrees F and Below. Masonry temperature shall be maintained above 32 degrees F for 24 hours by enclosure and supplementary heat, by electric heating blankets, infrared heat lamps, or other approved methods. # 3.2 LAYING MASONRY UNITS Masonry units shall be laid in running bond pattern. Each unit shall be adjusted to its final position while mortar is still soft and plastic. Units that have been disturbed after the mortar has stiffened shall be removed, cleaned, and relaid with fresh mortar. Air spaces, cavities, chases, expansion joints, and spaces to be grouted shall be kept free from mortar and other debris. Units used in exposed masonry surfaces shall be selected from those having the least amount of chipped edges or other imperfections detracting from the appearance of the finished work. Vertical joints shall be kept plumb. Units being laid and surfaces to receive units shall be free of water film and frost. Solid units shall be laid in a nonfurrowed full bed of mortar. Units shall be shoved into place so that the vertical joints are tight. Vertical joints of the vertical face shells of concrete masonry units, except where indicated at control, expansion, and isolation joints, shall be completely filled with mortar. Mortar will be permitted to protrude up to 1/2 inch into the space or cells to be grouted. Means shall be provided to prevent mortar from dropping into the space below. # 3.2.1 Surface Preparation Surfaces upon which masonry is placed shall be cleaned of laitance, dust, dirt, oil, organic matter, or other foreign materials and shall be slightly roughened to provide a surface texture with a depth of at least 1/8 inch. Sandblasting shall be used, if necessary, to remove laitance from pores and to expose the aggregate. #### 3.2.2 Forms and Shores Forms and shores shall be sufficiently rigid to prevent deflections which may result in cracking or other damage to supported masonry and sufficiently tight to prevent leakage of mortar and grout. Supporting forms and shores shall not be removed in less than 10 days. ## 3.2.3 Concrete Masonry Units Units in starting courses on footings, lintels, and beams, and where cells are to be filled with grout shall be full bedded in mortar under both face shells and webs. Other units shall be full bedded under both face shells. Head joints shall be filled solidly with mortar for a distance in from the face of the unit not less than the thickness of the face shell. Jamb units shall be of the shapes and sizes to conform with wall units. Solid units may be incorporated in the masonry work where necessary to fill out at corners, gable slopes, and elsewhere as approved. Walls and partitions shall be adequately reinforced for support of wall-hung plumbing fixtures when chair carriers are not specified. ### 3.2.4 Tolerances Masonry shall be laid plumb, true to line, with courses level. Bond pattern shall be kept plumb throughout. Corners shall be square unless noted otherwise. Except for walls constructed of prefaced concrete masonry units, masonry shall be laid within the following tolerances (plus or minus unless otherwise noted): TABLE I #### TOLERANCES Variation from the plumb in the lines and surfaces of columns, walls and arises | In adjacent masonry units In 10 feet In 20 feet In 40 feet or more | 1/8 inch
1/4 inch
3/8 inch
1/2 inch |
---|--| | Variations from the plumb for external corners, expansion joints, and other conspicuous lines | | | In 20 feet In 40 feet or more | 1/4 inch
1/2 inch | Variations from the level for exposed lintels, sills, parapets, horizontal grooves, and other conspicuous lines | In 20 feet In 40 feet or more | 1/4 inch
1/2 inch | |---|----------------------------------| | Variation from level for bed joints and top surfaces of bearing walls | | | In 10 feet In 40 feet or more | 1/4 inch
1/2 inch | | Variations from horizontal lines | | | In 10 feet In 20 feet In 40 feet or more | 1/4 inch
3/8 inch
1/2 inch | | Variations in cross sectional dimensions of columns and in thickness of walls | | | Minus
Plus | 1/4 inch
1/2 inch | # 3.2.5 Cutting and Fitting Full units of the proper size shall be used wherever possible, in lieu of cut units. Cutting and fitting, including that required to accommodate the work of others, shall be done by masonry mechanics using power masonry saws. Concrete masonry units may be wet or dry cut. Wet cut units, before being placed in the work, shall be dried to the same surface-dry appearance as uncut units being laid in the wall. Cut edges shall be clean, true and sharp. Openings in the masonry shall be made carefully so that wall plates, cover plates or escutcheons required by the installation will completely conceal the openings and will have bottoms parallel with the masonry bed joints. Reinforced masonry lintels shall be provided above openings over 12 inches wide for pipes, ducts, cable trays, and other wall penetrations, unless steel sleeves are used. # 3.2.6 Jointing Joints shall be tooled when the mortar is thumbprint hard. Horizontal joints shall be tooled last. Joints shall be brushed to remove all loose and excess mortar. Mortar joints shall be finished as follows: #### 3.2.6.1 Flush Joints Joints in concealed masonry surfaces and joints at electrical outlet boxes in wet areas shall be flush cut. Flush cut joints shall be made by cutting off the mortar flush with the face of the wall. Joints in unparged masonry walls below grade shall be pointed tight. Flush joints for architectural units, such as fluted units, shall completely fill both the head and bed joints. ## 3.2.6.2 Tooled Joints Joints in exposed exterior and interior masonry surfaces shall be tooled flush. Joints shall be tooled with a jointer slightly larger than the joint width so that complete contact is made along the edges of the unit. Tooling shall be performed so that the mortar is compressed and the joint surface is sealed. Jointer of sufficient length shall be used to obtain a straight and true mortar joint. ### 3.2.6.3 Door and Window Frame Joints On the exposed interior side of exterior frames, joints between frames and abutting masonry walls shall be raked to a depth of 3/8 inch. On the exterior side of exterior frames, joints between frames and abutting masonry walls shall be raked to a depth of 3/8 inch. # 3.2.7 Joint Widths Joint widths shall be as follows: # 3.2.7.1 Concrete Masonry Units Concrete masonry units shall have 3/8 inch joints, except for prefaced concrete masonry units. ## 3.2.8 Embedded Items Spaces around built-in items shall be filled with mortar. Openings around flush-mount electrical outlet boxes in wet locations shall be pointed with mortar. Anchors, ties, wall plugs, accessories, flashing, pipe sleeves and other items required to be built-in shall be embedded as the masonry work progresses. Anchors, ties and joint reinforcement shall be fully embedded in the mortar. Cells receiving anchor bolts and cells of the first course below bearing plates shall be filled with grout. ## 3.2.9 Unfinished Work Unfinished work shall be stepped back for joining with new work. Toothing may be resorted to only when specifically approved. Loose mortar shall be removed and the exposed joints shall be thoroughly cleaned before laying new work. ### 3.2.10 Masonry Wall Intersections Each course shall be masonry bonded at corners and elsewhere as shown. Masonry walls shall be anchored or tied together at corners and intersections with bond beam reinforcement as shown. #### 3.3 MORTAR Mortar shall be mixed in a mechanically operated mortar mixer for at least 3 minutes, but not more than 5 minutes. Measurement of ingredients for mortar shall be by volume. Ingredients not in containers, such as sand, shall be accurately measured by the use of measuring boxes. Water shall be mixed with the dry ingredients in sufficient amount to provide a workable mixture which will adhere to the vertical surfaces of masonry units. Mortar that has stiffened because of loss of water through evaporation shall be retempered by adding water to restore the proper consistency and workability. Mortar that has reached its initial set or that has not been used within 2-1/2 hours after mixing shall be discarded. #### 3.4 REINFORCING STEEL Reinforcement shall be cleaned of loose, flaky rust, scale, grease, mortar, grout, or other coating which might destroy or reduce its bond prior to placing grout. Bars with kinks or bends not shown on the drawings shall not be used. Reinforcement shall be placed prior to grouting. Unless otherwise indicated, vertical wall reinforcement shall extend to within 2 inches of tops of walls. # 3.4.1 Positioning Bars Vertical bars shall be accurately placed within the cells at the positions indicated on the drawings. A minimum clearance of 1/2 inch shall be maintained between the bars and masonry units. Minimum clearance between parallel bars shall be one diameter of the reinforcement. Vertical reinforcing may be held in place using bar positioners located near the ends of each bar and at intermediate intervals of not more than 192 diameters of the reinforcement. Column and pilaster ties shall be wired in position around the vertical steel. Ties shall be in contact with the vertical reinforcement and shall not be placed in horizontal bed joints. #### 3.4.2 Splices Bars shall be lapped a minimum of 48 diameters of the reinforcement. Welded or mechanical connections shall develop at least 125 percent of the specified yield strength of the reinforcement. ## 3.5 PLACING GROUT Cells containing reinforcing bars shall be filled with grout. Hollow masonry units in walls or partitions supporting plumbing, heating, or other mechanical fixtures, voids at door and window jambs, and other indicated spaces shall be filled solid with grout. Cells under lintel bearings on each side of openings shall be filled solid with grout for full height of openings. Lintels and bond beams shall be filled solid with grout. Units other than open end units may require grouting each course to preclude voids in the units. Grout not in place within 1-1/2 hours after water is first added to the batch shall be discarded. Sufficient time shall be allowed between grout lifts to preclude displacement or cracking of face shells of masonry units. If blowouts, flowouts, misalignment, or cracking of face shells should occur during construction, the wall shall be torn down and rebuilt. ## 3.5.1 Vertical Grout Barriers for Fully Grouted Walls Grout barriers shall be provided not more than 30 feet apart, or as required, to limit the horizontal flow of grout for each pour. ## 3.5.2 Horizontal Grout Barriers Grout barriers shall be embedded in mortar below cells of hollow units receiving grout. #### 3.5.3 Grout Holes and Cleanouts ## 3.5.3.1 Grout Holes Grouting holes shall be provided in slabs, spandrel beams, and other inplace overhead construction. Holes shall be located over vertical reinforcing bars or as required to facilitate grout fill in bond beams. Additional openings spaced not more than 16 inches on centers shall be provided where grouting of all hollow unit masonry is indicated. Openings shall not be less than 4 inches in diameter or 3 by 4 inches in horizontal dimensions. Upon completion of grouting operations, grouting holes shall be plugged and finished to match surrounding surfaces. ## 3.5.3.2 Cleanouts for Hollow Unit Masonry Construction Cleanout holes shall be provided at the bottom of every pour in cores containing vertical reinforcement when the height of the grout pour exceeds 5 feet. Where all cells are to be grouted, cleanout courses shall be constructed using bond beam units in an inverted position to permit cleaning of all cells. Cleanout holes shall be provided at a maximum spacing of 32 inches where all cells are to be filled with grout. A new series of cleanouts shall be established if grouting operations are stopped for more than 4 hours. Cleanouts shall not be less than 3 by 4 inch openings cut from one face shell. Manufacturer's standard cutout units may be used at the Contractor's option. Cleanout holes shall not be closed until masonry work, reinforcement, and final cleaning of the grout spaces have been completed and inspected. For walls which will be exposed to view, cleanout holes shall be closed in an approved manner to match surrounding masonry. ## 3.5.4 Grouting Equipment # 3.5.4.1 Grout Pumps Pumping through aluminum tubes will not be permitted. Pumps shall be operated to produce a continuous stream of grout without air pockets, segregation, or contamination. Upon completion of each day's pumping, waste materials and debris shall be removed from the equipment, and disposed of outside the masonry. ## 3.5.4.2 Vibrators Internal vibrators shall maintain a speed of not less than 5,000 impulses per minute when submerged in the grout. At least one spare vibrator shall be maintained at the site at all times. Vibrators shall be applied at uniformly spaced points not further apart than the visible effectiveness of the machine. Duration of vibration shall be limited to time necessary to produce
satisfactory consolidation without causing segregation. ### 3.5.5 Grout Placement Masonry shall be laid to the top of a pour before placing grout. Grout shall not be placed in two-wythe solid unit masonry cavity until mortar joints have set for at least 3 days during hot weather and 5 days during cold damp weather. Grout shall not be placed in hollow unit masonry until mortar joints have set for at least 24 hours. Grout shall be placed using a hand bucket, concrete hopper, or grout pump to completely fill the grout spaces without segregation of the aggregates. Vibrators shall not be inserted into lower pours that are in a semi-solidified state. The height of grout pours and type of grout used shall be limited by the dimensions of grout spaces as indicated in Table II. Low-lift grout methods may be used on pours up to and including 5 feet in height. High-lift grout methods shall be used on pours exceeding 5 feet in height. ## 3.5.5.1 Low-Lift Method Grout shall be placed at a rate that will not cause displacement of the masonry due to hydrostatic pressure of the grout. Mortar protruding more than 1/2 inch into the grout space shall be removed before beginning the grouting operation. Grout pours 12 inches or less in height shall be consolidated by mechanical vibration or by puddling. Grout pours over 12 inches in height shall be consolidated by mechanical vibration and reconsolidated by mechanical vibration after initial water loss and settlement has occurred. Vibrators shall not be inserted into lower pours that are in a semi-solidified state. Low-lift grout shall be used subject to the limitations of Table II. # 3.5.5.2 High-Lift Method Mortar droppings shall be cleaned from the bottom of the grout space and from reinforcing steel. Mortar protruding more than 1/4 inchinto the grout space shall be removed by dislodging the projections with a rod or stick as the work progresses. Reinforcing, bolts, and embedded connections shall be rigidly held in position before grouting is started. CMU units shall not be pre-wetted. Grout, from the mixer to the point of deposit in the grout space shall be placed as rapidly as practical by pumping and placing methods which will prevent segregation of the mix and cause a minimum of grout splatter on reinforcing and masonry surfaces not being immediately encased in the grout lift. The individual lifts of grout shall be limited to 4 feet in height. The first lift of grout shall be placed to a uniform height within the pour section and vibrated thoroughly to fill all voids. This first vibration shall follow immediately behind the pouring of the grout using an approved mechanical vibrator. After a waiting period sufficient to permit the grout to become plastic, but before it has taken any set, the succeeding lift shall be poured and vibrated 12 to 18 inches into the preceding lift. If the placing of the succeeding lift is going to be delayed beyond the period of workability of the preceding, each lift shall be reconsolidated by reworking with a second vibrator as soon as the grout has taken its settlement shrinkage. The waiting, pouring, and reconsolidation steps shall be repeated until the top of the pour is reached. The top lift shall be reconsolidated after the required waiting period. The high-lift grouting of any section of wall between vertical grout barriers shall be completed to the top of a pour in one working day unless a new series of cleanout holes is established and the resulting horizontal construction joint cleaned. High-lift grout shall be used subject to the limitations in Table II. TABLE II POUR HEIGHT AND TYPE OF GROUT FOR VARIOUS GROUT SPACE DIMENSIONS Minimum Dimensions of the | Maximum
Grout Pour | | Total Clear Areas Within Grout Spaces and Cells (in.) (1,2) | | | |-----------------------|--------|---|-------------|------------------| | Height | Grout | Grouting | Multiwythe | Hollow-unit | | (feet) (4) | Type | Procedure | Masonry (3) | Masonry | | | | | | | | 1 | Fine | Low Lift | 3/4 | $1-1/2 \times 2$ | | 5 | Fine | Low Lift | 2 | 2 x 3 | | 8 | Fine | High Lift | 2 | 2×3 | | 12 | Fine | High Lift | 2-1/2 | $2-1/2 \times 3$ | | 24 | Fine | High Lift | 3 | 3 x 3 | | 1 | Coarse | Low Lift | 1-1/2 | $1-1/2 \times 3$ | | 5 | Coarse | Low Lift | 2 | $2-1/2 \times 3$ | | 8 | Coarse | High Lift | 2 | 3 x 3 | | 12 | Coarse | High Lift | 2-1/2 | 3 x 3 | | 24 | Coarse | High Lift | 3 | 3 x 4 | #### Notes: - (1) The actual grout space or cell dimension must be larger than the sum of the following items: - a) The required minimum dimensions of total clear areas given in the table above; - b) The width of any mortar projections within the space; - c) The horizontal projections of the diameters of the horizontal reinforcing bars within a cross section of the grout space or cell. - (2) The minimum dimensions of the total clear areas shall be made up of one or more open areas, with at least one area being 3/4 inchor greater in width. - (3) For grouting spaces between masonry wythes. - (4) Where only cells of hollow masonry units containing reinforcement are grouted, the maximum height of the pour shall not exceed the distance between horizontal bond beams. ### 3.6 BOND BEAMS Bond beams shall be filled with grout and reinforced as indicated on the drawings. Grout barriers shall be installed under bond beam units to retain the grout as required. Reinforcement shall be continuous, including around corners, except through control joints or expansion joints, unless otherwise indicated on the drawings. Where splices are required for continuity, reinforcement shall be lapped 48 bar diameters. A minimum clearance of 1/2 inch shall be maintained between reinforcement and interior faces of units. ### 3.7 CONTROL JOINTS Control joints shall be provided as indicated and shall be constructed by using mortar to fill the head joint in accordance with the details shown on the drawings. The vertical mortar joint at control joint locations shall be continuous, including through all bond beams. This shall be accomplished by utilizing half blocks in alternating courses on each side of the joint. # 3.8 LINTELS ### 3.8.1 Masonry Lintels Masonry lintels shall be constructed with lintel units filled solid with grout in all courses and reinforced with a minimum of two No. 4 bars in the bottom course unless otherwise indicated on the drawings. Lintel reinforcement shall extend beyond each side of masonry opening 40 bar diameters or 24 inches, whichever is greater. Reinforcing bars shall be supported in place prior to grouting and shall be located 1/2 inch above the bottom inside surface of the lintel unit. # 3.9 POINTING AND CLEANING After mortar joints have attained their initial set, but prior to hardening, mortar and grout daubs or splashings shall be completely removed from masonry-unit surfaces that will be exposed or painted. Before completion of the work, defects in joints of masonry to be exposed or painted shall be raked out as necessary, filled with mortar, and tooled to match existing joints. Immediately after grout work is completed, scum and stains which have percolated through the masonry work shall be removed using a high pressure stream of water and a stiff bristled brush. Masonry surfaces shall not be cleaned, other than removing excess surface mortar, until mortar in joints has hardened. Masonry surfaces shall be left clean, free of mortar daubs, dirt, stain, and discoloration, including scum from cleaning operations, and with tight mortar joints throughout. Metal tools and metal brushes shall not be used for cleaning. ## 3.9.1 Concrete Masonry Unit Surfaces Exposed concrete masonry unit surfaces shall be dry-brushed at the end of each day's work and after any required pointing, using stiff-fiber bristled brushes. #### 3.10 BEARING PLATES Bearing plates for beams, joists, joist girders and similar structural members shall be set to the proper line and elevation with damp-pack bedding mortar, except where non-shrink grout is indicated. Bedding mortar and non-shrink grout shall be as specified in Section 03300 CAST-IN-PLACE STRUCTURAL CONCRETE. ### 3.11 PROTECTION Facing materials shall be protected against staining. Top of walls shall be covered with nonstaining waterproof covering or membrane when work is not in progress. Covering of the top of the unfinished walls shall continue until the wall is waterproofed with a complete roof or parapet system. Covering shall extend a minimum of 2 feet down on each side of the wall and shall be held securely in place. Before starting or resuming, top surface of masonry in place shall be cleaned of loose mortar and foreign material. ### 3.12 TEST REPORTS ## 3.12.1 Field Testing of Mortar At least three specimens of mortar shall be taken each day. A layer of mortar 1/2 to 5/8 inch thick shall be spread on the masonry units and allowed to stand for one minute. The specimens shall then be prepared and tested for compressive strength in accordance with ASTM C 780. ## 3.12.2 Field Testing of Grout Field sampling and testing of grout shall be in accordance with the applicable provisions of ASTM C 1019. A minimum of three specimens of grout per day shall be sampled and tested. Each specimen shall have a minimum ultimate compressive strength of 2000 psi at 28 days. ## 3.12.3 Efflorescence Test Brick which will be exposed to weathering shall be tested for efflorescence. Tests shall be scheduled far enough in advance of starting masonry work to permit retesting if necessary. Sampling and testing shall conform to the applicable provisions of ASTM C 67. Units meeting the definition of "effloresced" will be subject to rejection. ## 3.12.4 Prism Tests At least one prism test sample shall be made for each 5,000 square feet of wall but not less than three such samples shall be made for any building. Three prisms shall be used in each sample. Prisms shall be tested in accordance with ASTM
E 447. Seven-day tests may be used provided the relationship between the 7- and 28-day strengths of the masonry is established by the tests of the materials used. Compressive strength shall not be less than 2500 psi at 28 days. If the compressive strength of any prism falls below the specified value by more than 500 psi, steps shall be taken to assure that the load-carrying capacity of the structure is not jeopardized. If the likelihood of low-strength masonry is confirmed and computations indicate that the load-carrying capacity may have been significantly reduced, tests of cores drilled, or prisms sawed, from the area in question may be required. In such case, three specimens shall be taken for each prism test more than 500 psi below the specified value. Masonry in the area in question shall be considered structurally adequate if the average compressive strength of three specimens is equal to at least 85 percent of the specified value, and if the compressive strength of no single specimen is less than 75 percent of the specified value. Additional testing of specimens extracted from locations represented by erratic core or prism strength test results shall be permitted. END OF SECTION SECTION 05090 ## WELDING, STRUCTURAL ### PART 1 GENERAL #### 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only #### AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC AISC-04 (1989) Specification for Structural Steel Buildings - Allowable Stress Design, Plastic Design ### AMERICAN SOCIETY FOR NONDESTRUCTIVE TESTING (ASNT ASNT-01 (1996) Recommended Practice SNT-TC-1A ### AMERICAN WELDING SOCIETY (AWS) | AWS A2.4 | (1993) Standard Symbols for Welding, Brazing and Nondestructive Examination | |-----------|---| | AWS A3.0 | (1994) Standard Welding Terms and Definitions | | AWS D1.1 | (1996) Structural Welding Code - Steel | | AWS Z49.1 | (1994) Safety in Welding and Cutting and Allied Processes | ### 1.2 DEFINITIONS Definitions of welding terms shall be in accordance with AWS A3.0. ## 1.3 GENERAL REQUIREMENTS The design of welded connections shall conform to AISC-04 unless otherwise indicated or specified. Material with welds will not be accepted unless the welding is specified or indicated on the drawings or otherwise approved. Welding shall be as specified in this section, except where additional requirements are shown on the drawings or are specified in other sections. Welding shall not be started until welding procedures, welders, welding operators, and tackers have been qualified and the submittals approved by the Contracting Officer. Qualification testing shall be performed at or near the work site. Each Contractor performing welding shall maintain records of the test results obtained in welding procedure, welder, welding operator, and tacker performance qualifications. ## 1.4 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The REPAIR FUEL SYSTEM MAINTENANCE DOCK - Building 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-08 Statements Welding Procedure Qualifications; FIO. Welder, Welding Operator, and Tacker Qualification; FIO. Inspector Qualification; FIO. Copies of the welding procedure specifications; the procedure qualification test records; and the welder, welding operator, or tacker qualification test records. SD-18 Records Quality Control; FIO. A quality assurance plan and records of tests and inspections. # 1.5 WELDING PROCEDURE QUALIFICATIONS Except for prequalified (per AWS D1.1) and previously qualified procedures, each Contractor performing welding shall record in detail and shall qualify the welding procedure specification for any welding procedure followed in the fabrication of weldments. Qualification of welding procedures shall conform to AWS D1.1 and to the specifications in this section. Copies of the welding procedure specification and the results of the procedure qualification test for each type of welding which requires procedure qualification shall be submitted for approval. Approval of any procedure, however, will not relieve the Contractor of the sole responsibility for producing a finished structure meeting all the requirements of these specifications. This information shall be submitted on the forms in Appendix E of AWS D1.1. Welding procedure specifications shall be individually identified and shall be referenced on the detail drawings and erection drawings, or shall be suitably keyed to the contract drawings. In case of conflict between this specification and AWS D1.1, this specification governs. ## 1.5.1 Previous Qualifications Welding procedures previously qualified by test may be accepted for this contract without requalification if the following conditions are met: - a. Testing was performed by an approved testing laboratory, technical consultant, or the Contractor's approved quality control organization. - b. The qualified welding procedure conforms to the requirements of this specification and is applicable to welding conditions encountered under this contract. - c. The welder, welding operator, and tacker qualification tests conform to the requirements of this specification and are applicable to welding conditions encountered under this contract. ## 1.5.2 Prequalified Procedures REPAIR FUEL SYSTEM MAINTENANCE DOCK - Building 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 Welding procedures which are considered prequalified as specified in AWS D1.1 will be accepted without further qualification. The Contractor shall submit for approval a listing or an annotated drawing to indicate the joints not prequalified. Procedure qualification shall be required for these joints. ### 1.5.3 Retests If welding procedure fails to meet the requirements of AWS D1.1, the procedure specification shall be revised and requalified, or at the Contractor's option, welding procedure may be retested in accordance with AWS D1.1. If the welding procedure is qualified through retesting, all test results, including those of test welds that failed to meet the requirements, shall be submitted with the welding procedure. ## 1.6 WELDER, WELDING OPERATOR, AND TACKER QUALIFICATION Each welder, welding operator, and tacker assigned to work on this contract shall be qualified in accordance with the applicable requirements of AWS D1.1 and as specified in this section. Welders, welding operators, and tackers who make acceptable procedure qualification test welds will be considered qualified for the welding procedure used. ## 1.6.1 Previous Qualifications At the discretion of the Contracting Officer, welders, welding operators, and tackers qualified by test within the previous 6 months may be accepted for this contract without requalification if all the following conditions are met: - a. Copies of the welding procedure specifications, the procedure qualification test records, and the welder, welding operator, and tacker qualification test records are submitted and approved in accordance with the specified requirements for detail drawings. - b. Testing was performed by an approved testing laboratory, technical consultant, or the Contractor's approved quality control organization. - c. The previously qualified welding procedure conforms to the requirements of this specification and is applicable to welding conditions encountered under this contract. - d. The welder, welding operator, and tacker qualification tests conform to the requirements of this specification and are applicable to welding conditions encountered under this contract. ## 1.6.2 Certificates Before assigning any welder, welding operator, or tacker to work under this contract, the Contractor shall submit the names of the welders, welding operators, and tackers to be employed, and certification that each individual is qualified as specified. The certification shall state the type of welding and positions for which the welder, welding operator, or tacker is qualified, the code and procedure under which the individual is qualified, the date qualified, and the name of the firm and person certifying the qualification tests. The certification shall be kept on file, and 3 copies shall be furnished. The certification shall be kept current for the duration of the contract. REPAIR FUEL SYSTEM MAINTENANCE DOCK - Building 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 1.6.3 Renewal of Qualification Requalification of a welder or welding operator shall be required under any of the following conditions: - a. It has been more than 6 months since the welder or welding operator has used the specific welding process for which he is qualified. - b. There is specific reason to question the welder or welding operator's ability to make welds that meet the requirements of these specifications. - c. The welder or welding operator was qualified by an employer other than those firms performing work under this contract, and a qualification test has not been taken within the past 12 months. Records showing periods of employment, name of employer where welder, or welding operator, was last employed, and the process for which qualified shall be submitted as evidence of conformance. - d. A tacker who passes the qualification test shall be considered eligible to perform tack welding indefinitely in the positions and with the processes for which he is qualified, unless there is some specific reason to question the tacker's ability. In such a case, the tacker shall be required to pass the prescribed tack welding test. ### 1.7 INSPECTOR QUALIFICATION Inspection and nondestructive testing personnel shall be qualified in accordance with the requirements of ASNT-01 for Levels I or II in the applicable nondestructive testing method. The inspector may
be supported by assistant welding inspectors who are not qualified to ASNT-01, and assistant inspectors may perform specific inspection functions under the supervision of the qualified inspector. # 1.8 SYMBOLS Symbols shall be in accordance with AWS A2.4, unless otherwise indicated. ## 1.9 SAFETY Safety precautions during welding shall conform to AWS Z49.1. ## PART 2 PRODUCTS ### 2.1 WELDING EQUIPMENT AND MATERIALS All welding equipment, electrodes, welding wire, and fluxes shall be capable of producing satisfactory welds when used by a qualified welder or welding operator performing qualified welding procedures. All welding equipment and materials shall comply with the applicable requirements of AWS D1.1. # PART 3 EXECUTION #### 3.1 WELDING OPERATIONS # 3.1.1 Requirements REPAIR FUEL SYSTEM MAINTENANCE DOCK - Building 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 Workmanship and techniques for welded construction shall conform to the requirements of AWS D1.1 and AISC-04. When AWS D1.1 and the AISC-04 specification conflict, the requirements of AWS D1.1 shall govern. ### 3.1.2 Identification Welds shall be identified in one of the following ways: - a. Written records shall be submitted to indicate the location of welds made by each welder, welding operator, or tacker. - b. Each welder, welding operator, or tacker shall be assigned a number, letter, or symbol to identify welds made by that individual. The Contracting Officer may require welders, welding operators, and tackers to apply their symbol next to the weld by means of rubber stamp, felt-tipped marker with waterproof ink, or other methods that do not cause an indentation in the metal. For seam welds, the identification mark shall be adjacent to the weld at 3 foot intervals. Identification with die stamps or electric etchers shall not be allowed. ## 3.2 QUALITY CONTROL Testing shall be done by an approved inspection or testing laboratory or technical consultant; or if approved, the Contractor's inspection and testing personnel may be used instead of the commercial inspection or testing laboratory or technical consultant. The Contractor shall perform visual and magnetic particle inspection to determine conformance with paragraph STANDARDS OF ACCEPTANCE. Procedures and techniques for inspection shall be in accordance with applicable requirements of AWS D1.1 ## 3.3 STANDARDS OF ACCEPTANCE Dimensional tolerances for welded construction, details of welds, and quality of welds shall be in accordance with the applicable requirements of AWS D1.1 and the contract drawings. Nondestructive testing shall be by visual inspection and magnetic particle methods and welds shall be visually inspected. The minimum extent of magnetic particle testing shall be random 20 percent of all welds. ## 3.3.1 Nondestructive Examination The welding shall be subject to inspection and tests in the mill, shop, and field. Inspection and tests in the mill or shop will not relieve the Contractor of the responsibility to furnish weldments of satisfactory quality. When materials or workmanship do not conform to the specification requirements, the Government reserves the right to reject material or workmanship or both at any time before final acceptance of the structure containing the weldment. ## 3.3.2 Destructive Tests When metallographic specimens are removed from any part of a structure, the Contractor shall make repairs. The Contractor shall employ qualified welders or welding operators, and shall use the proper joints and welding procedures, including peening or heat treatment if required, to develop the full strength of the members and joints cut and to relieve residual stress. ### 3.4 GOVERNMENT INSPECTION AND TESTING In addition to the inspection and tests performed by the Contractor for quality control, the Government will perform inspection and testing for acceptance to the extent determined by the Contracting Officer. The costs of such inspection and testing will be borne by the Contractor if unsatisfactory welds are discovered, or by the Government if the welds are satisfactory. The work may be performed by the Government's own forces or under a separate contract for inspection and testing. The Government reserves the right to perform supplemental nondestructive and destructive tests to determine compliance with paragraph STANDARDS OF ACCEPTANCE. #### 3.5 CORRECTIONS AND REPAIRS When inspection or testing indicates defects in the weld joints, the welds shall be repaired using a qualified welder or welding operator as applicable. Corrections shall be in accordance with the requirements of AWS D1.1 and the specifications. Defects shall be repaired in accordance with the approved procedures. Defects discovered between passes shall be repaired before additional weld material is deposited. Wherever a defect is removed and repair by welding is not required, the affected area shall be blended into the surrounding surface to eliminate sharp notches, crevices, or corners. After a defect is thought to have been removed, and before rewelding, the area shall be examined by suitable methods to ensure that the defect has been eliminated. Repair welds shall meet the inspection requirements for the original welds. Any indication of a defect shall be regarded as a defect, unless reevaluation by nondestructive methods or by surface conditioning shows that no unacceptable defect is present. END OF SECTION # SECTION 05120 # STRUCTURAL STEEL ## PART 1 GENERAL # 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. # AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC) | AISC FCD | (1995a) Quality Certification Program Description | | | | |---|---|--|--|--| | AISC ASD Manual | (1989) Manual of Steel Construction Allowable
Stress Design | | | | | AISC ASD/LRFD Vol II | (1992) Manual of Steel Construction Vol II:
Connections | | | | | AISC DESIGN GUIDE #10 | (1989) Erection Bracing of Low-Rise
Structural Steel Frames | | | | | AISC PUB. NO. S303 | (1992) Code of Standard Practice for Steel
Buildings and Bridges | | | | | AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | | | | | | ASTM A 6/A 6M | (1996b) General Requirements for Rolled
Structural Steel Bars, Plates, Shapes, and
Sheet Piling | | | | | ASTM A 36/A 36M | (1996) Carbon Structural Steel | | | | | ASTM A 53 | (1997) Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless | | | | | ASTM A 307 | (1994) Carbon Steel Bolts and Studs, 60 000 PSI Tensile Strength | | | | | ASTM A 325 | (1997) Structural Bolts, Steel, Heat Treated, 120/105 ksi Minimum Tensile Strength | | | | | ASTM A 500 | (1996) Cold-Formed Welded and Seamless Carbon
Steel Structural Tubing in Rounds and Shapes | | | | | ASTM A 563 | (1996) Carbon and Alloy Steel Nuts | | | | REPAIR FUEL SYSTEM MAINTENANCE DOCK - Building 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 ASTM A 572/A 572M (1994c) High-Strength Low-Alloy Columbium- Vanadium Structural Steel ASTM F 844 (1990) Washers, Steel, Plain (Flat), Unhardened for General Use AMERICAN SOCIETY OF MECHANICAL ENGINEERS (ASME) ASME B18.21.1 (1994) Lock Washers (Inch Series) ASME B46.1 (1995) Surface Texture (Surface Roughness, Waviness, and Lay) AMERICAN WELDING SOCIETY (AWS) AWS A2.4 (1993) Standard Symbols for Welding, Brazing and Nondestructive Examination AWS D1.1 (1996) Structural Welding Code - Steel STEEL STRUCTURES PAINTING COUNCIL (SSPC) SSPC Paint 25 (1991) Red Iron Oxide, Zinc Oxide, Raw Linseed Oil and Alkyd Primer (without Lead and Chromate Pigments) # 1.2 GENERAL REQUIREMENTS Structural steel fabrication and erection shall be performed by an organization experienced in structural steel work of equivalent magnitude. The Contractor shall be responsible for correctness of detailing, fabrication, and for the correct fitting of structural members. Connections, for any part of the structure not shown on the contract drawings, shall be considered simple shear connections and shall be designed and detailed in accordance with pertinent provisions of AISC ASD Manual and AISC LRFD Vol II. Substitution of sections or modification of connection details will not be accepted unless approved by the Contracting Officer. AISC ASD Manual and AISC ASD/LRFD Vol II shall govern the work. Welding shall be in accordance with AWS D1.1 and Section 05090 WELDING, STRUCTURAL. High-strength bolting shall be in accordance with AISC ASD Manual. ## 1.3 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-04 Drawings Structural Steel System; GA. Structural Connections; GA. REPAIR FUEL SYSTEM MAINTENANCE DOCK - Building 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 Shop and erection details including members (with their connections) not shown on the contract drawings. Welds shall be indicated by standard welding symbols in accordance with AWS A2.4. SD-08 Statements Erection; FIO. Prior to erection, erection plan of the structural steel framing describing all necessary temporary supports, including the sequence of installation and removal. SD-13 Certificates Mill Test Reports; FIO. Certified copies of mill test reports for structural steel, structural bolts, nuts, washers and other related structural steel items, including attesting that the structural steel furnished contains no less than 25 percent recycled scrap steel and meets the requirements specified, prior to the installation. Welder Qualifications; FIO. Certified copies of welder qualifications test records showing qualification in accordance with AWS D1.1. Fabrication; FIO. A copy of the AISC certificate indicating that the fabrication
plant meets the specified structural steelwork category. SD-14 Samples High Strength Bolts and Nuts; GA. Carbon Steel Bolts and Nuts; GA. Nuts Dimensional Style; GA. Washers; GA. Random samples of bolts, nuts, and washers as delivered to the job site if requested, taken in the presence of the Contracting Officer and provided to the Contracting Officer for testing to establish compliance with specified requirements. ## 1.4 STORAGE Material shall be stored out of contact with the ground in such manner and location as will minimize deterioration. REPAIR FUEL SYSTEM MAINTENANCE DOCK - Building 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 #### PART 2 PRODUCTS #### 2.1 STRUCTURAL STEEL ### 2.1.1 Carbon Grade Steel Carbon grade steel shall conform to ASTM A 36/A 36M. ## 2.1.2 High-Strength Low-Alloy Steel High-strength low-alloy steel shall conform to ASTM A 572/A 572M, Grade 50. #### 2.2 STRUCTURAL TUBING Structural tubing shall conform to ASTM A 500, Grade B. ## 2.3 STEEL PIPE Steel pipe shall conform to ASTM A 53, Type S, Grade B. ### 2.4 HIGH STRENGTH BOLTS AND NUTS High strength bolts shall conform to ASTM A 325, Type 1 with carbon steel nuts conforming to ASTM A 563, Grade C. # 2.6 CARBON STEEL BOLTS AND NUTS Carbon steel bolts shall conform to ASTM A 307, Grade A with carbon steel nuts conforming to ASTM A 563, Grade A. #### 2.7 NUTS DIMENSIONAL STYLE Carbon steel nuts shall be Hex style when used with ASTM A 307 bolts or Heavy Hex style when used with ASTM A 325. ## 2.8 WASHERS Plain washers shall conform to ASTM F 844. Other types, when required, shall conform to ASME B18.21.1. #### 2.9 PAINT Paint shall conform to SSPC Paint 25. ## PART 3 EXECUTION #### 3.1 FABRICATION Fabrication shall be in accordance with the applicable provisions of AISC ASD Manual. Fabrication and assembly shall be done in the shop to the greatest extent possible. The fabricating plant shall be certified under the AISC FCD for Category A structural steelwork. Compression joints depending on contact bearing shall have a surface roughness not in excess of 500 micro inches as determined by ASME B46.1, and ends shall be square within the tolerances for milled ends specified in ASTM A 6/A 6M. Structural steelwork, except surfaces of steel to be encased in concrete, surfaces to be fireproofed, and surfaces to be field welded shall be prepared for painting in accordance with endorsement "P" of AISC FCD and primed with the specified paint. #### 3.2 ERECTION - a. Erection of structural steel shall be in accordance with the applicable provisions of AISC ASD Manual. - b. For low-rise structural steel buildings 60 feet tall or less and a maximum of 2 stories, the erection plan shall conform to AISC Pub No. S303 and the structure shall be erected in accordance with AISC Design Guide #10. #### 3.2.1 Structural Connections Anchor bolts and other connections between the structural steel and foundations shall be provided and shall be properly located and built into connecting work. Field welded structural connections shall be completed before load is applied. ## 3.2.2 Base Plates and Bearing Plates Column base plates for columns and bearing plates for beams, girders, and similar members shall be provided. Base plates and bearing plates shall be provided with full bearing after the supported members have been plumbed and properly positioned, but prior to placing superimposed loads. Separate setting plates under column base plates will not be permitted. The area under the plate shall be damp-packed solidly with bedding mortar, except where nonshrink grout is indicated on the drawings. Bedding mortar and grout shall be as specified in Section 03300 CAST-IN-PLACE STRUCTURAL CONCRETE. # 3.2.3 Field Priming After erection, the field bolt heads and nuts, field welds, and any abrasions in the shop coat shall be cleaned and primed with paint of the same quality as that used for the shop coat. END OF SECTION THIS PAGE INTENTIONALLY LEFT BLANK SECTION 05300 STEEL DECKING ### PART 1 GENERAL #### 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. ### AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC) AISC-04 (1989) Specification for Structural Steel Buildings - Allowable Stress Design and Plastic Design AMERICAN IRON AND STEEL INSTITUTE (AISI) AISI-01 (1996) Cold-Formed Steel Design Manual AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) ASTM A 108 (1995) Steel Bars, Carbon, Cold Finished, Standard Quality ASTM A 611 (1996) Steel, Sheet, Carbon, Cold-Rolled, Structural Quality ASTM A 653/A 653M (1996) Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process ASTM A 780 (1993a) Repair of Damaged and Uncoated Areas of Hot-Dipped Galvanized Coatings ## AMERICAN WELDING SOCIETY (AWS) AWS D1.1 (1996) Structural Welding Code - Steel AWS D1.3 (1989) Structural Welding Code - Sheet Steel STEEL DECK INSTITUTE (SDI) SDI-02 (1987; Amended 1991) Diaphragm Design Manual SDI Pub No 29 (1995) Design Manual for Composite Decks, Form Decks, Roof Decks, and Cellular Metal Floor Deck with Electrical Distribution REPAIR FUEL SYSTEM MAINTENANCE DOCK - Building 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 STEEL STRUCTURES PAINTING COUNCIL (SSPC) SSPC Paint 20 (1991) Zinc-Rich Primers (Type I - Inorganic and Type II - Organic) ### 1.2 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-01 Data Deck Units; GA. Design computations for the structural properties of the deck units or SDI certification that the units are designed in accordance with SDI specifications. SD-04 Drawings Deck Units; GA. Accessories; GA. Attachments; GA. Holes and Openings; GA. Drawings shall include type, configuration, structural properties, location, and necessary details of deck units, accessories, and supporting members; size and location of holes to be cut and reinforcement to be provided; location and sequence of welded or fastener connections; and the manufacturer's erection instructions. SD-13 Certificates Deck Units; FIO. Attachments; FIO. Manufacturer's certificates attesting that the decking material meets the specified requirements. Manufacturer's certificate attesting that the operators are authorized to use the low-velocity piston tool. SD-18 Records Attachments; FIO. Prior to welding operations, copies of qualified procedures and lists of names and identification symbols of qualified welders and welding operators. ## 1.3 DELIVERY, STORAGE, AND HANDLING Deck units shall be delivered to the site in a dry and undamaged condition, stored off the ground with one end elevated, and stored under a weathertight covering permitting good air circulation. Finish of deck units shall be maintained at all times by using touch-up paint whenever necessary to prevent the formation of rust. #### PART 2 PRODUCTS #### 2.1 DECK UNITS Deck units shall conform to SDI Pub No 29. Panels of maximum possible lengths shall be used to minimize end laps. Deck units shall be fabricated in lengths to span 3 or more supports with flush, telescoped, or nested 2 inchlaps at ends, and interlocking, or nested side laps, unless otherwise indicated. Deck with cross-sectional configuration differing from the units indicated may be used, provided that the properties of the proposed units, determined in accordance with AISI-01, are equal to or greater than the properties of the units indicated and that the material will fit the space provided without requiring revisions to adjacent materials or systems. #### 2.1.1 Roof Deck Steel deck used in conjunction with insulation and metal roofing shall conform to ASTM A 792/A 792M, ASTM A 611 or ASTM A 792/A 792M. Roof deck units shall be fabricated of the steel design thickness required by the design drawings and shall be zinc-coated in conformance with ASTM A 653/A 653M, G90 coating class or aluminum-zinc coated in accordance with ASTM A 792/A 792M Coating Designation AZ55. # 2.1.2 Composite Deck Deck to receive concrete as a filler or for composite deck assembly shall conform to ASTM A 653/A 653M or ASTM A 611. Deck used as the tension reinforcing in composite deck shall be fabricated of the steel design thickness required by the design drawings, and shall be zinc-coated in conformance with ASTM A 653/A 653M, G60 coating class. Deck units used in composite deck shall have adequate embossment to develop mechanical shear bond to provide composite action between the deck and the concrete. # 2.1.4 Shear Connectors Shear connectors shall be headed stud type, ASTM A 108, Grade 1015 or 1020, cold finished carbon steel with dimensions complying with AISC-04. # 2.2 TOUCH-UP PAINT Touch-up paint for shop-painted units shall be of the same type used for the shop painting, and touch-up paint for zinc-coated units shall be an approved galvanizing repair paint with a high-zinc dust content. Welds shall be touched-up with paint conforming to SSPC Paint 20 in accordance with ASTM A 780. Finish of deck units and accessories shall be maintained by using touch-up paint whenever necessary to prevent the formation of rust. ### 2.3 ADJUSTING PLATES Adjusting plates or segments of deck units shall be provided in locations too narrow to accommodate full-size units. As far as practical, the plates shall be the same thickness and configuration as the deck units. #### 2.4 CLOSURE PLATES #### 2.4.1 Closure Plates for Roof Deck Voids above interior walls shall be closed with sheet metal where shown. Open deck cells at parapets, and walls, eaves, and openings through roofs shall be closed with sheet metal. Sheet metal shall be same thickness s deck units. # 2.4.2 Closure Plates for Composite Deck The concrete shall be supported and retained at each floor level. Provide edge closures at
all edges of the slab of sufficient strength and stiffness to support the wet concrete. Metal closures shall be provided for all openings in composite steel deck 1/4 inch and over, including but not limited to: #### 2.4.2.1 Cover Plates to Close Panels Cover plates to close panel edge and end conditions and where panels change direction or abut. Butt joints in composite steel deck may receive a tape joint cover. #### 2.4.2.3 Sheet Metal Where deck is cut for passage of pipes, ducts, columns, etc., and deck is to remain exposed, provide a neatly cut sheet metal collar to cover edges of deck. Do not cut deck until after installation of supplemental supports. #### 2.5 ACCESSORIES The manufacturer's standard accessories shall be furnished as necessary to complete the deck installation. Metal accessories shall be of the same material as the deck and have minimum design thickness as follows: saddles, 0.0474 inch; welding washers, 0.0598 inch; cant strip, 0.0295 inch; other metal accessories, 0.0358 inch; unless otherwise indicated. Accessories shall include but not be limited to saddles, welding washers, butt cover plates, and underlapping sleeves. #### PART 3 EXECUTION #### 3.1 ERECTION Erection of deck and accessories shall be in accordance with SDI-02 and the approved detail drawings. Damaged deck and accessories including material which is permanently stained or contaminated, with burned holes or deformed shall not be installed. The deck units shall be placed on secure supports, properly adjusted, and aligned at right angles to supports before being permanently secured in place. The deck shall not be filled with concrete, used for storage or as a working platform until the units have been secured in position. Loads shall be distributed by appropriate means to prevent damage during construction and to the completed assembly. The maximum uniform distributed storage load shall not exceed the design live load. There shall be no loads suspended directly from the steel deck. # 3.2 ATTACHMENTS All fasteners shall be installed in accordance with the manufacturer's recommended procedure, except as otherwise specified. The deck units shall be welded with nominal 5/8 inch diameter puddle welds to support as indicated on the design drawings and in accordance with requirements of SDI Pub No 29. All welding of steel deck shall be in accordance with AWS D1.3 using methods and electrodes as recommended by the manufacturer of the steel deck being used. Welds shall be made only by operators previously qualified by tests prescribed in AWS D1.3 to perform the type of work required. Welding washers shall not be used at the connections of the deck to supports. Welding washers shall not be used at sidelaps. Holes and similar defects will not be acceptable. Roof deck ends shall be lapped 2-inches, and composite deck ends shall be butted. All partial or segments of deck units shall be attached to structural supports in accordance with Section 2.5 of SDI-02. Shear connectors shall be attached as shown and shall be welded as per AWS D1.1 through the steel deck to the steel member. # 3.3 HOLES AND OPENINGS All holes and openings required shall be coordinated with the drawings, specifications, and other trades. Holes and openings shall be drilled or cut, reinforced and framed as indicated on the drawings or described in the specifications and as required for rigidity and load capacity. Holes and openings less than 6 inches across require no reinforcement. Holes and openings 6 to 12 inches across shall be reinforced by 0.0474 inch thick steel sheet at least 12 inches wider and longer than the opening and be fastened to the steel deck at each corner of the sheet and at a maximum of 6 inches on center. Holes and openings larger than 12 inches shall be reinforced by steel angles installed perpendicular to the steel joists and supported by the adjacent steel joists. Steel angles shall be installed perpendicular to the deck ribs and shall be fastened to the angles perpendicular to the steel joists. Openings must not interfere with seismic members such as chords and drag struts. END OF SECTION SECTION 05500 #### MISCELLANEOUS METAL # PART 1 GENERAL # 1.1 RELATED DOCUMENTS Drawings and general provisions of Contract, including General and Supplementary Conditions and Division 1 specifications, apply to work of this section. #### 1.2 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. # AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI) ANSI A14.3 (1992) Ladders - Fixed - Safety Requirements # AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | ASTM A 36 | (1996) Carbon Structural Steel | |------------|--| | ASTM A 53 | (1996) Pipe, Steel, Black and Hot-Dipped,
Zinc-Coated, Welded and Seamless | | ASTM A 123 | (1989a) Zinc (Hot-Dip Galvanized) Coatings on
Iron and Steel Products | | ASTM A 653 | (1996) Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process | | ASTM A 924 | (1996a) Steel Sheet, Metallic-Coated by the
Hot-Dip Process | # AMERICAN WELDING SOCIETY (AWS) AWS D1.1 (1994) Structural Welding Code - Steel # COMMERCIAL ITEM DESCRIPTIONS (CID) CID A-A-344 (Rev B) Lacquer, Clear Gloss, Exterior, Interior NATIONAL ASSOCIATION OF ARCHITECTURAL METAL MANUFACTURERS (NAAMM) NAAMM MBG 531 (1993) Metal Bar Grating Manual NAAMM MBG 532 (1988) Heavy Duty Metal Bar Grating Manual #### 1.3 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-04 Drawings Miscellaneous Metal Items; GA. Detail drawings indicating material thickness, type, grade, and class; dimensions; and construction details. Drawings shall include catalog cuts, erection details, manufacturer's descriptive data and installation instructions, and templates. Detail drawings for the following items: stairs, ladders, handrails, and removable handrail. SD-14 Samples Miscellaneous Metal Items; GA. Samples of the following items: handrails. Samples shall be full size, taken from manufacturer's stock, and shall be complete as required for installation in the structure. Samples may be installed in the work, provided each sample is clearly identified and its location recorded. # 1.4 GENERAL REQUIREMENTS The Contractor shall verify all measurements and shall take all field measurements necessary before fabrication. Welding to or on structural steel shall be in accordance with AWS D1.1. Items specified to be galvanized, when practicable and not indicated otherwise, shall be hot-dip galvanized after fabrication. Galvanizing shall be in accordance with ASTM A 123, ASTM A 653, or ASTM A 924, as applicable. Exposed fastenings shall be compatible materials, shall generally match in color and finish, and shall harmonize with the material to which fastenings are applied. Materials and parts necessary to complete each item, even though such work is not definitely shown or specified, shall be included. Poor matching of holes for fasteners shall be cause for rejection. Fastenings shall be concealed where practicable. Thickness of metal and details of assembly and supports shall provide strength and stiffness. Joints exposed to the weather shall be formed to exclude water. #### 1.5 DISSIMILAR MATERIALS Where dissimilar metals are in contact, or where aluminum is in contact with concrete, mortar, masonry, wet or pressure-treated wood, or absorptive materials subject to wetting, the surfaces shall be protected with a coat of bituminous paint or asphalt varnish. #### 1.6 WORKMANSHIP Miscellaneous metalwork shall be well formed to shape and size, with sharp lines and angles and true curves. Drilling and punching shall produce clean true lines and surfaces. Welding shall be continuous along the entire area of contact except where tack welding is permitted. Exposed connections of work in place shall not be tack welded. Exposed welds shall be ground smooth. Exposed surfaces of work in place shall have a smooth finish, and unless otherwise approved, exposed riveting shall be flush. Where tight fits are required, joints shall be milled. Corner joints shall be coped or mitered, well formed, and in true alignment. Work shall be accurately set to established lines and elevations and securely fastened in place. Installation shall be in accordance with manufacturer's installation instructions and approved drawings, cuts, and details. #### 1.7 ANCHORAGE Anchorage shall be provided where necessary for fastening miscellaneous metal items securely in place. Anchorage not otherwise specified or indicated shall include slotted inserts made to engage with the anchors, expansion shields, and power-driven fasteners when approved for concrete; toggle bolts and through bolts for masonry; machine and carriage bolts for steel; and lag bolts and screws for wood. #### 1.8 SHOP PAINTING Surfaces of ferrous metal except galvanized surfaces, shall be cleaned and shop coated with the manufacturer's standard protective coating unless otherwise specified. Surfaces of items to be embedded in concrete shall not be painted. Items to be finish painted shall be prepared according to manufacturer's recommendations or as specified. # PART 2 PRODUCTS ### 2.1 STAIR GRATINGS TREADS AND FRAMES Carbon steel grating shall be designed in accordance with NAAMM MBG 531 and NAAMM MBG 532 to meet the indicated load requirements. Edges shall be banded with bars 1/4 inch less in height than bearing bars for grating sizes above 3/4 inch. Banding bars shall be flush with the top of bearing grating. Frames shall be of welded steel construction finished to match the grating. Floor gratings and frames shall be
galvanized after fabrication. Frames and gratings for trench drains shall be NEENAH Airport Trench Drains Catalog No. R-4990 size as shown on the plans or approved equals. #### 2.2 HANDRAILS Handrails shall be designed to resist a concentrated load of 200 pounds in any direction at any point of the top of the rail or 20 pounds per foot applied horizontally to top of the rail, whichever is more severe. # 2.2.1 Steel Handrails, Including Carbon Steel Inserts Steel handrails, including inserts in concrete, shall be steel pipe conforming to ASTM A 53. Steel railings shall be 1-1/4U inch nominal size. Railings shall be hot-dip galvanized. Pipe collars shall be hot-dip galvanized steel. - a. Joint posts, rail, and corners shall be fabricated by one of the following methods: - (1) Flush type rail fittings of commercial standard, welded and ground smooth with railing splice locks secured with 3/8 inch hexagonal recessed-head set screws. - (2) Mitered and welded joints by fitting post to top rail and intermediate rail to post, mitering corners, groove welding joints, and grinding smooth. Railing splices shall be butted and reinforced by a tight fitting interior sleeve not less than 6 inches long. - (3) Railings may be bent at corners in lieu of jointing, provided bends are made in suitable jigs and the pipe is not crushed. - b. Removable sections, toe-boards, and brackets shall be provided as indicated. # 2.3 LADDERS Ladders shall be galvanized steel, fixed rail type in accordance with ANSI A14.3. A design as indicated on drawings. #### 2.4 MISCELLANEOUS Miscellaneous plates and shapes for items that do not form a part of the structural steel framework, such as lintels, sill angles, miscellaneous mountings, and frames, shall be provided to complete the work. # 2.5 STEEL STAIRS Contractor shall provide steel stair designed by Structural Engineer licensed in the State of Washington, complete with structural or formed channel stringers, grating treads, landings, columns, handrails, and necessary bolts and other fastenings as required for complete installation as indicated on the drawings. Structural steel shall conform to ASTM A 36. Stairs, handrails, guardrails, and accessories shall be painted. Gratings for treads and landings 00029/11 REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 shall conform to NAAMM MBG 531. Grating treads shall have slip-resistant nosings. # PART 3 EXECUTION # 3.1 GENERAL INSTALLATION REQUIREMENTS All items shall be installed at the locations shown and according to the manufacturer's recommendations. Items listed below require additional procedures as specified. #### 3.2 ATTACHMENT OF HANDRAILS Toeboards and brackets shall be installed where indicated. Splices, where required, shall be made at expansion joints. Removable sections shall be installed as indicated. #### 3.7.1 Installation of Steel Handrails Installation shall be as indicated on the drawings. Rail ends shall be through-bolted to a back plate or by 1/4 inch lag bolts to studs or solid backing. #### 3.8 TRENCH FRAMES AND COVERS Trench frames and covers shall finish flush with the floor. The frames and covers shall be installed per manufacturer's instructions. END OF SECTION SECTION 06200 #### FINISH CARPENTRY # PART 1 GENERAL #### 1.1 RELATED DOCUMENTS Drawings and general provisions of Contract, including General and Supplementary Conditions and Division 1 specifications, apply to work of this section. #### 1.2 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. # AMERICAN HARDBOARD ASSOCIATION (AHA) AHA A135.6 (1990) Hardboard Siding APA-THE ENGINEERED WOOD ASSOCIATION (APA) APA E445 (1991; Rev May 1991) Performance Standards and Policies for Structural-Use Panels # AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | ASTM D 1435 | (1994) Outdoor Weathering of Plastics | |-------------|---| | ASTM D 2898 | (1994) Accelerated Weathering of Fire-
Retardant-Treated Wood for Fire Testing | | ASTM F 547 | (1977; R 1990) Definitions of Terms Relating
to Nails for Use with Wood and Wood-Base
Materials | # AMERICAN WOOD-PRESERVERS' ASSOCIATION (AWPA) | | pressure processes | |----------|--| | AWPA C20 | (1993) Structural Lumber Fire-Retardant
Pressure Treatment | | AWPA C27 | (1993) Plywood - Fire-Retardant Pressure
Treatment | | AWPA M4 | (1995) Standard for the Care of Preservative-
Treated Wood Products | Droggue Drogogge (1995) Plywood - Preservative Treatment by AWPA C9 00029/11 REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 AWPA P5 (1996) Standards for Waterborne Preservatives ARCHITECTURAL WOODWORK INSTITUTE (AWI) AWI-02 (1994) Architectural Woodwork Quality Standards, Guide Specifications and Quality Certification Program DEPARTMENT OF COMMERCE (DOC) DOC PS 1 (1996) Voluntary Product Standard - Construction and Industrial Plywood DOC PS 2 (1992) Performance Standard for Wood-based Structural-Use Panels NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA) NEMA LD 3 (1996) Pressure Decorative Laminates WEST COAST LUMBER INSPECTION BUREAU (WCLIB) WCLIB Std 17 (1993; Supples III (A), V (A), & VI (A)) Grading Rules For West Coast Lumber WESTERN WOOD PRODUCTS ASSOCIATION (WWPA) WWPA-01 (1995; Supple Nos. 1, 2, and 3)Western Lumber Grading Rules 95 WOOD MOULDING AND MILLWORK PRODUCERS ASSOCIATION (WMMPA) WMMPA WM 6 (1987) Industry Standard for Non-Pressure Treating of Wood Millwork # 1.3 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-04 Drawings Finish Carpentry; FIO. Drawings showing fabricated items and special mill and woodwork items. Drawings shall indicate materials and details of construction, methods of fastening, erection, and installation. SD-14 Samples Laminated Plastic; FIO Samples shall be of sufficient size to show patterns, color ranges, and types, as applicable, of the material proposed to be used. #### 1.4 DELIVERY AND STORAGE Materials shall be delivered to the site in undamaged condition, stored off ground in fully covered, well-ventilated areas, and protected from extreme changes in temperature and humidity. #### PART 2 PRODUCTS #### 2.1 WOOD ITEMS The Contractor shall furnish products which optimize design by reducing the amount of wood used (engineered wood), or recycled wood products, and preservatives without arsenic or chromium when the products and methods are competitive in price or directed by the Contracting Officer. # 2.1.1 Grading and Marking Materials shall bear the grademark, stamp or other identifying marks indicating grades of material and rules or standards under which produced. Such identifying marks on a material shall be in accordance with the rule or standard under which the material is produced, including requirements for qualifications and authority of the inspection organization, usage of authorized identification, and information included in the identification. The inspection agency for lumber shall be certified by the Board of Review, American Lumber Standards Committee, to grade the species used. Except for plywood, structural-use panels, and lumber, bundle marking will be permitted in lieu of marking each individual piece. Surfaces that are to be architecturally exposed to view shall not bear grademarks, stamps, or other types of identifying marks. ### 2.1.2 Sizes and Patterns Lumber sizes and patterns shall conform to rules or standards under which produced. Unless otherwise specified, lumber shall be surfaced on four sides. Sizes and patterns for materials other than lumber shall conform to requirements of the rules or standards under which produced. Size references, unless otherwise specified, are nominal sizes, and actual sizes shall be within manufacturing tolerances allowed by the standard under which the product is produced. # 2.1.3 Moisture Content The maximum moisture content of untreated trim and wood siding shall be 15 percent at the time of delivery to the jobsite and when installed. Moisture content of all other material shall be in accordance with the standard under which the product is produced. #### 2.1.4 Wood Wood blocking shall be treated construction grade and condenser unit covering shall be treated Hem-Fir#2 or better. Sizes shall be as indicated. #### 2.1.4.1 Plywood Plywood shall be treated in accordance with AWPA C9 with waterborne preservatives listed in AWPA P5 to a retention level as follows: - 1. 0.25 pcf intended for above ground use. - 2. 0.4 pcf intended for ground contact and fresh water use. #### 2.1.5 Laminated Plastic High Pressure Decorative Laminate for Restroom Lavatory Countertops and Breakroom Cabinets. NAMA LD 3, post forming grades for a 5/8" radius, as required by woodwork quality standard. Colors as indicated in the drawings. #### 2.2 NAILS Nails shall be the size and type best suited for the purpose and shall conform to ASTM F 547. Nails shall be hot-dip galvanized or aluminum when used on exterior work. For siding, length of nails shall be sufficient to extend 1-1/2 inches into supports, including wood sheathing over framing. Screws for use where nailing is impractical shall be size best suited for purpose. # 2.2.2 Thermoset Decorative Overlay for Semi-Exposed Surfaces Decorative surface of thermally fused polyester or melamine-impregnated web, bonded to substrate and complying with ALA 1992. # 2.2.3 Cabinet Hardware Standard Comply with BHMA A156.9 for items indicated, by referencing BHMA numbers or items referenced to this standard. - 1. Frameless Concealed Hinges (European
Type): BHMA A156.9, B01602, self-closing. - 2. Wire Pulls: Back mounted, 4 inches long, 5/16 inches in diameter. - 3. Catches: Magnetic catches, BHMA A156.9, B03141. - 4. Adjustable Shelf Standards and Supports: BHMA A156.9, B04071; with shelf rests, B04081. - 5. Drawer Slides: Side-mounted, full-extension, zinc-plated steel drawer slides with steel ball bearings, BHMA A156.9, B05091, and rated for the following loads: - a) Box Drawer Slides: 100 lbf. - b) File Drawer Slides: 200 lbf. - c) Aluminum Slides for Sliding Glass Doors: BHMA A156.9, B07063. - d) Door Locks: BHMA A156.11, E07121. #### 00029/11 REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 - e) Drawer Locks: BHMA A156.11, E07041. - f) Exposed Hardware Finishes: For exposed hardware, provide finish that complies with BHMA A156.18 for BHMA finish number indicated. - g) Satin Chromium Plated: BHMA 626 for brass or bronze base; BHMA 652 for steel base. #### 2.2.4 Fabrication, General Complete fabrication, including assembly, finishing, and hardware application, to maximum extent possible, before shipment to Project site. Where necessary for fitting at site, provide ample allowance for scribing, trimming, and fitting. - 1. Interior Woodwork Grade: Provide Custom grade interior woodwork complying with the referenced quality standard. - 2. Shop cut openings to maximum extent possible. Sand edges of cutouts to remove splinters and burrs. - 3. Seal edges of openings in countertops with a coat of varnish. - 4. For trim items wider than available lumber, use veneered construction. Do not glue for width. - 6. Backouts or groove backs of flat trim members and kerf backs of other wide, flat members, except for members with ends exposed in finished work. - 7. Assemble casings in plant except where limitations of access to place of installation require field assembly. # PART 3 EXECUTION # 3.1 DELIVERY, STORAGE AND HANDLING # 3.1.1 Delivery and Storage Keep materials under cover and dry. Protect against exposure to weather and contact with damp or wet surfaces. Stack lumber, plywood and other panels. Provide for air circulation within and around stacks and under temporary coverings. ### 3.1.2 Installation Areas Do not deliver interior finish carpentry until environmental conditions meet requirements specified for installation areas. If finish carpentry must be stored in other than installation areas, store only where environmental conditions meet requirements specified for installation areas. #### 3.1.3 Environmental Limitations Do not deliver or install interior finish carpentry until building is enclosed and weatherproof, wet-work in space is completed and nominally dry, and HVAC system is operating and will maintain temperature and relative humidity at occupancy levels through the remainder of construction period. #### 3.2 PREPARATION # 3.2.1 Substrate Condition Examine substrates with Installer present, for compliance with requirements for installation tolerances and other conditions affecting installation and performance of finish carpentry. Do not proceed with installation until unsatisfactory conditions have been corrected. Clean substrates of projections and substances detrimental to application. Condition finish carpentry and fiberglass paneling to average prevailing humidity conditions in installation areas before installation, for a minimum of 24 hours unless longer conditioning is recommended by manufacturer. #### 3.3 INSTALLATION #### 3.3.1 General Rough Carpentry Fit closely, set accurately to the required lines and levels, and secure in place in a rigid and substantial manner. Spiking, nailing, and bolting shall be done in an approved manner; spikes, nails and bolts shall be of the proper size, and care shall be taken so as not to split the members. Members shall be drilled accurately for bolting; suitable washers shall be provided under heads; and nuts and bolts shall be drawn up tight. Provide backing for cabinets and all other surface mounted items as located on Architectural, Mechanical, Plumbing, and Electrical drawings. #### 3.3.2 Restroom Counters Constructed approximately as indicated. Conceal fastenings where practicable, fir the counter neatly, install in a rigid and substantial manner, and scribe to adjoining surfaces. Provide counter sections in the longest lengths practicable; keep joints in tops to a minimum; and where joints are necessary, provide tight hairline joints drawn up with concealed-type heavy pull-up bolts. Glue joints with water-resistant glue and, in addition, make rigid and substantial with screws, bolts, and other approved fastenings. ### 3.3.3 Breakroom Cabinets - 1. AWI Type of Cabinet Construction: Flush overlay, Custom Grade. - 2. Laminate Cladding for Exposed Surfaces: High-pressure decorative laminate complying with the following requirements: - a. Horizontal Surfaces Other Than Tops: HGS - b. Vertical Surfaces: HGS - c. Edges: HGS - 3. Materials for Semiexposed Surfaces Other Than Drawer Bodies: Thermoset decorative overlay. - d. Drawer Sides and Backs: Thermoset decorative overlay - e. Drawer Bottoms: Thermoset decorative overlay - 4. Colors, Patterns, and Finishes: Provide materials and products that result in colors and textures of exposed laminate surfaces complying with the following requirements: a. Provide architect's selections from laminate manufacturer's full range of colors and finishes as indicated in the drawings. END OF SECTION #### SECTION 07210 # BUILDING INSULATION # PART 1 GENERAL #### 1.1 RELATED DOCUMENTS Drawings and general provisions of Contract, including General and Supplementary Conditions and Division 1 specifications, apply to work of this section. # 1.2 APPLICABLE PUBLICATIONS The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only. The latest issue of the publication shall be used. #### AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) PUBLICATIONS | C423 | Test Method for Sound Absorption and Sound
Absorption Coefficients by the Reverberation
Room Method | |-------|---| | C612 | Mineral Fiber Block and Board Thermal Insulation | | C665 | Mineral Fiber Blanket Thermal Insulation for
Light Frame Construction and Manufactured
Housing | | D828 | Test Method for Tensile Breaking Strength of
Paper and Paperboard | | D4397 | Polyethylene Sheet for Construction,
Industrial, and Agricultural Applications. | | E84 | Surface Burning Characteristics of Building
Materials | | E96 | Test Methods for Water Vapor Transmission of Materials. | | E136 | Test Method for Behavior of Materials in a
Vertical Tube Furnace at 750 degrees
Centigrade. | FEDERAL SPECIFICATIONS (FS): FS HH-B-100B Barrier Material Vapor (For Pipe, Duct and Equipment, Thermal, Insulation) FS HH-I-524C Insulation Board, Thermal (Polystyrene) & Int Am 1 #### 1.3 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01300 SUBMITTALS. SD-01 Data Manufacturers' Descriptive Data:; FIO. - Insulation a. - Vapor barrier b. - Clip fastener c. - d. Duct tape #### SD-13 Certificates Manufacturers' Certificates of Conformance; FIO. - Insulation a. - Vapor barrier b. - Clip fastener c. - d. Duct tape #### 1.3 DELIVERY AND STORAGE Deliver materials to the site in the original sealed wrapping bearing manufacturer's name and brand designation, specification number, type, grade, R-value, and class. Store and handle to protect materials from damage. Do not allow insulation materials to become wet, soiled, or covered with ice or snow. Comply with manufacturer's recommendations for handling, storage, and protection during installation. #### PART 2 **PRODUCTS** #### BATT OR BLANKET INSULATION 2.1 ASTM C665, Type I and II and III; except a flame spread rating of 25 or less and a smoke developed rating of 50 or less when tested in accordance with ASTM E84. Provide thermal resistance value of R=19 in pump house. Provide thermal resistance value as indicated in building 1012. Mechanical or adhesive attachment as recommended by insulation manufacturer. #### 2.2 VAPOR BARRIER ASTM D4397, 6-mil thick polyethylene sheeting, applied to warm side of wall. # 2.3 ACCESSORIES - GENERAL 2.3.1 Insulation bonding adhesive, adhesively attached pin anchors or duct tape, as recommended by insulation manufacturer. #### 2.4 ACOUSTICAL VALUES ASTM C423. #### PART 3 EXECUTION #### 3.1 PREPARATION OF SURFACES Surfaces shall be clean, dry, and free of any projections. #### 3.2 INSTALLATION OF BATT OR BLANKET INSULATION #### 3.2.1 Wall Place batt or blanket insulation between metal studs as indicated. Affix standard 6-mil vapor barrier to the interior (warm-in-winter) side of the construction. Apply insulation around and to the rear of electrical devices. Place insulation between the exterior side of the construction and all pipes. # 3.2.1.1 Installation at metal framing and furring members Size insulation to the width of members spacing. Press friction-fit insulation between the members as recommended by the insulation manufacturer. Cover entire wall with a separate vapor barrier as specified herein. #### 3.2.1 Ceiling Place batt or blanket insulation above ceiling tile in Office Mezzanine, cut to fit over individual tile (23 inch) for easy access and maintenance. Place batt or blanket insulation above GWB ceiling in washroom. Place standard 6-mil vapor barrier to the interior (warm-in-winter) side of the ceiling. Apply insulation around and to the rear of electrical devices. Place insulation between the exterior side of the construction and all pipes. # 3.3 INSTALLATION OF STANDARD 6-MIL VAPOR BARRIER Apply a continuous barrier on the interior side
(warm-in-winter) of all the wall construction. Repair punctures or tears with duct tape. > Carefully seal barrier around all electrical boxes and similar wall penetrations. # 3.4 INSPECTION All insulation and vapor barriers to be left uncovered until the Resident Engineer has inspected the work and given approval to proceed. END OF SECTION #### SECTION 07410 #### PREFORMED METAL ROOFING / METAL SIDING # PART 1 GENERAL #### 1.1 RELATED DOCUMENTS Drawings and general provisions of Contract, including General and Supplementary Conditions and Division 1 Specifications sections, apply to work of this Section. #### 1.2 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. AMERICAN IRON AND STEEL INSTITUTE (AISI) AISI SG-673 (1987) Cold-Formed Steel Design Manual AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | ASTM A 446 | (1993) Steel Sheet, Zinc-Coated (Galvanized) by
the Hot-Dip Process, Structural (Physical)
Quality | |------------|---| | ASTM A 463 | (1994) Steel Sheet, Aluminum-Coated, by the Hot-
Dip Process | | ASTM A 653 | (1998) Standard Specification for Steel Sheet
Zinc-Coated (Galvanized) or Zinc Iron Alloy-
Coated (Galvannealed) by the Hot Dip Process | | ASTM A 792 | (1993a) Steel Sheet, 55% Aluminum-Zinc Alloy-
Coated by the Hot-Dip Process, General
Requirements | | ASTM A924 | (1996) Standard Specification for General Requirements for Sheet Steel, Metallic-Coated by the Hot Dip Process | | ASTM B177 | (1993) Standard Guide for Chromium
Electroplating on Steel for Engineering Use | | ASTM D 522 | (1993a) Mandrel Bend Test of Attached Organic
Coatings | | ASTM D 523 | (1989; R 1993) Specular Gloss | | ASTM D 968 | (1993) Abrasion Resistance of Organic Coatings
by Falling Abrasive | |-------------|--| | ASTM D 1308 | (1987; R 1993) Effect of Household Chemicals on
Clear and Pigmented Organic Finishes | | ASTM D 2244 | (1993) Calculation of Color Differences from Instrumentally Measured Color Coordinates | | ASTM D 2247 | (1994) Testing Water Resistance of Coatings in 100% Relative Humidity | | ASTM D 2794 | (1993) Resistance of Organic Coatings to the Effects of Rapid Deformation (Impact) | | ASTM D 3359 | (1995) Measuring Adhesion by Tape Test | | ASTM D 4214 | (1989) Evaluating the Degree of Chalking of Exterior Paint Films | | ASTM G 23 | (1995) Operating Light-Exposure Apparatus
(Carbon-Arc Type) With and Without Water for
Exposure of Nonmetallic Materials | #### UNDERWRITERS LABORATORIES (UL) UL 580 (1994; Rev through Apr 1995) Tests for Uplift Resistance of Roof Assemblies #### 1.3 DESCRIPTION OF WORK Furnish and install complete, a preformed, prefinished, metal roofing and siding system at pump house to match existing. System includes panels, concealed fasteners, brackets, clips, anchoring devices, structural purlins, spacers and trim, caps, flashing, closures, joint sealer, prefabricated roof curbs, and other components needed for a complete, permanently weatherproof installation. ### 1.4 DESIGN REQUIREMENTS Contract drawings indicate the design loads and the extent and general assembly details of the preformed metal roofing and siding. Members and connections not indicated on the drawings shall be designed by the Contractor. Roofing and siding panels for pump house, components, transitions, prefabricated roof curbs, flashing, trim, and assemblies shall be the products of the same manufacturer as existing. Roofing/siding will be designed to provide the minimum section properties shown with an allowable deflection under design load of L/180. Steel covering design, including section modulus and moment of inertia determinations, will be in accordance with AISI-01. # 1.5 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01300 SUBMITTALS: SD-04 Drawings Preformed Metal Roofing; GA. Metal Siding; GA. Drawings consisting of catalog cuts, design and erection drawings, shop coating and finishing specifications, and other data as necessary to clearly describe design, materials, sizes, layouts, construction details, fasteners, and erection. Drawings shall be accompanied by engineering design calculations for the structural properties of roofing and siding units. SD-13 Certificates Roof; GA. Installation; GA. Accessories; FA. Siding; GA. Certificates attesting that the panels and accessories conform to the requirements specified. Certificate for the roof assembly shall certify that the assembly complies with the material and fabrication requirements specified and is suitable for the installation at the indicated design slope. Certified laboratory test reports showing that the sheets to be furnished are produced under a continuing quality control program and that a representative sample consisting of not less than 5 pieces has been tested and has met the quality standards specified for factory color finish. Mill certification for structural bolts and roof covering. SD-14 Samples Accessories; GA. One sample of each type of flashing, trim, closure, cap and similar items. Size shall be sufficient to show construction and configuration. Roof Panels; GA. Siding; GA. Two samples showing finish to be used, 2 foot long by panel width. Fasteners; FIO. Two samples of each type to be used with statement regarding intended use. If so requested, random samples of bolts, nuts, and washers as delivered to the job site shall be taken in the presence of the Contracting Officer and provided to the Contracting Officer for testing to establish compliance with specified requirements. Gaskets and Insulating Compounds; FIO. Sealant; FIO. #### 1.6 DELIVERY AND STORAGE Materials shall be delivered to the site in a dry and undamaged condition and stored out of contact with the ground. Materials shall be covered with weathertight coverings and kept dry. Storage accommodations for roof and wall covering shall provide good air circulation and protection from surface staining. #### 1.7 WARRANTIES The Contractor shall provide a weather tight warranty for the pump house metal roofing and siding for a period of 20 years including assembly. Warranty to also include, 10 years against the wear of color finish, and 10 years against the corrosion of fasteners caused by ordinary wear and tear by the elements. The warranties shall start upon final acceptance of the work or the date the Government takes possession, whichever is earlier. # 1.8 QUALITY ASSURANCE General All proposed roofing and siding systems shall meet or exceed all physical properties of the system specified. Installer Qualifications The installer shall have had a minimum of five years experience in the installation of metal roofing/siding. The installer through the Contractor shall submit in writing to the Contracting Officer the names and addresses of five previous standing seam metal roofing projects of comparable size, scope, and complexity. The manufacturer must approve the installer of the system and corrugated metal panel roofing/siding system. The installer of the system must at all times have a representative on site who is completely familiar with entire system and who has experience in a minimum of three projects of similar size and scope. Manufacturer Qualifications The manufacturer shall have had at least ten years experience in architectural roofing, and the specified panel system itself shall have been in use for a minimum of ten years. The manufacturer shall have a permanent, stationary, indoor production facility. The manufacturer shall submit the names and addresses of five previous standing seam metal roofing projects and corrugated metal roofing/siding projects of comparable size, scope, and complexity. Manufacturer's specifications or instructions for installing materials, equipment or other appurtenances furnished as part of this contact shall govern the installation except as modified herein and as shown on the drawings. #### PART 2 PRODUCTS #### 2.1 Material for Pump House: Provide preformed metal roofing and siding having as a minimum, the following characteristics: - a. Gauge: 24 steel conforming to ASTM A446, minimum yield 33,000 psi - b. Pattern: Ribbed with configuration for overlapping adjacent sheets or interlocking ribs for securing adjacent sheets. Provide panels with three ribs: two outboard and one intermediate. - c. Rib Depth: 1 % inch, snap locked. Mechanically field crimped is not acceptable. - d. Panel Width: 16 inches. - e. Lengths: Maximum length from ridge to eave with no panel splices. #### 2.2 Finishes: Coating: Galvanized ASTM A446, minimum 0,90oz of zinc per square foot, total both sides; aluminized, conforming to ASTM A463, minimum 0.65 oz of aluminum per square foot, total both sides or Galvalume, conforming to ASTM A792, minimum 0.55 oz of aluminum-zinc alloy per square foot. # 2.3 Exterior and Interior Paint Finish: Provide base primer and baked on silicone modified polyester finish coat. Exterior color of pumphouse shall be Federal Standard 595A, X0099. The interior and exterior color finish shall meet the test requirements specified below. The manufacturer shall have conducted tests on previously manufactured sheets of the same type and finish as proposed for the project. The term "appearance of base metal" refers to the metal coating on steel base. - a. Salt Spray Test: A sample of the sheets shall withstand a salt spray test for a minimum of 1000 hours in accordance with ASTM B177, including the scribe requirements in the test, the coating shall
contain blisters larger than No. 8 on no more than 20% of exposed area. - b. Formability Test: When subjected to a 180 degree bend over 1/16 inch diameter mandrel in accordance with ASTM D 522, exterior coating film shall show no evidence of fracturing to the naked eye. - c. Accelerated Weathering: Chalking resistance and Color range: A sample of the sheets shall withstand a weathering test a minimum - of 2000 hours in accordance with ASTM G23, using a Type D apparatus, without cracking peeling, blistering, loss of adhesion of the protective coating, or corrosion of the base metal with a pen knife blade or similar instrument shall be considered as an area indicating loss of adhesion. After the 2000 hour weatherometer test, exterior coating change shall not exceed 2 NBS units in accordance with ASTM D2244 - d. Humidity Test: When subjected to a humidity cabinet test in accordance with ASTM D 2247 for 1000 hours, a scored panel shall show no signs of blistering, cracking, creepage, or corrosion. - e. Abrasion Resistant Test: When subjected to the falling sand test in accordance with ASTM D968, the coating system shall withstand a minimum of 30 liters of sand before the appearance of the base metal. - f. Pollution Resistance: Coating shall show no visual effects when immersion tested in a 10 percent hydrochloric acid solution for 24 hours in accordance with ASTM D 1308. - 2.4 Fastening System: Pumphouse: Concealed, galvanized, 18 gauge steel clips formed to accommodate expansion and contraction without detrimental effect on roof panels. Conform to ASTM A446 Grade A. Provide end-lap backer plates to stiffen joints and provide more thickness for fastening screws. - 2.5 Uplift Rating: Underwriters Laboratories Class 90 wind uplift performance: Since UL 580 standard test does not represent installed conditions, provide additional engineering to insure the necessary additional safety factors are used to govern the actual installation. Assure the complete roof system assembly is detailed to represent actual field installed conditions. - 2.6 Preformed End Closures: Waterproof semi-rigid crosslinked polyethylene foam shaped to fit tightly the panel configuration. Molded closure strips shall be closed-cell or solid cell synthetic rubber or neoprene, polyvinyl chloride premolded to match configuration of the covering and shall not absorb or retain water. - 2.7 ISealants: Provide sealant type to be factory applied onto the female lapping rib of the standing seam panel. Minimum service life of 20 years. In addition, provide gunnable sealant for field conditions to meet Fed Spec TT-S-00230C. - 2.8 Miscellaneous Accessories: Except as noted on the drawings and in the specifications, fabricated from 24 gauge (minimum) metal, finish same as roof and siding panels except pumphouse roof where exposed to view from grade then provide a factory finish, color to be Federal Standard 595A, X0099; trim, fascia, closure pieces, ridge, rakes, flashings, etc., to provide a complete and waterproof installation. Provide attachment hardware as necessary. - 2.9 Flashings: Custom fabricated from material same as roof panels conforming to standards set forth in SMACNA, 24 gauge unless otherwise noted. Dissimilar materials will not be allowed. - 2.10 Fasteners: Pumphose: As recommended by the system manufacturer, zinc coated or cadmium plated steel, where hidden or concealed. Provide stainless steel with weather seal washers where exposed. The system shall have no fasteners penetrating the panels except at the ridge and/or cove. - 2.11 Insulation: Refer to Section 07220, ROOF INSULATION, 07210, BUILDING INSULTATION, for specific requirements. #### PART 3 EXECUTION #### 3.1 INSTALLATION Installation shall be as specified and in accordance with the approved erection instructions and drawings to produce a weather tight structure. Dissimilar materials, which are not compatible when contacting each other, shall be insulated from each other by means of gaskets or insulating compounds. Improper or mislocated drill holes shall be plugged with an oversize screw fastener and gasketed washer; however, sheets with an excess of such holes or with such holes in critical locations shall not be used. Exposed surfaces and edges shall be kept clean and free from sealant, metal cuttings, hazardous burrs, and other foreign material. Stained, discolored, or damaged sheets shall be removed from the site. # 3.1.1 Wall Covering and Roof Covering Wall covering shall be applied with the longitudinal configurations in the vertical position. Roof covering shall be applied with the longitudinal configurations in the direction of the roof slope. Accessories shall be fastened into framing members, except as otherwise approved. Closure strips shall be provided as indicated and where necessary to provide weathertight construction. # 3.1.1.1. Fastening of Roofing and Siding Panels Panels shall be fastened to framing members with concealed fastening clips or other concealed devices standard with the manufacturer. Spacing of fastening clips and fasteners shall be in accordance with the manufacturer's written instructions insofar as the maximum fastener spacings specified are not exceeded and provided such standard practice will result in a structure which will be free from water leaks and meet design requirements. Spacing of fasteners and anchor clips along the panel and interlocking ribs shall not exceed 12 inches on center except when otherwise approved. Fasteners shall not puncture covering sheets except as approved for flashing, closures, and trim; 00029/11 REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 exposed fasteners shall be installed in straight lines. Interlocking ribs shall be sealed with factory-applied sealant. Joints at accessories shall be sealed. # 3.1.2 Insulation Installation Insulation shall be installed as indicated and in accordance with Section 07220 ROOF INSULATION. # 3.1.3 Clean-up Sweep roof of all debris on completion of installation. Job shall be left clean and in a weather tight condition. END OF SECTION SECTION 07600 # SHEET METALWORK, GENERAL # PART 1 GENERAL #### 1.1 RELATED DOCUMENTS Drawings and general provisions of Contract, including General and Supplementary Conditions and Division 1 specifications, apply to work of this section. #### 1.2 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. # AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | ASTM A 167 | (1996) Stainless and Heat-Resisting Chromium-
Nickel Steel Plate, Sheet, and Strip | |-------------|---| | ASTM B 32 | (1995b) Solder Metal | | ASTM B 209 | (1995) Aluminum and Aluminum-Alloy Sheet and Plate | | ASTM B 221 | (1996) Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Shapes, and Tubes | | ASTM B 370 | (1992) Copper Sheet and Strip for Building Construction | | ASTM D 822 | (1995) Conducting Tests on Paint and Related
Coatings and Materials Using Filtered Open-Flame
Carbon-Arc Light and Water Exposure Apparatus | | ASTM D 3656 | (1994) Insect Screening and Louver Cloth Woven from Vinyl-Coated Glass Yarns | | ASTM E 96 | (1995) Water Vapor Transmission of Materials | ### INSECT SCREENING WEAVERS ASSOCIATION (ISWA) ISWA IWS 089 (1990) Recommended Standards and Specifications for Insect Wire Screening (Wire Fabric) SHEET METAL AND AIR CONDITIONING CONTRACTORS NATIONAL ASSOCIATION (SMACNA) SMACNA-02 (1993) Architectural Sheet Metal Manual # 1.3 GENERAL REQUIREMENTS 00029/11 REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 > Sheet metalwork shall be accomplished to form weathertight construction without waves, warps, buckles, fastening stresses or distortion, and shall allow for expansion and contraction. # 1.3.1 Coordination Cutting, fitting, drilling, and other operations in connection with sheet metal required to accommodate the work of other trades shall be performed by sheet metal mechanics. Installation of sheet metal items used in conjunction with roofing shall be coordinated with roofing work to permit continuous roofing operations. #### 1.4 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01300 SUBMITTALS: SD-04 Drawings Materials; GA. Drawings of sheet metal items showing weights, gauges or thicknesses; types of materials; expansion-joint spacing; fabrication details; and installation procedures. # 1.5 DELIVERY, STORAGE, AND HANDLING Materials shall be adequately packaged and protected during shipment and shall be inspected for damage, dampness, and wet-storage stains upon delivery to the job site. Materials shall be clearly labeled as to type and manufacturer. Sheet metal items shall be carefully handled to avoid damage. Materials shall be stored in dry, ventilated areas until immediately before installation. # PART 2 PRODUCTS ### 2.1 MATERIALS Lead, lead-coated metal, and galvanized steel shall not be used. Any metal listed by SMACNA-02 for a particular item may be used, unless otherwise specified or indicated. Materials shall conform to the requirements specified below and to the thicknesses and configurations established in SMACNA-02. Different items need not be of the same metal, except that if copper is selected for any exposed item, all exposed items shall be copper. # 2.1.1 Accessories Accessories and other items essential to complete the sheet metal installation, though not specifically indicated or specified, shall be provided. #### 2.1.2 Aluminum Extrusions ASTM B 221, Alloy 6063, Temper T5. #### 2.1.3 Sealant Unless otherwise specified, sealant shall be an
elastomeric weather resistant sealant as specified in Section 07900 JOINT SEALING. #### 2.1.4 Fasteners Fasteners shall be compatible with the fastened material and shall be the type best suited for the application. 2.1.5 Aluminum Alloy Sheet and Plate ASTM B 209, form, alloy, and temper appropriate for use. 2.1.6 Copper ASTM B 370, Temper H 00. 2.1.7 Stainless Steel ASTM A 167, Type 302 or 304; fully annealed, dead soft temper. 2.1.8 Solder ASTM B 32, 95-5 tin-antimony. - 2.1.9 Through-Wall Flashing - a. Electro-sheet copper not less than 5 ounces, factory coated both sides with acid- and alkali-resistant bituminous compound not less than 6 ounces per square foot or factory covered both sides with asphalt-saturated cotton fabric, asphalt saturated glass-fiber fabric, or with 40 pound reinforced kraft paper bonded with asphalt. - b. Stainless steel, Type 304, not less than 0.003 inch thick, completely encased by and permanently bonded on both sides to 50 pound high strength bituminized crepe kraft paper, using hot asphalt, heat, and pressure. - c. Three-ounce copper sheet, with 2 mils of dense, clear, polyethylene sheet bonded to each side of the copper. - d. Non-reinforced, waterproof, impermeable extruded elastomeric single ply sheeting not less than 30 mils thick. - e. Other through-wall flashing material may be used provided the following performance criteria are met. - (1) No cracking or flaking when bent 180 degrees over a 1/32-inch mandrel and rebent at the same point over the same mandrel in an opposite direction at 32 degrees F. - (2) Water vapor permeability not more than 115 ng per Paper second per square meter (2 perms) when tested in accordance with ASTM E 96. - (3) Minimum breaking strength of 90 pounds per inch width in the weakest direction when tested in accordance with ASTM D 828. - (4) No visible deterioration after being subjected to a 400-hour direct weathering test in accordance with ASTM D 822. - (5) No shrinkage in length or width and less than 5 percent loss of breaking strength after a 10-day immersion, per ASTM D 543, in 5 percent (by weight) solutions, respectively, of sulfuric acid, hydrochloric acid, sodium hydroxide or saturated lime (calcium hydroxide). #### PART 3 EXECUTION #### 3.1 GENERAL Items such as gutters, downspouts and louvers shall be fabricated in conformance with SMACNA-02 and as indicated. Unless otherwise specified or indicated, exposed edges shall be folded back to form a 1/2 inch hem on the concealed side, and bottom edges of exposed vertical surfaces shall be angled to form drips. #### 3.2 EXPANSION JOINTS Expansion joints shall be provided as specified in SMACNA-02. Expansion joints in continuous sheet metal shall be provided at 40 foot intervals for copper and stainless steel and at 32 foot intervals for aluminum, except extruded aluminum gravel stops and fasciae which shall have expansion joints at not more than 12 foot spacing. Joints shall be evenly spaced. An additional joint shall be provided where the distance between the last expansion joint and the end of the continuous run is more than half the required interval spacing. ### 3.3 PROTECTION OF ALUMINUM Aluminum shall not be used where it will be in contact with copper or where it will contact water, which flows over copper surfaces. Aluminum that will be in contact with wet or pressure-treated wood, mortar, concrete, masonry, or ferrous metals shall be protected against galvanic or corrosive action by one of the following methods: #### 3.3.1 Paint 00029/11 REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 Aluminum surfaces shall be solvent cleaned and given one coat of zinc-molybdate primer and one coat of aluminum paint. # 3.3.2 Nonabsorptive Tape or Gasket Nonabsorptive tape or gasket shall be placed between the adjoining surfaces and cemented to the aluminum surface using cement compatible with aluminum. #### 3.4 CONNECTIONS AND JOINTING # 3.4.1 Soldering Soldering shall apply to copper, and stainless steel items. Edges of sheet metal shall be pretinned before soldering is begun. Soldering shall be done slowly with well-heated soldering irons so as to thoroughly heat the seams and completely sweat the solder through the full width of the seam. Edges of stainless steel to be pretinned shall be treated with soldering acid flux. Soldering shall follow immediately after application of the flux. Upon completion of soldering, the acid flux residue shall be thoroughly cleaned from the sheet metal with a water solution of washing soda and rinsed with clean water. # 3.4.2 Riveting Joints in aluminum sheets 0.040 inch or less in thickness shall be mechanically made. # 3.4.3 Seaming Flat-lock and soldered-lap seams shall finish not less than 1 inch wide. Unsoldered plain-lap seams shall lap not less than 3 inches unless otherwise specified. Flat seams shall be made in the direction of the flow. # 3.5 CLEATS A continuous cleat shall be provided where indicated or specified to secure loose edges of the sheet metalwork. Butt joints of cleats shall be spaced approximately 1/8 inch apart. The cleat shall be fastened to supporting wood construction with nails evenly spaced not over 12 inches on centers. Where the fastening is to be made to concrete or masonry, screws shall be used and shall be driven in expansion shields set in concrete or masonry. # 3.6 GUTTERS AND DOWNSPOUTS Gutters and downspouts shall be installed as indicated, if required. Gutters shall be supported by cleats spaced not less than 36 inches apart. Downspouts shall be rigidly attached to the building. Supports for downspouts shall be spaced according to manufacturer's recommendations. ## 3.7 FLASHINGS Flashings shall be installed at locations indicated and as specified below. Sealing shall be according to the flashing manufacturer's recommendations. Flashings shall be installed at intersections of roof with vertical surfaces and at projections through roof, except that flashing for heating and plumbing, including piping, roof, and floor drains, and for electrical conduit projections through roof or walls are specified in other sections. Except as otherwise indicated, counter flashings shall be provided over base flashings. Perforations in flashings made by masonry anchors shall be covered up by an application of bituminous plastic cement at the perforation. Flashing shall be installed on top of joint reinforcement. Flashing shall be formed to direct water to the outside of the system. # 3.7.1 Stepped Flashing Stepped flashing shall be installed where sloping roofs surfaced with shingles abut vertical surfaces. Separate pieces of base flashing shall be placed in alternate shingle courses. ## 3.7.2 Through-Wall Flashing Through-wall flashing includes sill, lintel, and spandrel flashing. The flashing shall be laid with a layer of mortar above and below the flashing so that the total thickness of the two layers of the mortar and flashing are the same thickness as the regular mortar joints. Flashing shall not extend further into the masonry backup wall than the first mortar joint. Joints in flashing shall be lapped and sealed. Flashing shall be one piece for lintels and sills. ## 3.7.2.1 Lintel Flashing Lintel flashing shall extend the full length of lintel. Flashing shall extend through the wall one masonry course above the lintels and shall be bent down over the vertical leg of the outer steel lintel angle not less than 2 inches, or shall be applied over top of masonry and precast concrete lintels. Bedjoints of lintels at control joints shall be underlaid with sheet metal bond breaker. ## 3.7.2.2 Sill Flashing Sill flashing shall extend the full width of the sill and not less than 4 inches beyond ends of sill except at control joint where the flashing shall be terminated at the end of the sill. 3.7.3 Installation of Louvers: louvers shall be rigidly attached to the supporting construction. The installation shall be rain-tight. Louver screen shall be installed as indicated. # 3.8 FASCIA Fascia shall be fabricated and installed as indicated and in accordance with SMACNA-02. # 3.9 CONTRACTOR QUALITY CONTROL The Contractor shall establish and maintain a quality control procedure for sheet metal used in conjunction with roofing to assure compliance of the installed sheet metalwork with the contract requirements. Any work found not to be in compliance with the contract shall be promptly removed and replaced or corrected in an approved manner. Quality control shall include, but not be limited to, the following: - a. Observation of environmental conditions; number and skill level of sheet metal workers; condition of substrate. - b. Verification of compliance of materials before, during, and after installation. - c. Inspection of sheet metalwork for proper size and thickness, fastening and joining, and proper installation. The actual quality control observations and inspections shall be documented and a copy of the documentation furnished to the Contracting Officer at the end of each day. END OF SECTION ## SPRAYED ON FIREPROOFING ## PART 1 - GENERAL ## 1.1 RELATED DOCUMENTS Drawings and general conditions of Contract, including General and Supplementary Conditions and Division 1 specifications, apply to work of this section ## 1.2 APPLICABLE PUBLICATIONS: The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only. The latest issue of the publications shall be used. American Society for Testing and Materials (ASTM) Publications: | D 2240 | Rubber Property - Durometer Hardness | |--------|---| | E 84 | Surface Burning Characteristics of Building Materials | | E 119 | Fire Tests of Building Construction and Materials | | E 605 | Thickness and Density of Sprayed Fire-
Resistive Material Applied to Structural
Members |
 E 736 | Cohesion/Adhesion of Sprayed Fire-Resistive
Materials Applied to Structural Members | | E 759 | Effect of Deflection on Sprayed Fire-Resistive material Applied to Structural Members | | E 760 | Effect of Impact on Bonding of Srayed Fire
Resistive Material Applied to Structural
Members | | E 761 | Compressive Strength of Sprayed Fire-Resistive Material Applied to Structural Members | | E 859 | Air Erosion of Sprayed Fire-Resistive
Materials Applied to Structural Members | | E 937 | Corrosion of Steel by Sprayed Fire-Resistive
Material Applied to Structural Members | | E 1042 | Acoustically Absorptive Materials | REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 G 21-75 Resistance of Synthetic Polymer Materials to Fungi. Underwriters' Laboratories, Inc. (UL) UL-05 Fire Resistance Directory UL-263 Fire Tests of Building Construction and Materials Uniform Building Code (UBC) Standard No. 43-8 Thickness and Density Determination for Spray-Applied Fireproofing Occupational Safety and Health Administration (OSHA) #### 1.3 WORK INCLUDED - 1.3.1 Work under this section consists of the furnishing of all labor, materials, equipment and services necessary for, and incidental to, the complete and proper installation of all spray-applied fireproofing and related work as shown on the drawings or specified herein, and in accordance with all applicable requirements of the contract documents. - 1.3.2 The material and installation shall conform to the applicable building code requirements of all authorities having jurisdiction. - 1.4 QUALITY ASSURANCE - 1.4.1 Fireproofing work shall be performed by a firm acceptable to the sprayed fireproofing material manufacturer. - 1.4.2 Products, execution and fireproofing thickness' shall conform to the applicable code requirements for the fire-resistance ratings called for. ## 1.5 SUBMITTALS: Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01300 SUBMITTALS SD-01 DATA Fireproofing Material; GA Data identifying performance characteristics of fireproofing material. Data shall include recommended application requirements and indicate thickness of fireproofing that must be applied to achieve each required fire rating. SD-09 REPORTS UL Test Assembly; FIO Reports and test records, attesting that the fireproofing material conforms to the specified requirements. Each test report shall conform to the report requirements specified by the test method. Field Tests; FIO Test reports documenting results of tests on the applied material in the project. Reports shall inloude defects identified, repair procedures, and results of the retests when required. SD-13 CERTIFICATES Installer Qualifications; FIO Manufacturer's certificate that each listed installer is qualified and trained to install the specified fireproofing. Evidence that each fireproofing installer has had a minimum of 3 years experience in installing the specified type of fireproofing. Surface Acceptability; FIO Manufacturer's certification that surfaces to be protected has been inspected and are acceptable to receive spray-applied fireproofing. The statement shall list the structural members and the areas that have been inspected and certified. Manufacturer's Inspection; FIO Manufacturer's certification that the spray-applied fireproofing in the entire project complies with the manufacturer's criteria and recommendations. SD-14 SAMPLES Spray-Applied Fireproofing; FIO One sample panel 18 inches square, for each specified type of fireproofing. - 1.6 DELIVERY, STORAGE AND HANDLING - 1.6.1 Material shall be delivered in original unopened packages, fully identified as to manufacturer, brand or other identifying data, and bearing the proper Underwriters' Laboratories, Inc. labels for fire hazard and fire-resistance classification. - 1.6.2 Material shall be stored (above ground), under cover and in a dry location until ready for use. All bags that have been exposed to water before use shall be found unsuitable for use and discarded. Stock of material is to be rotated and used prior to its expiration date. ## 1.7 PROJECT/SITE CONDITIONS - 1.7.1 A minimum temperature of $40^{\circ}F$ for air and substrate must be maintained for 24 hours before, during, and for 24 hours after application of the sprayed fireproofing. If necessary for job progress, Contractor shall provide enclosures with heat to maintain temperatures. - 1.7.2 Contractor shall provide ventilation to allow for proper drying of the fireproofing during and subsequent to its application. In poorly ventilated areas lacking natural ventilation, forced air ventilation shall be employed as to cause the material to become substantially dry within 30 days after application. ## 1.8 FIRE RESISTANCE RATING 1.8.1 Fire resistance ratings shall be in accordance wit the fire rated assemblies listed in UL-05. Proposed materials not listed in UL-05 shall have fire resistance ratings at least equal to the UL-05 ratings as determined by an approved independent testing laboratory based on tests specified in UL 263 or ASTM E 119. ## 1.9 EXTENT OF FIREPROOFING All structural steel indicated on the drawings shall be protected with spray-applied fireproofing to a fire resistance hour-rating of 1 hour. Thickness of fire proofing to be $\frac{1}{2}$ inch per UL Design N708. ## PART 2 - PRODUCTS ## 2.1 MATERIALS - 2.1.1 Material shall be a medium density, factory-blended cementitious fireproofing, suitable for exposed interior applications, and in compliance with the following performance test criteria. - a. Dry Density: The field density shall be measured in accordance with ASTM E605. Minimum average density shall be that listed in the UL Fire Resistance Directory, ICBO Evaluation Report, or as required by the authority having jurisdiction. - b. Deflection: Material shall not crack or delaminate from the surface to which it is applied when tested in accordance with ASTM E759. - c. Bond Impact: Material subject to impact tests in accordance with ASTM E760 shall not crack or delaminate from the surface to which it is applied. - d. Bond Strength: Fireproofing, when tested in accordance with ASTM E736, shall have a minimum average bond strength of 434 psf. - e. Air Erosion: Maximum allowable weight loss of the fireproofing material shall be $0.005~{\rm gm/ft^2}$ when tested in accordance with ASTM E859. - f. Compressive Strength: The fireproofing shall not deform more than 10 percent when subjected to compressive forces of 5000 psf when tested in accordance with ASTM E761. - g. Corrosion Resistance: Steel with applied fireproofing shall be tested in accordance with ASTM E937 and shall not promote corrosion of steel. - h. Durometer Hardness. The fireproofing material shall have a minimum Durometer Hardness value of 9 when tested in accordance with ASTM D2240. - i. Surface Burning Characteristics: Material shall exhibit the following surface burning characteristics when tested in accordance with ASTM E84. - 2.2.2 The sprayed fireproofing material shall have been tested and reported by UL in accordance with the procedures of ASTM E119. - 2.2.3 Sprayed fireproofing material and application shall meet requirements of OSHA regulation 29 C.F.R. section 1926.58 which regulates the use of asbestos in construction. - 2.2.4 Mixing water shall be clean, fresh and suitable for domestic consumption and free from such amounts of mineral or organic substances as would affect the set of the fireproofing material. - 2.2.5 The fireproofing product shall be tested in accordance with ASTM Standard G-21-75, and shall show resistance to mold growth when inoculated with aspergilus riger, and mixed spore-cultures. (Tappi T487-M54 and ASTM G-21-80). Mold inhibitor shall be added by the manufacturer. # PART 3 - EXECUTION ## 3.1 PREPARATION - 3.1.1 All surfaces to receive sprayed fireproofing shall be free of oil, grease, paints or primers, loose mil scale, dirt or other foreign substances which may impair proper adhesion of the fireproofing to the substrate. Where necessary, cleaning of surfaces to receive fireproofing shall be the responsibility of the Contractor and as outlined in Section 05120, "Structural Steel." - 3.1.2 Prior to application of fireproofing, clips, hangers, support sleeves and other attachments required to penetrate the fireproofing shall be in place. - 3.1.3 Ducts, piping, equipment or other suspended matter which would interfere with application of fireproofing materials shall not be positioned until fireproofing work is complete. - 3.1.4 Prior to application of fireproofing to the steel, concrete work above shall be complete. - 3.1.5 Provide masking, drop cloths or other satisfactory coverings so as to prevent overspray of sprayed fireproofing. - 3.1.6 Cementitious fireproofing is slippery when wet. The Contractor and applicator shall be responsible for posting appropriate cautionary SLIPPERY WHEN WET signs. Signs shall be posted in all areas in contact with wet fireproofing material. In addition, the general contractor shall be responsible for appropriate barriers to prevent entry by non-fireproofing workers into the fireproofing spray and mixer areas or other areas exposed to wet fireproofing material. - 3.1.7 Application of sprayed fireproofing shall not begin until the Contractor and the Fireproofing Applicator have inspected the surfaces to receive fireproofing to determine if surfaces are acceptable to receive the fireproofing material. - 3.2 EXTENT OF APPLICATION - 3.2.1 Spray all structural steel beams that are part of the AFFF and Cell rooms. - 3.3 METHOD OF APPLICATION - 3.3.1 Equipment and application procedure shall conform to the material manufacturer's application instructions. - 3.3.2 All patching and repairing of sprayed fireproofing, due to damage by other trades, shall be performed under this
section and paid for by the trade(s) responsible for the damage. - 3.4 FIELD QUALITY CONTROL - 3.4.1 Tests and Inspections: Sprayed material shall be tested by an approved testing laboratory for thickness and density in accordance with ASTM E 605. - 3.4.2 Density: Take density determinations on each floor from each of the following areas: beam bottom flange, beam web, and an equivalent area from the top of the lower beam flange. Areas showing a density less than specified will be rejected. - 3.4.3 Repair: Respray all test and rejected areas. Conduct final inspection of sprayed areas. Inspect after mechanical, electrical, and other trades have completed work in contact with fire protection material, but before sprayed material is covered. Respray all areas requiring additional fire protective material to provide the required thickness. - 3.5 CLEANING - 3.5.1 After the completion of fireproofing work, application equipment shall be removed. Except as detailed; walls, floors, and other surfaces are to be left in a scraped clean condition. - 3.6 SCHEDULE - 3.6.1 Fire Resistance Rating of structural components shall be as follows: (Assume all members unrestrained) STRUCTURAL HOURLY RATING COMPONENT REQUIREMENT Structural beams 1 hr At AFFF and Cell Rooms END OF SECTION SECTION 07900 ## JOINT SEALING ## PART 1 GENERAL ## 1.1 RELATED DOCUMENTS Drawings and general provisions of Contract, including General and Supplementary Conditions and Division 1 specifications, apply to work of this section. ## 1.2 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. ## AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | ASTM C 509 | (1994) Elastomeric Cellular Preformed Gasket and
Sealing Material | |-------------|--| | ASTM C 570 | (1995) Oil- and Resin-Base Caulking Compound for Building Construction | | ASTM C 734 | (1993) Low-Temperature Flexibility of Latex
Sealants After Artificial Weathering | | ASTM C 834 | (1995) Latex Sealants | | ASTM C 920 | (1994) Elastomeric Joint Sealants | | ASTM C 1085 | (1991) Butyl Rubber-Based Solvent-Release
Sealants | | ASTM C 1184 | (1995) Structural Silicone-Sealants | | ASTM D 1056 | (1991) Flexible Cellular Materials Sponge or Expanded Rubber | | ASTM D 1565 | (1981; R 1990) Flexible Cellular Materials - Vinyl Chloride Polymers and Copolymers (Open-Cell Foam) | | ASTM E 84 | (1996a) Surface Burning Characteristics of Building Materials | # 1.3 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01300 SUBMITTALS: REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 SD-01 Data Backing; FIO. Bond-Breaker; FIO. Sealant; FIO. Manufacturer's descriptive data including storage requirements, shelf life, curing time, instructions for mixing and application, and primer data (if required). A copy of the Material Safety Data Sheet shall be provided for each solvent, primer or sealant material. SD-13 Certificates Sealant; FIO. Certificates of compliance stating that the materials conform to the specified requirements. ## 1.4 ENVIRONMENTAL REQUIREMENTS The ambient temperature shall be within the limits of 40 to 90 degrees F when the sealants are applied. #### 1.4 DELIVERY AND STORAGE Materials shall be delivered to the job in the manufacturer's original unopened containers. The container label or accompanying data sheet shall include the following information as applicable: manufacturer, name of material, formula or specification number, lot number, color, date of manufacture, mixing instructions, shelf life, and curing time at the standard conditions for laboratory tests. Materials shall be handled and stored to prevent inclusion of foreign materials. Materials shall be stored at temperatures between 40 and 90 degrees F unless otherwise specified by the manufacturer. # PART 2 PRODUCTS ## 2.1 BACKING Backing shall be 25 to 33 percent oversize for closed cell and 40 to 50 percent oversize for open cell material, unless otherwise indicated. # 2.1.1 Rubber Cellular rubber sponge backing shall be ASTM D 1056, Type 2, closed cell, Class A $\,$ ## 2.1.2 PVC Polyvinyl chloride (PVC) backing shall be ASTM D 1565, Grade VO 12, round cross section. REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 # 2.1.3 Synthetic Rubber Synthetic rubber backing shall be ASTM C 509, Option I, Type I preformed rods or tubes. ## 2.1.4 Neoprene Neoprene backing shall be ASTM D 1056, closed cell expanded neoprene cord Type 2, Class C, Grade 2C2. ## 2.2 BOND-BREAKER Bond-breaker shall be as recommended by the sealant manufacturer to prevent adhesion of the sealant to backing or to bottom of the joint. ## 2.3 PRIMER Primer shall be non-staining type as recommended by sealant manufacturer for the application. #### 2.4 CAULKING Oil- and resin-based caulking shall be ASTM C 570. ## 2.5 SEALANT # 2.5.1 LATEX Latex Sealant shall be ASTM C 834. ## 2.5.2 ELASTOMERIC Elastomeric sealants shall conform to ASTM C 920 and the following: $\ensuremath{\text{0}}$ - a. Polysulfide Sealant: Type M, Grade NS, Class 25, Uses NT, M, G, A or O. - b. Polyurethane sealant: Grade NS or P, Class 25, Uses T, NT, M, G, A or O. - c. Silicone sealant: Type S or M, Grade NS, Class 25, Uses NT, M, G, A or O. # 2.5.3 ACOUSTICAL Rubber or polymer-based acoustical sealant shall have a flame spread of 25 or less and a smoke developed rating of 50 or less when tested in accordance with ASTM E 84. Acoustical sealant shall have a consistency of 250 to 310 when tested in accordance with ASTM D 217, and shall remain flexible and adhesive after 500 hours of accelerated weathering as specified in ASTM C 734, and shall be non-staining. REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 2.5.4 BUTYL Butyl sealant shall be ASTM C 1085. ## 2.5.5 PREFORMED Preformed sealant shall be polybutylene or isoprene-butylene based pressure sensitive weather resistant tape or bead sealant capable of sealing out moisture, air and dust when installed as recommended by the manufacturer. At temperatures from minus 34 to plus 71 degrees C, (30 to plus 160 degrees F,) the sealant shall be non-bleeding and shall have no loss of adhesion. # 2.5.5.1 Tape Tape sealant: cross-section dimensions shall be as required to fill joint indicated. REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 2.5.5.2 Bead Bead sealant: cross-section dimensions shall be as required to fill joint indicated. ## 2.5.5.3 Foam Strip Foam strip shall be polyurethane foam; cross-section dimensions shall be as required to fill joint indicated. Foam strip shall be capable of sealing out moisture, air, and dust when installed and compressed as recommended by the manufacturer. Service temperature shall be minus 40 to plus 275 degrees F. Untreated strips shall be furnished with adhesive to hold them in place. Adhesive shall not stain or bleed into adjacent finishes. Treated strips shall be saturated with butylene waterproofing or impregnated with asphalt. ## 2.6 SOLVENTS AND CLEANING AGENTS Solvents, cleaning agents, and accessory materials shall be provided as recommended by the manufacturer. #### PART 3 EXECUTION #### 3.1 GENERAL ## 3.1.1 Surface Preparation The surfaces of joints to receive sealant or caulk shall be free of all frost, condensation and moisture. Oil, grease, dirt, chalk, particles of mortar, dust, loose rust, loose mill scale, and other foreign substances shall be removed from surfaces of joints to be in contact with the sealant. Oil and grease shall be removed with solvent and surfaces shall be wiped dry with clean cloths. For surface types not listed below, the sealant manufacturer shall be contacted for specific recommendations. # 3.1.2 Concrete and Masonry Surfaces Where surfaces have been treated with curing compounds, oil, or other such materials, the materials shall be removed by sandblasting or wire brushing. Laitance, efflorescence and loose mortar shall be removed from the joint cavity. ## 3.1.3 Steel Surfaces Steel surfaces to be in contact with sealant shall be sandblasted or, if sandblasting would not be practical or would damage adjacent finish work, the metal shall be scraped and wire brushed to remove loose mill scale. Protective coatings on steel surfaces shall be removed by sandblasting or by a solvent that leaves no residue. REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 3.1.4 Wood Surfaces Wood surfaces to be in contact with sealants shall be free of splinters and sawdust or other loose particles. ## 3.2 APPLICATION #### 3.2.1 Masking Tape Masking tape shall be placed on the finish surface on one or both sides of a joint cavity to protect adjacent finish surfaces from primer or sealant smears. Masking tape shall be removed within 10 minutes after joint has been filled and tooled. ## 3.2.2 Backing Backing shall be installed to provide the indicated sealant depth. The installation tool shall be shaped to avoid puncturing the backing. ## 3.2.3 Bond-Breaker Bond-breaker shall be applied to fully cover the bottom of the joint without contaminating the sides where sealant adhesion is required. ## 3.2.4 Primer Primer shall be used on concrete masonry units, wood, or other porous surfaces in accordance with instructions furnished with the sealant. Primer shall be applied to the joint surfaces to be sealed. Surfaces adjacent to joints shall not be primed. # 3.2.5 Sealant Sealant shall be used before expiration of shelf life. Multicomponent sealants shall be mixed according to manufacturer's printed instructions. Sealant in guns shall be
applied with a nozzle of proper size to fit the width of joint. Joints shall be sealed as detailed in the drawings. Sealant shall be forced into joints with sufficient pressure to expel air and fill the groove solidly. Sealant shall be installed to the indicated depth without displacing the backing. Unless otherwise indicated, specified, or recommended by the manufacturer, the installed sealant shall be dry tooled to produce a uniformly smooth surface free of wrinkles and to ensure full adhesion to the sides of the joint; the use of solvents, soapy water, etc., will not be allowed. Sealants shall be installed free of air pockets, foreign embedded matter, ridges and sags. Sealer shall be applied over the sealant when and as specified by the sealant manufacturer. ## 3.3 CLEANING The surfaces adjoining the sealed joints shall be cleaned of smears and other soiling resulting from the sealant application as work progresses. END OF SECTION SECTION 08110 ## STEEL DOORS AND FRAMES ## PART 1 GENERAL ## 1.1 RELATED DOCUMENTS Drawings and general provisions of Contract, including General and Supplementary Conditions and Division 1 specifications, apply to work of this section. ## 1.2 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. ## AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | ASTM C 236 | (1993) Steady State Thermal Performance of | |------------|--| | | Building Assemblies by Means of Guarded Hot **** | | ASTM E 283 | (1991) Determining the Rate of Air Leakage
Through Exterior Windows, Curtain Walls, and
Doors Under Specified Pressure Differences | | | Across the Specimen | # DOOR AND HARDWARE INSTITUTE (DHI) | DHI A115.1G (1994) | Installation | Guide for | Doors and | Hardware | |--------------------|--------------|-----------|-----------|----------| |--------------------|--------------|-----------|-----------|----------| ## STEEL DOOR INSTITUTE (SDOI) | SDOI SDI-100 | (1991) Standard Steel Doors and Frames | |--------------|--| | SDOI SDI-106 | (1996) Standard Door Type Nomenclature | | SDOI SDI-107 | (1984) Hardware on Steel Doors (Reinforcement - Application) | #### NATIONAL ASSOCIATION OF ARCHITECTURAL METAL MANUFACTURERS (NAAMM) | HMMA 862 | (1987) Hollow Metal Manual; Section: Guide | |----------|---| | | Specifications for Commercial Security Hollow | | | Metal Doors and Frames | ## NATIONAL FIRE PROECTION ASSOCIATION (NFPA) | NFPA | 80 | (1995) | Fire | Doors | and | Wind | dows | | |------|-----|--------|------|-------|-----|------|------------|--| | NFPA | 252 | (1995) | Fire | Tests | of | Door | Assemblies | | REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 > NFPA 257 (1996) Fire Tests for Window and Glass Block Assemblies ## 1.3 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01300 SUBMITTALS: ## SD-04 Drawings Steel Doors and Frames; GA. Drawings using standard door type nomenclature in accordance with SDOI SDI-106 indicating the location of each door and frame, elevation of each model of door and frame, details of construction, method of assembling sections, location and extent of hardware reinforcement, hardware locations, type and location of anchors for frames, and thicknesses of metal. Drawings shall include catalog cuts or descriptive data for the doors, frames, and weatherstripping including air infiltration data and manufacturers printed instructions. ## SD-09 Reports Fire Rated Doors; GA A letter by a nationally recognized testing laboratory which identifies the product manufacturer, type, and model, certifying that the laboratory has tested a sample assembly in accordance with NFPA 252 and issues a current list for same. ## SD-13 Certificates Fire Rated Doors; GA Thermal Insulated Doors; GA - a. Certification of Oversized Fire Doors: Certificates of compliance in accordance with the requirements of NFPA 252 for fire doors exceeding the sizes for which label service is available. - b. Certification of Thermal Insulating Rating: Certification or test report for thermal insulated doors shall show compliance with the specified requirements. The certification, or test report, shall list the parameters and the type of hardware and perimeter seals used to achieve rating. ## 1.4 DELIVERY AND STORAGE During shipment, welded unit type frames shall be strapped together in pairs with heads at opposite ends or shall be provided with temporary steel spreaders at the bottom of each frame; and knockdown type frames shall be securely strapped in bundles. Materials shall be delivered to REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 > the site in undamaged condition, and stored out of contact with the ground and under a weathertight covering permitting air circulation. Doors and assembled frames shall be stored in an upright position in accordance with DHI Al15.1G. Abraded, scarred, or rusty areas shall be cleaned and touched up with matching finishes. REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 ## 1.5 WARRANTY Manufacturer's standard performance guarantees or warranties that extend beyond a 1 year period shall be provided. ## PART 2 PRODUCTS #### 2.1 DOORS AND FRAMES Doors and frames shall be factory fabricated in accordance with SDOI SDI-100 and the additional requirements specified herein. Door grade shall be heavy duty (Grade II) unless otherwise indicated on the door and door frame schedules. Exterior doors and frames shall be designation G60 galvanized. Indicated interior doors and frames shall be designation A40 galvanized. Doors and frames shall be prepared to receive hardware conforming to the templates and information provided under Section 08700 BUILDERS' HARDWARE. Doors and frames shall be reinforced, drilled, and tapped to receive mortised hinges, locks, latches, and flush bolts as required. Doors and frames shall be reinforced for surface applied hardware. Frames shall be welded type. Door frames shall be furnished with a minimum of three jamb anchors and one floor anchor per jamb. Anchors shall be not less than 18 gauge steel or 7 gauge diameter wire. For wall conditions that do not allow the use of a floor anchor, an additional jamb anchor shall be provided. Rubber silencers shall be furnished for installation into factory predrilled holes in door frames; adhesively applied silencers are not acceptable. Where frames are installed in plaster or masonry walls, plaster guards shall be provided on door frames at hinges and strikes. Reinforcing of door assemblies for closers and other required hardware shall be in accordance with SDOI SDI-100 and the conditions of the fire door assembly listing when applicable. Exterior doors shall have top edges closed flush and sealed against water penetration. ## 2.2 FIRE RATED DOORS Fire rated door assemblies shall bear the listing identification label of a nationally recognized testing laboratory qualified to perform tests of fire door assemblies in accordance with NFPA 252 and having a listing for the tested assemblies. The fire resistance rating shall be ¾ hr rate. Doors exceeding the sizes for which listing label service is offered shall be in accordance with NFPA 252. Listing identification labels shall be constructed and permanently applied by a method which results in their destruction should they be removed. # 2.3 THERMAL INSULATED DOORS The interior of thermal insulated doors shall be completely filled with rigid plastic foam permanently bonded to each face panel. The thermal conductance (U-value) through the door shall not exceed 0.41 btu/hr times sq f times f when tested as an operational assembly in accordance with ASTM C 236 or ASTM C 976. Doors with cellular plastic cores shall have a minimum oxygen index rating of 22 percent when tested in accordance with ASTM D 2863. ## 2.4 WEATHERSTRIPPING Unless otherwise specified in Section 08700 BUILDERS' HARDWARE, weatherstripping shall be as follows: Weatherstripping for head and jamb shall be manufacturer's standard elastomeric type of synthetic rubber, vinyl, or neoprene and shall be installed at the factory or on the job site in accordance with the door frame manufacturer's recommendations. Weatherstripping for bottom of doors shall be as shown. Air leakage rate of weatherstripping shall not exceed 0.20 cfm per linear foot of crack when tested in accordance with ASTM E 283 at standard test conditions. #### 2.7 FACTORY FINISH Doors and frames shall be phosphatized and primed with standard factory primer system. Color shall be as indicated in drawings. ## PART 3 EXECUTION #### 3.1 INSTALLATION Installation shall be in accordance with DHI A115.1G. Preparation for surface applied hardware shall be in accordance with SDOI SDI-107. Rubber silencers shall be installed in door frames after finish painting has been completed; adhesively applied silencers are not acceptable. Weatherstripping shall be installed at exterior door openings to provide a weathertight installation. Hollow metal door frames shall be solid grouted in masonry walls. ## 3.1.1 Thermal Insulated Doors Hardware and perimeter seals shall be adjusted for proper operation. Doors shall be sealed weathertight after installation of hardware and shall be in accordance with Section 07900 JOINT SEALING. ## 3.2 FIELD PAINTED FINISH Steel doors and frames shall be field painted in accordance with Section 09900 PAINTING, GENERAL. Weather-strips shall be protected from paint. Finish shall be free of
scratches or other blemishes. Color shall be as indicated in drawings. END OF SECTION SECTION 08210 WOOD DOORS # PART 1 GENERAL ## 1.1 RELATED DOCUMENTS Drawings and general provisions of Contract, including General and Supplementary Conditions and Division 1 Specifications, apply to work of this section. #### 1.2 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. ## AMERICAN HARDBOARD ASSOCIATION (AHA) (1995) Basic Hardboard AHA 135.4 AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) (1991) Determining the Rate of ASTM E 283 AirLeakage Through Exterior Windows, Curtain Walls, and Doors Under Specified Pressure Differences Across the Specimen ## ARCHITECTURAL WOODWORK INSTITUTE (AWI) AWI-02 (1994) Architectural Woodwork > Quality Standards, Guide Specifications and Quality Certification Program NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA) NEMA LD 3 (1991) High-Pressure Decorative Laminates # NATIONAL FIRE PROTECTION ASSOCIATION (NFPA) NFPA 80 (1995) Fire Doors and Windows NFPA 101 (1997) Safety to Life from Fire in Buildings and Structures NFPA 252 (1995) Fire Tests of Door Assemblies NATIONAL WOOD WINDOW & DOOR ASSOCIATION (NWWDA) NWWDA I.S. 1-A (1993) Architectural Wood Flush Doors NWWDA I.S. 4 (1994) Water-Repellent Preservative Non-Pressure Treatment for Millwork ## 1.2 GENERAL REQUIREMENTS #### 1.2.1 Standard Products Doors shall be of the type, size, and design indicated on the drawings, and shall be the standard products of manufacturers regularly engaged in the manufacture of wood doors. # 1.2.2 Marking Each door shall bear a stamp, brand, or other identifying mark indicating quality and construction of the door. The identifying mark or a separate certification shall include identification of the standard on which construction of the door is based, identity of the manufacturing plant, identification of the standard under which preservative treatment, if used, was made, and identification of the doors having a Type I glue bond. ## 1.3 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-04 Drawings Wood Doors; GA Drawings indicating the location of each door, elevation of each type of door, details of construction, marks to be used to identify the doors, and location and extent of hardware blocking. Drawings shall include catalog cuts or descriptive data for doors, weather stripping, flashing, and thresholds to be used. SD-14 Samples Factory Coated Natural Finish; GA. Samples of factory applied natural finish. # 1.4 STORAGE Doors shall be stored in fully covered areas and protected from damage and from extremes in temperature and humidity. Doors shall be stored on supports to prevent warping or twisting, and to provide ventilation. Factory cartons or wrappers shall be kept intact until installation. REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 ## 1.5 HARDWARE Hardware, including weatherstripping and thresholds, is specified in Section 08700 BUILDERS' HARDWARE. ## 1.6 WARRANTY Manufacturer's standard performance guarantees or warranties that extend beyond a 1 year period shall be provided. ## PART 2 PRODUCTS ## 2.1 GENERAL FABRICATION REQUIREMENTS # 2.1.1 Edge Sealing Wood end-grain exposed at edges of doors shall be sealed prior to shipment. # 2.1.2 Prefitting Doors shall be furnished prefitted or unfitted at the option of the Contractor, except plastic laminate clad doors shall be furnished prefit in accordance with the standards under which they are produced. #### 2.2 FLUSH DOORS Flush doors shall be solid core and shall conform to NWWDA I.S. 1-A, except for the one year acclimatization requirement in paragraph T-2, which shall not apply. Wood doors shall be 5-ply construction with faces, stiles, and rails bonded to the cores. ## 2.2.1 Core Construction #### 2.2.1.1 Solid Cores Door construction shall be glued wood block with vertical and horizontal edges bonded to the core. ## 2.2.2 Face Panels # 2.2.2.1 Natural Finished Wood Veneer Doors Veneer doors to receive natural finish shall be Custom Grade birch veneer in accordance with NWWDA I.S. 1-A. Vertical stile strips shall be selected to provide edges of the same species as the face veneer. Door finish shall be in accordance with paragraph FINISHING. ## 2.3 FINISHING ## 2.3.1 Factory Coated Natural Finish Doors indicated to receive factory coated natural finish shall be given a transparent finish conforming to AWI-02, Section 1500, Premium stain, REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 full gloss sheen, open grain effect. Finish shall be AWI factory finish system Number TR3 or TR4. Color of the natural finish shall be as indicated on the drawings. Edges of unfitted doors shall be field finished after fitting to the frames. ## PART 3 EXECUTION # 3.1 INSTALLATION OF DOORS ## 3.1.1 General Use Doors Doors shall be fit, hung, and trimmed as required. Door shall have a clearance of 1/8 inch at the sides and top and shall have a bottom clearance of 1/4 inch over thresholds and 1/2 inch at other locations unless otherwise shown. The lock edge or both edges of doors shall be beveled at the rate of 1/8 inch in 2 inches. Cuts made on the job shall be sealed immediately after cutting, using a clear varnish or sealer. Bottom of doors shall be undercut to allow clear door swing over carpeted areas. Vertical edges of doors which have not been rounded or beveled at the factory shall be eased when the doors are installed. END OF SECTION 00029/11 REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 </CCBcrit> SECTION 08700 ## BUILDERS' HARDWARE ## PART 1 GENERAL ## 1.1 RELATED DOCUMENTS Drawings and general provisions of Contract, including General and Supplementary Conditions and Division 1 specifications, apply to work of this section. #### 1.2 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. ## AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | ASTM E 283 | (1991) Determining the Rate of Air Leakage | |------------|---| | | Through Exterior Windows, Curtain Walls and | | | Doors Under Specified Pressure Differences | | | Across the Specimen | ## BUILDERS HARDWARE MANUFACTURERS ASSOCIATION (BHMA) | ВНМА-01 | (Effective through June 1995) Directory of Certified Locks & Latches | |--------------|--| | BHMA-02 | (Effective through July 1995) Directory of Certified Door Closers | | ВНМА-03 | (Effective through July 1996) Directory of
Certified Exit Devices | | внма А156.1 | (1988) Butts and Hinges | | BHMA A156.2 | (1989) Bored and Preassembled Locks and Latches | | BHMA A156.3 | (1994) Exit Devices | | BHMA A156.4 | (1992) Door Controls - Closers | | BHMA A156.5 | (1992) Auxiliary Locks & Associated Products | | BHMA A156.6 | (1994) Architectural Door Trim | | BHMA A156.7 | (1988) Template Hinge Dimensions | | BHMA A156.8 | (1994) Door Controls - Overhead Holders | | внма А156.13 | (1994) Mortise Locks & Latches | REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 BHMA A156.16 (1989) Auxiliary Hardware BHMA A156.17 (1993) Self Closing Hinges & Pivots BHMA A156.18 (1993) Materials and Finishes BHMA A156.21 (1989) Thresholds #### DOOR AND HARDWARE INSTITUTE (DHI) DHI-03 (1989) Keying Systems and Nomenclature DHI-05 (1990) Recommended Locations for Architectural Hardware for Standard Steel Doors and Frames DHI-Al15.IG (1994) Installation Guide for Doors and Hardware # NATIONAL FIRE PROTECTION ASSOCIATION (NFPA) NFPA 80 (1995) Fire Doors and Fire Windows #### 1.3 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01300 SUBMITTALS: SD-01 Data Hardware and Accessories; FIO. Manufacturer's descriptive data, technical literature, catalog cuts, and installation instructions. Spare parts data for locksets, exit devices, closers, electric locks, electric strikes, electro-magnetic closer holder release devices, and electric exit devices, after approval of the detail drawings, and not later than 1 month prior to the date of beneficial occupancy. The data shall include a complete list of parts and supplies, with current unit prices and source of supply. ## SD-07 Schedules Hardware Schedule; GA. Hardware schedule listing all items to be furnished. The schedule shall include for each item: the quantities; manufacturer's name and catalog numbers; the ANSI number specified, sizes; detail information or catalog cuts; finishes; door and frame size and materials; location and hardware set identification cross-references to drawings; corresponding reference standard type number or function REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 number from manufacturer's catalog if not covered by ANSI or BHMA; and list of abbreviations and template numbers. REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 Keying Schedule; GA. Keying schedule developed in accordance with DHI-03, after the keying meeting with the user. ## SD-13 Certificates Hardware and Accessories; FIO. The hardware manufacturer's certificates of compliance stating that the supplied material or hardware item meets specified requirements. Each certificate shall be signed by an official authorized to certify in behalf of the product manufacturer and shall identify quantity and date or dates of shipment
or delivery to which the certificates apply. A statement that the proposed hardware items appear in BHMA-01, BHMA-02 and BHMA-03 directories of certified products may be submitted in lieu of certificates. #### 1.4 PREDELIVERY CONFERENCE Upon approval of the Hardware Schedule, the construction Contractor shall arrange a conference with the hardware supplier, Contracting Officer and the using agency to determine keying system requirements. Location of the key control storage system, set-up and key identification labeling will also be determined. ## 1.5 DELIVERY, STORAGE, AND HANDLING Hardware shall be delivered to the project site in the manufacturer's original packages. Each article of hardware shall be individually packaged in the manufacturer's standard commercial carton or container, and shall be properly marked or labeled to be readily identifiable with the approved hardware schedule. Each change key shall be tagged or otherwise identified with the door for which its cylinder is intended. Where double cylinder functions are used or where it is not obvious which is the key side of a door, appropriate instructions shall be included with the lock and on the hardware schedule. Manufacturer's printed installation instructions, fasteners, and special tools shall be included in each package. #### 1.6 SPECIAL TOOLS Special tools, such as those supplied by the manufacturer, unique wrenches, and dogging keys, shall be provided as required to adjust hardware items. #### 1.7 WARRANTY Manufacturer's standard performance guarantees or warranties that extend beyond a one year period shall be provided. ## 1.8 OPERATION AND MAINTENANCE MANUALS REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 Six complete copies of maintenance instructions listing routine maintenance procedures, possible breakdowns and repairs, and troubleshooting guides shall be provided. ## PART 2 PRODUCTS #### 2.1 GENERAL HARDWARE REQUIREMENTS Hardware shall conform to the requirements specified herein and the HARDWARE SETS listing at the end of this section. Hardware set numbers correspond to the set numbers shown on the drawings. #### 2.2 TEMPLATES Requirements for hardware to be mounted on metal doors or metal frames shall be coordinated between hardware manufacturer and door or frame manufacturer by use of templates and other information to establish location, reinforcement required, size of holes, and similar details. Templates of hinges shall conform to BHMA A156.7. #### 2.3 HINGES Hinges shall conform to BHMA A156.1. Hinges used on metal doors and frames shall also conform to BHMA A156.7. Except as otherwise specified, hinge sizes shall conform to the hinge manufacturer's printed recommendations. ## 2.3.1 Hinges for Reverse Bevel Doors with Locks Hinges for reverse bevel doors with locks shall have pins that are made nonremovable by means such as a set screw in the barrel, or safety stud, when the door is in the closed position. # 2.3.2 Contractor's Option Hinges with anti-friction bearings may be furnished in lieu of ball bearing hinges, except where prohibited for fire doors by the requirements of NFPA 80. ## 2.4 LOCKS AND LATCHES To the maximum extent possible, locksets, latchsets and deadlocks shall be the products of a single manufacturer. Lock fronts for double-acting doors shall be rounded # 2.4.1 Mortise Lock and Latchsets Mortise lock, latchsets, and strikes shall be series 1000 and shall conform to BHMA A156.13, operational Grade 1. Mortise type locks and latches for doors 1--3/4 inches thick and over shall have adjustable bevel fronts or otherwise conform to the shape of the door. Mortise locks shall have armored fronts. # 2.4.2 Lock Cylinders (Mortise, Rim and Bored) Lock cylinders shall comply with BHMA A156.5. Lock cylinder shall have not less than seven pins. Cylinders shall have key removable type cores. Locksets, latchsets, and deadlocks shall be heavy-duty weight. All key operated locks shall be compatible with the Best Lock Corporation "BEST" interchangeable cores. A construction master keying system shall be provided. Disassembly of knob or lockset shall not be required to remove core from lockset. ## 2.4.3 Lock Trim Lock trim shall be cast, forged, or heavy wrought construction of commercial plain design. In addition to meeting the test requirement of BHMA A156.2 or BHMA A156.13, lever handles, roses, and escutcheons shall be products of Best Lock Co. #### 2.5 KEYING Locks shall be keyed in sets or subsets as scheduled. Locks shall be furnished with the manufacturer's standard construction key system. Change keys for locks shall be stamped with change number and the inscription "U.S. Property - Do Not Duplicate." Keys shall be supplied as follows: Locks 3 change keys each lock Construction keys: 10 total. Blank keys: 20 total. The keys shall be furnished to the Contracting Officer arranged in a container for key control system storage in sets or subsets as scheduled. ## 2.6 DOOR CLOSING DEVICES Door closing devices shall conform to BHMA A156.4, Grade 1. Closing devices shall be products of one manufacturer for each type specified. The opening resistance of closing devices shall not exceed 15 1bf applied at the latch stile. ## 2.6.1 Surface Type Closers Surface type closers shall be Grade 1, Series C02000 with options PT-4C and PT-4D. Except as otherwise specified, sizes shall conform to the manufacturer's published recommendations. Closers for outswinging exterior doors shall have parallel arms or shall be top jamb mounted. Closers for doors close to a wall shall be of narrow projection so as not to strike the wall at the 90-degree open position. ## 2.7 EXIT DEVICES AND EXIT DEVICE ACCESSORIES Exit devices and exit device accessories shall conform to BHMA ANSI/BHMA A156.3, Grade 1. ### 2.5.1 Exit Devices and Auxiliary Items Trim shall be of wrought construction and commercial plain design with straight, beveled, or smoothly rounded sides, corners, and edges. Open back strikes shall be provided for pairs of doors with mortised devices; except open back strikes shall be used on labeled doors only where specifically provided for in the published listings. Escutcheons shall be provided not less than 7 by 2-1/4 inches. Escutcheons shall be cut to suit cylinders and operating trim. #### 2.8 MISCELLANEOUS #### 2.8.1 Automatic Door Bottoms Automatic door bottoms shall be surface type with aluminum housing cover, anodized bronze color finish. Door bottom shall have a wool, felt, rubber, vinyl, or neoprene seal and shall be actuated by the opening and closing of the door. The door bottom shall exclude light when the door is in the closed position and shall inhibit the flow of air through the unit. #### 2.8.2 Metal Thresholds Thresholds shall conform to BHMA A156.21. Thresholds for exterior doors shall be extruded aluminum of the type indicated and shall provide proper clearance and an effective seal with specified weather stripping. # 2.8.3 Rain Drips Extruded aluminum, not less than 0.07 inch thick, painted. Overhead rain drips shall be approximately 1-1/2 inches high by 2-1/2 inches projection and shall extend 2 inches on either side of the door opening width. # 2.8.4 Aluminum Housed Type Weatherseals Weatherseals of the type indicated shall consist of extruded aluminum retainers not less than 0.07 inch wall thickness with vinyl, neoprene, silicone rubber, polyurethane or vinyl brush inserts. Aluminum shall be bronze anodized. Weatherseal material shall be of an industrial/commercial grade. Seals shall remain functional through all weather and temperature conditions. Air leakage rate of weather-stripping shall not exceed 0.5 cubic feet per minute per lineal foot of crack when tested in accordance with ASTM E 283 at standard test conditions. # 2.8.5 Gasketing Gasketing shall be a compression type seal, silicon based, self-adhesive product for use on steel doorframes with steel doors. Color shall be bronze. Air leakage rate of weather-stripping REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 shall not exceed 0.5 cubic feet per minute per lineal foot of crack when tested in accordance with ASTM E 283 at standard test conditions. 2.8.6 Door Pulls, Push Plates, Bars, and Kick Plates AHSI/BHMA A156.6, 16qa, B&S (050) aluminum - 2.7.6.1 Size of armor, kick plates: stainless steel 18 ga. Width for single doors shall be 2 inches less door width. Height of kick plates shall be 10 inches for flush doors. - 2.8.7 Manual flush bolts: A4S1A156.16/BHMS provide dustproof strikes for bottom and top bolts. # 2.9 FASTENINGS Fastenings of proper type, size, quantity, and finish shall be supplied with each article of hardware. Machine screws and expansion shields shall be used for attaching hardware to concrete or masonry. Fastenings exposed to the weather in the finished work shall be of brass, bronze, or stainless steel. Sex bolts, through bolts, or machine screws and grommet nuts, where used on reverse-bevel exterior doors equipped with half-surface or full-surface hinges, shall employ one-way screws or other approved tamperproof screws. Screws for the jamb leaf of half-mortise and full-surface hinges attached to structural steel frames shall be one-way or other approved tamperproof types. # 2.10 FINISHES Unless otherwise specified, finishes shall conform to those identified in BHMA A156.18. Where painting of primed surfaces is required, painting is specified in Section 09900 PAINTING, GENERAL. ### PART 3 EXECUTION # 3.1 APPLICATION Hardware shall be located in accordance with DHI-04 and DHI-05. When approved, slight variations in locations or dimensions will be permitted. Application shall be in accordance with DHI-Al15.IG or DHI Al15-W. Door control devices for exterior doors such as closers and holders, shall be attached to doors with thru bolts and nuts or sex bolts. Alternate fastening methods may be approved by the Contracting Officer when manufacturers' documentation
is submitted to verify that the fastening devices and door reinforcements are adequate to resist wind induced stresses. Electric hardware items and access control devices shall be installed in accordance with manufacturer's printed installation procedures. #### 3.1.1 Door-Closing Devices Door-closing devices shall be installed and adjusted in accordance with the templates and printed instructions supplied by the manufacturer of the devices. Insofar as practicable, doors opening to or from halls and corridors shall have the closer mounted on the room side of the door. # 3.1.2 Thresholds Thresholds shall be secured with a minimum of three fasteners per single door width and six fasteners per double door width with a maximum spacing of 12 inches. Exterior thresholds shall be installed in a bed of sealant with expansion anchors and stainless steel screws, except that bronze or anodized bronze thresholds shall be installed with expansion anchors with brass screws. Minimum screw size shall be No. 10 length, dependent on job conditions, with a minimum of 3/4 inch thread engagement into the floor or anchoring device used. # 3.1.3 Rain Drips Overhead rain drips shall align with bottom edge of door frame rabbet. Drips shall be set in sealant and fastened with stainless steel screws. ### 3.1.4 Weatherseals Weatherseals shall be located as indicated, snug to door face and fastened in place with color matched metal screws after door and frames have been finish painted. Screw spacing shall be as recommended by manufacturer. 3.1.5 Gasketing Gasketing shall be installed at the inside edge of the hinge and head and latch sides of doorframe. Frames shall be toleranced for a 1/8-inch clearance between door and frame. Frames shall be treated with tape primer prior to installation. # 3.2 OPERATIONAL TESTS Prior to acceptance of any electrical hardware system, an operational test shall be performed to determine if devices are operating as intended by the specifications. Wiring shall be tested for correct voltage, current carrying capacity, and proper grounding. Stray voltages in lock wiring shall be eliminated to prevent locking devices from releasing in critical situations. ### 3.3 HARDWARE MANUFACTURERS AND MODIFICATIONS Provide and install, as far as practicable, locks, hinges, and closers of one lock, hinge, or closer manufacturer's make. Modify hardware as necessary to provide features indicated or specified. Manufacturer's names are for reference only. ### Manufacturer - (ACI) Architectural Control Inc. - (ARC) Adams Rite - (BE) Best Lock Co. - (GJC) Glynn-Johnson - (HAG) Hager - (KNX) Knox Box - (LCN) LCN Closer - (PE) Pemko - (RIX) Rixson - (RSE) Reese Ultra - (SEN) Sentrol - (SIM) Simplex/Unicon - (STN) Stanley - (TR) Trimco - (VON) Von Duprin, Inc. # 3.4 HARDWARE SCHEDULE # HW-1 (Washroom Doors) Doors: 102A, 103A Each door to have: | 3 | Hinges | A2111 4.5 inches x 4.5 inches | |---|------------|------------------------------------| | 1 | Door Pull | (TR) 1017-2 3.5 inches x 15 inches | | 1 | Door Push | (TR) 1001-2 3.5 inches x 15 inches | | 1 | Closer | CO2011 PT4F, 4H | | 2 | Kickplates | (TR) 1025 10 inches x 2 inches LDW | | 1 | Set Seals | (PE) S88D 17 | REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 1 Door Bottom (PE) 412CN 1 Floor Stop L12161 # HW-2 (Corridor Doors, Fire Rated) Doors: 104A, 104B # Each door to have: | 3 | Hinges | A2111 4.5 inches x 4.5 inches | |---|---------------|------------------------------------| | 1 | Cylinder Lock | BE) 1E74 | | 1 | Exit Device | Reuse Existing for Door 104B | | 1 | Closer | CO 2011 PT4F, 4H | | 1 | Threshold | PE) 176A | | 1 | Set Seals | PE) S88D 17 | | 2 | Floor Stop | L12161 (Door 104B only) | | 1 | Door Bottom | PE) 412CN | | 1 | Cypher Lock | (UNICAM) L1011-26D-41 (Door 104A - | Lock 04 Corridor Side) # HW-3 (AFFF and Cell Room, Rated) Doors: 107A, 108A # Each pair of doors to have: | 6 | Hinges | A2111 4.5 inches x 4.5 inches | |---|--------------------|-------------------------------| | 2 | Cylinder Locks | (BE) 1E74 | | 1 | Exit Device | (VON) 9875L 03 F, 576A | | 1 | Exit Device | (VON) 9847L 03 F, 304L, 338 | | 2 | Closer | CO 2011 PT4F,4H, | | 2 | Door Bottom | (PE) 412CN | | 1 | Set Seals | (PE) S88D 24 Door 108A | | 1 | WeatherStrip | (PE) 296CR Door 107A | | 1 | Threshold | (PE) 176A Door 107A | | 1 | Overhead Rain Drip | Door 107A | # HW-4 (Offices) Doors: 201A, 202A # Each door to have: | 3 | Hinges | A2111 4.5 inches x 4.5 inches | |---|--------------|-------------------------------| | 1 | Office Lock | (BE) 35H7-E-3J, 626 | | 1 | Set Seals | (PE) 88 Head and Jamb | | 1 | Closer | CO2011 PT, 4F, 4H | | 1 | Door Bottom | (PE) 412CN | | 1 | Wall Bumpers | L12101 | # REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 HW-5 (Exterior Exit Door) | Door: | 1 | 012 | ٩ | |-------|---|-----|---| |-------|---|-----|---| | 3 | Hinges | A2111 4.5 inches x 4.5 inches | |---|--------------------|-------------------------------| | 1 | Cylinder Lock | (BE) 1E74 | | 1 | Exist Device | (VON) 9875LX03 | | 1 | Closer | CO 2011 PT4F, 4H | | 1 | Door Bottom | (PE) 412CN | | 1 | Weatherstrip | (PE) 296CR | | 1 | Threshold | (PE) 176A | | 1 | Overhead Rain Drip | | | | | | END OF SECTION #### SECTION 09250 ### GYPSUM WALLBOARD # PART 1 GENERAL # 1.1 RELATED DOCUMENTS Drawings and general provisions of Contract, including General and Supplementary Conditions and Division 1 specifications, apply to work of this section. ### 1.2 REFERENCES GA 600 DACA67-00-R-0222 The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. # AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | ASTM A 580 | (1995a) Stainless and Heat Resisting Steel Wire | |-------------------------|--| | ASTM A 853 | (1993) Steel Wire, Carbon, for General Use | | ASTM B 164 | (1993) Nickel-Copper Alloy Rod, Bar, and Wire | | ASTM C 36 | (1995) Gypsum Wallboard | | ASTM C 475 | (1994) Joint Compound and Joint Tape for Finishing Gypsum Board | | ASTM C 630 | (1996a) Water-Resistant Gypsum Backing Board | | ASTM C 645 | (1995) Non-Load (Axial) Bearing Steel Studs,
Runners (Track), and Rigid Furring Channels for
Screw Application of Gypsum Board | | ASTM C 754 | (1996) Installation of Steel Framing Members to
Receive Screw-Attached Gypsum Board | | ASTM C 840 | (1996) Application and Finishing of Gypsum Board | | ASTM C 1002 | (1996a) Steel Drill Screws for the Application of Gypsum Board or Metal Plaster Bases | | ASTM C 1047 | (1994) Accessories for Gypsum Wallboard and Gypsum Veneer Base | | GYPSUM ASSOCIATION (GA) | | | GA 216 | (1996) Application and Finishing of Gypsum Board | (1997) Fire Resistance Design Manual SECTION 09250 - Page 1 AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI) AUSI A108.11 (1992) Interior Installation of Cementitious Backup Units AUSI Al18.9 (1992) Test Methods and Specifications for Cementitious Backup Units UNDERWRITERS LABORATORIES (UL) UL-05 (1997)Fire Resistance Directory #### 1.3 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01300 SUBMITTALS: SD-04 Drawings Steel Framing; GA. Control Joints; GA. Fire-Resistant Assemblies; GA. Drawings and installation details for ceiling framing, furring, special wall framing, and framed openings in walls and ceilings. SD-13 Certificates Gypsum Wallboard; FIO. Water-Resistant Gypsum Board; FIO. Steel Framing; FIO. Cementitious Backup Units; FIO. Fire Rated Gypsum Board; FIO. Certificates stating that the steel framing and gypsum wallboard and cement board meet the specified requirements. # 1.4 QUALIFICATIONS Manufacturer shall specialize in manufacturing the types of material specified and shall have a minimum of 5 years of documented successful experience. Installer shall specialize in the type of gypsum board work required and shall have a minimum of 3 years of documented successful experience. # 1.5 DELIVERY, STORAGE AND HANDLING Materials shall be delivered in original containers bearing the name of manufacturer, contents, and brand name. Materials shall be stored off the ground in a weathertight structure for protection. Gypsum boards shall be stacked flat, off floor and supported to prevent sagging and warpage. Adhesives and joint materials shall be stored in accordance with manufacturer's printed instructions. Damaged or deteriorated materials shall be removed from job site. #### 1.6 ENVIRONMENTAL CONDITIONS Environmental conditions for application and finishing of gypsum board shall be in accordance with ASTM C 840. During the application of gypsum board without adhesive, a room temperature of not less than 4 degrees C (40 degrees F) shall be maintained. During the application of gypsum board with adhesive, a room temperature of not less than 10 degrees C (50 degrees F) shall be maintained for 48 hours prior to application and continuously afterwards until completely dry. Building spaces shall be ventilated to remove water not required for drying joint treatment materials. Drafts shall be avoided during dry hot weather to prevent materials from drying too rapidly. ### PART 2 MATERIALS #### 2.1 NON-LOADBEARING STUD WALLS AND STUD FURRING ### 2.1.1 Studs Studs for non-loadbearing walls shall conform to ASTM C 645. Studs shall be C-shaped, roll formed steel, made from G40 hot-dip galvanized coated sheet. # 2.1.2 Runner Tracks Floor and ceiling runner tracks shall conform to ASTM C 645. Tracks shall be prefabricated, U-shaped with minimum 1 inch flanges, unpunched web, thickness to match studs, made from G40 hot-dip galvanized coated sheet; uncoated thickness 0.0284 inches. #
2.1.3 System Performance - a. All interior partitions and furring shall be constructed to withstand a lateral load of 5 psf, minimum, with a maximum deflection of L/240 where "L" equals the unbraced span of the wall studs. Provide double studs at all door locations. - b. Provide anchorage for the top and bottom of the stud framing at the floor and roof diaphragms. Where the stud framing aligns with the floor or roof beams above or in other instances where support cannot be achieved directly at the diaphragm at the top of the stud framing, provide lateral bracing from the top of the wall up to the diaphragm. Do not anchor the stud framing support elements and bracing directly to the structural roof deck, but provide additional framing as required to adequately transfer the loads to the diaphragm. The stud framing may be anchored to the bottom flanges of the structural framing (using deflection tracks as indicated) with the beam bottom flange adequately braced at a maximum spacing of one quarter to the beam span. On the shop drawings provide loading induced into the floor framing, roof framing or the floor and roof diaphragms by the stud framing and bracing for review by the engineer. c. Coordinate all stud framing and bracing with the mechanical, plumbing, and electrical contractors as well as the mechanical, plumbing, electrical and architectural drawings for locations of conflicts and resolution of same. #### 2.2 SUSPENDED CEILING FRAMING Carrying channels shall be formed from 0.0548 in thick cold-rolled steel, $1\text{--}1/2 \times 3/4$ inch. Furring members shall be formed from cold-rolled steel, $7/8 \times 2\text{--}9/16$ inch. Carrying channels and furring members shall be made from hot-dip galvanized-coated sheet. #### 2.3 GYPSUM BOARD Gypsum board shall have square-cut ends, tapered or beveled edges and shall be maximum possible length. Gypsum board thickness shall be as shown. # 2.3.1 Fire Rated Gypsum Board Fired rated gypsum board shall conform to ASTM C 36, and shall be type X 48 inches wide. # 2.3.2 Water-Resistant Gypsum Board, for Use in Restrooms Water-resistant gypsum board shall conform to ASTM C 630, type X, with water-resistant paper faces, paintable surfaces, and shall be 48 inch width and maximum permissible length. Water-resistant gypsum board shall not be used on ceilings. ### 2.3.3 Shaft Liner Panel Shaftwall liner panel shall conform to UL listing. Liner Panel shall be specifically manufactured for cavity shaftwall system, with water resistant paper faces, bevel edges single lengths to fit required conditions, 1 inch thick by 24 inches wide. ### 2.4 TRIM, MOLDINGS, AND ACCESSORIES # 2.4.1 Taping and Embedding Compound Taping and embedding compound shall conform to ASTM C 475. Compound shall be specifically formulated and manufactured for use in embedding tape at gypsum wallboard joints and fastener heads, and shall be compatible with tape and substrate. #### 2.4.2 Finishing or Topping Compound Finishing or topping compound shall conform to ASTM C 475. Compound shall be specifically formulated and manufactured for use as a finishing compound for gypsum board. # 2.4.3 All-Purpose Compound All-purpose compound shall be specifically formulated and manufactured to use as a taping and finishing compound, and shall be compatible with tape and substrate. # 2.4.4 Joint Tape Joint tape shall conform to ASTM C 475 and shall be as recommended by gypsum board manufacturer. # 2.4.5 Trim, Control Joints, Beads, Stops and Nosings Items used to protect edges, corners, and to provide architectural features shall be in accordance with ASTM C 1047. #### 2.5 FASTENINGS AND ADHESIVES #### 2.5.1 Screws Screws shall conform to ASTM C 1002. Screws shall be self-drilling and self-tapping steel, Type S. # 2.5.2 Adhesives Adhesives shall conform to ASTM C 557. For securing gypsum board to metal framing, adhesive shall be as recommended by gypsum board manufacturer. ### 2.5.3 Hangers Suspended ceiling runner channel hangers shall be soft, annealed steel wire not less than No. 8 SWG, conforming to ASTM A 853 or flat iron or steel straps, at least $3/32 \times 7/8$ inch size, coated with zinc, cadmium, or rust-inhibiting paint. ### 2.5.4 Wire and Clip Type Fastenings Tie wire, clips, rings, and other fastenings shall be corrosion-resisting steel conforming to ASTM A 580, composition 302, 304, or 316, Condition A, or nickel-copper alloy conforming to ASTM B 164, annealed condition, except that walls, partitions, and other vertical surfaces not incorporated in ceiling construction may be erected with soft, annealed steel conforming to ASTM A 853. ### 2.5.4.1 Tie Wire Tie wire for constructing partitions and vertical furring, for securing metal lath to supports and for lacing shall be not less than No. 18 SWG. Tie wire for other applications shall be not less than No. 16 SWG. # 2.5.4.2 Clips Clips used in lieu of tie wire for securing the furring channels to the runner channels in ceiling construction shall be made from strip not less than 1/8 inch thick or shall be hairpin clip, formed of wire not less than 0.01620 inch nominal diameter. Other clips and rings or fastenings of similar materials shall be equivalent in holding power to that provided by tie wire for the specific application. # 2.6 CEMENTITIOUS BACKUP UNITS: per ANSI Al18.9 #### PART 3 EXECUTION #### 3.1 INTERIOR WALL FRAMING Steel framing and furring members shall be installed in accordance with ASTM C 754. Members shall be in alignment with spacings not to exceed the maximum spacings indicated on drawings. Runners shall be aligned accurately at the floor and ceiling and securely anchored. # 3.1.1 Wall Openings The framing system shall provide for the installation and anchorage of the required subframes or finish frames for wall openings at doors, pass-through openings, and access panels. Partitions abutting continuous suspended ceilings shall be strengthened for rigidity at rough openings of more than 30 inches wide. Studs at openings shall be 0.0329 in minimum bare metal thickness and spot grouted at jamb anchor inserts. Double studs shall be fastened together with screws and secured to floor and overhead runners. Two studs placed back-to-back shall be used for framing solid-core doors, doors over 36 inches wide and extraheavy doors. ### 3.1.2 Wall Control Joints Control joints for expansion and contraction in the walls shall be constructed with double studs installed 1/2 inch apart in interior walls or wall furrings where indicated on drawings. Control joint spacing shall not exceed 30 feet. Ceiling-height door frames may be used as vertical control joints. Door frames of less than ceiling height may be used as control joints only if standard control joints extend to ceiling from both corners of top of door frame. Control joints between studs shall be filled with firesafing insulation in fire rated partitions. ### 3.1.3 Blocking Blocking shall be provided as necessary for mounted equipment. Blocking shall be metal or wood and shall be cut to fit between framing members. Blocking shall be rigidly anchored to the framing members. Under no circumstances will accessories or other wall mounted equipment be anchored directly to gypsum wallboard. ### 3.2 SUSPENDED CEILING FRAMING Suspended ceiling system framing shall be installed in accordance with ASTM C 754. # 3.2.1 Hangers Hangers shall be spaced not more than 48 inches along runner channels and 36 inches in the other direction or 42 inches in both directions unless otherwise indicated. Locations of hanger wires shall be coordinated with other work. Hangers at ends of runner channels shall be located not more than 6 inches from wall. Hanger wire shall be looped around bottom chord of open-web steel joists, or secured to structural elements with suitable fasteners. Sags or twists, which develop in the suspended system, shall be adjusted. Damaged or faulty parts shall be replaced. #### 3.2.2 Main Runners Main runner channels shall be installed in accordance with ASTM C 754. Hanger wires shall be double strand saddle-tied to runner channels and the ends of hanger wire shall be twisted three times around itself. Main runners shall be located to within 6 inches of the paralleling wall to support the ends of cross furring. Main runners shall not come in contact with abutting masonry or concrete walls. Where main runners are spliced, ends shall be overlapped 12 inches with flanges of channels interlocked, and shall be securely tied at each end of splice with wire looped twice around the channels. # 3.2.3 Furring Channels Furring channels shall be spaced in accordance with ASTM C 754. Furring channels shall be secured to the runner channels and to structural supports at each crossing with tie wire, hairpin clips, or equivalent fastenings. Furring channels shall be located within 2 inches of parallel walls and beams, and shall be cut 1/2 inch short of abutting walls. # 3.2.4 Ceiling Openings Support members shall be provided as required at ceiling openings for access panels, recessed light fixtures, and air supply or exhaust. Support members shall be not less than 1-1/2 inch main runner channels and vertically installed suspension wires or straps shall be located to provide at least the minimum support specified herein for furring and wallboard attachment. Intermediate structural members, not a part of the structural system, shall be provided for attachment or suspension of support members. ### 3.2.5 Light Fixtures/Ceiling Diffusers: Light and other fixtures shall not be supported directly from suspended ceiling runners. Hanger wires for recessed or surface mounted light and other fixtures shall be anchored to structure at four corners of light and other fixtures, and additional wires shall be provided at appropriate locations to carry the weight of light and other fixtures. # 3.2.6 Control Joints Ceiling control joints for expansion and contraction shall be located where indicated on drawings. A control joint
or intermediate blocking shall be installed where ceiling framing members change direction. # 3.2.6.1 Interior Ceilings with Perimeter Relief Control joints shall be installed so that linear dimensions between control joints shall not exceed 50 feet in either direction nor more than 2500 square feet. # 3.2.6.2 Interior Ceilings without Perimeter Relief Control joints shall be installed so that linear dimensions between control joints shall not exceed 30 feet in either direction nor more than 900 square feet. ### 3.3 APPLICATION OF GYPSUM BOARD Gypsum board shall be installed in accordance with ASTM C 840 and GA 216 and as specified. Edges and ends of gypsum boards shall be cut to obtain neat fitting joints. End joints of adjoining boards shall be staggered, and shall be staggered on opposite sides of wall. Boards shall be applied with moderate contact without forcing in place. Holes for pipes, fixtures or other small openings shall be cut with a tool which will provide a neat fit. Screws shall be driven so that the heads are slightly below the plane of paper face. Fracturing the paper face or damaging the core shall be avoided. Trim shall be installed at external and internal angles formed by the intersecting gypsum board surfaces with other surfaces. Corner beads shall be installed to vertical and horizontal corners in accordance with manufacturer's published instructions. #### 3.3.1 Backing Board Gypsum board and water-resistant gypsum backing board used as a substrate to receive ceramic tile and wall panels shall be in accordance with ASTM C 840, System X. # 3.4 TRIM, MOLDINGS, AND ACCESSORIES INSTALLATION Trim, moldings and accessories shall be installed in accordance with GA 216. ### 3.5 TAPING AND FINISHING Gypsum board taping and finishing shall be performed in accordance with ASTM C 840. Boards shall be kept free of dirt, oil and other foreign matter that could cause a lack of bond. Screw heads, dents, gouges, and cutouts shall be filled with joint compound and sanded. Accessories at exposed joints, edges, corners, openings, and similar locations shall be taped, floated with joint compound, and sanded to produce surfaces ready for gypsum board finishes. Provide Level 5 finish per ASTM C 840. #### 3.6 FIRE RESISTANCE ASSEMBLIES Gypsum wallboard construction for fire rated assemblies shall be in accordance with UL-05 or GA600. #### 3.7 PATCHING Surface defects and damage shall be corrected as required to leave gypsum board smooth, uniform in appearance, and ready to receive finish as specified. # 3.8 APPLICATION OF CEMENTITIOUS BACKUP UNITS Cementitious backup units shall be installed in accordance with ANSI A108.11. Fasteners shall be the type designed for cement board application. # 3.9 SHAFT WALL FRAMING The shaft wall system shall be installed in accordance with the system manufacturer's published instructions. Bucks, anchors, blocking and other items placed in or behind shaft wall framing shall be coordinated with electrical and mechanical work. Fireproofing materials, which are damaged or removed during shaft wall construction, shall be patched or replaced. Gypsum wallboard construction for fire-rated assemblies shall be accordance with UL-05, or GA 600 for system WP 7000. END OF SECTION SECTION 09310 # CERAMIC TILE # PART 1 GENERAL ### 1.1 RELATED DOCUMENTS Drawings and general provisions of Contract, including General and Supplementary Conditions and Division 1 specifications, apply to work of this section. ### 1.2 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. # AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI) | ANSI A108.1B | (1992) Installation of Ceramic Tile on a Cured Portland Cement Mortar Setting Bed with Dry-Set or Latex Portland Cement Mortar | | |---|--|--| | ANSI A108.5 | (1992) Installation of Ceramic Tile with Dry-Set
Portland Cement Mortar or Latex-Portland Cement
Mortar | | | ANSI A108.6 | (1992) Installation of Ceramic Tile with
Chemical Resistant, Water Clenable Tile-Setting
and Grouting Epoxy | | | ANSI A108.10 | (1992) Installation of Grout in Tilework | | | ANSI A118.1 | (1992) Dry-Set Portland Cement Mortar | | | ANSI A118.3 | (1992) Chemical Resistant, Water Cleanable Tile
Setting and Grouting Epoxy and Water Cleanable
Tile Setting Epoxy Adhesive | | | ANSI A118.4 | (1992) Latex-Portland Cement Mortar | | | ANSI A118.6 | (1992) Ceramic Tile Grouts | | | ANSI A137.1 | (1988) Ceramic Tile | | | AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | | | | ASTM C 150 | (1995) Portland Cement | | | ASTM C 206 | (1984; R 1992) Finishing Hydrated Lime | | | ASTM C 207 | (1991; R 1992) Hydrated Lime for Masonry
Purposes | | REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 ASTM C 373 (1988) Water Absorption, Bulk Density, Apparent Porosity, and Apparent Specific Gravity of Fired Whiteware Products ASTM C 648 (1984; R 1994) Breaking Strength of Ceramic Tile ASTM C 1027 (1984; R 1990) Determining Visible Abrasion Resistance of Glazed Ceramic Tile NATIONAL FIRE PROTECTION ASSOCIATION (NFPA) NFPA 99 (1993) Health Care Facilities TILE COUNCIL OF AMERICA (TCA) TCA-01 (1994) Handbook for Ceramic Tile Installation ### 1.2 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01300 SUBMITTALS: SD-01 Data Tile; GA. Setting-Bed; GA. Mortar, Grout, and Adhesive; GA. Manufacturer's catalog data. SD-06 Instructions Tile; FIO. Mortar and Grout; FIO. Manufacturers preprinted installation and cleaning instructions. SD-13 Certificates Tile; FIO. Mortar, Grout, and Adhesive; FIO. Certificates indicating conformance with specified requirements. A master grade certificate shall be furnished for tile. SD-14 Samples Tile; GA. Accessories; GA. Samples of sufficient size to show color range, pattern, type and joints. # 1.3 DELIVERY AND STORAGE REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 Materials shall be delivered to the project site in manufacturer's original unopened containers with seals unbroken and labels and hallmarks intact. Materials shall be kept dry, protected from weather, and stored under cover. ### 1.4 ENVIRONMENTAL REQUIREMENTS Ceramic tile work shall not be performed unless the substrate and ambient temperature is at least 50 degrees F and rising. Temperature shall be maintained above 50 degrees F while the work is being performed and for at least 7 days after completion of the work. When temporary heaters are used they shall be vented to the outside to avoid carbon dioxide damage to new tilework. #### 1.5 WARRANTY Manufacturer's standard performance guarantees or warranties that extend beyond a 1-year period shall be provided. #### PART 2 PRODUCTS #### 2.1 TILE Tile shall be standard grade conforming to ANSI A137.1. Containers shall be grade sealed. Seals shall be marked to correspond with the marks on the signed master grade certificate. Tile shall be impact resistant with a minimum breaking strength for wall tile of 90 lbs and 250 lbs for floor tile in accordance with ASTM C 648. Water absorption shall be 0.5 maximum percent in accordance with ASTM C 373. Floor tile shall have a minimum static coefficient of friction of .60 in accordance with ASTM C 1028. Tile shall be Class 4 as rated by manufacturer when tested in accordance with ASTM 1027 for abrasion resistance as related to foot traffic. ### 2.1.1 Mosaic Floor Tile Ceramic mosaic tile and trim shall be unglazed, unpolished porcelain tile with cushioned edges. Tile size shall be 2x2 inches. Color shall be as indicated in the drawings. #### 2.1.2 Glazed Wall Tile Glazed wall tile, base, and trim shall be cushion edged with semi-gloss glaze. Tile shall be 4-1/4 by 4-1/4 inches and 5/16 inch thickness, premounted on sheets with 16 tiles per sheet. Color and pattern shall be as indicated on drawings. #### 2.1.3 Trim Units Provide matching trim units with tile work. Provide where indicated and where necessary for a complete and neatly finished installation. Internal corners shall be squared and external corners rounded using appropriate matching trim units. REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 2.2 SETTING-BED The setting-bed shall be composed of the following: # 2.2.1 Portland Cement Cement shall conform to ASTM C 150, Type I, white for wall mortar and gray for other uses. ### 2.2.2 Sand Sand shall conform to ASTM C 144. # 2.2.3 Hydrated Lime Hydrated lime shall conform to ASTM C 206, Type S or ASTM C 207, Type S. ### 2.3 WATER Water shall be potable. # 2.4 MORTAR, GROUT, AND ADHESIVE Mortar, grout, and adhesive shall conform to the following: ### 2.4.1 Latex-Portland Cement Mortar ANSI A118.4. # 2.4.2 Ceramic Tile Grout ANSI Al18.6; dry-set grout or latex-portland cement grout. # 2.4.3 Mosic Tile Grout ANSI A118.3; epoxy resin grout #### PART 3 EXECUTION ### 3.1 PREPARATORY WORK AND WORKMANSHIP Surface to receive tile shall be inspected and shall conform to the requirements of ANSI A108.1A or ANSI A108.1B for surface conditions for the type setting bed specified and for workmanship. # 3.2 GENERAL INSTALLATION REQUIREMENTS Tile work shall not be started until roughing in for mechanical and electrical work has been completed and tested, and built-in items requiring membrane waterproofing have been installed and tested. Floor REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 tile installation shall not be started in spaces requiring wall tile until after wall tile has been installed. Tile in colors and patterns
indicated shall be applied in the area shown on the drawings. Tile shall be installed with the respective surfaces in true even planes to the elevations and grades shown. Special shapes shall be provided as required for sills, jambs, recesses, offsets, external corners, and other conditions to provide a complete and neatly finished installation. Tile bases and coves shall be solidly backed with mortar. ### 3.3 INSTALLATION OF WALL TILE Wall tile shall be installed in accordance with the TCA-01, method W243-98. # 3.3.1 Latex-Portland Cement Mortar Latex-portland cement shall be used to install tile in accordance with ANSI A108.5. #### 3.4 INSTALLATION OF FLOOR TILE Floor tile shall be installed in accordance with TCA-01, method F115-98. # 3.4.1 Dry-Set and Latex-Portland Cement Dry-set or Latex-portland cement mortar shall be used to install tile directly over properly cured, plane, clean concrete slabs in accordance with ANSI A108.5. Latex-portland cement shall be used when installing porcelain ceramic tile. #### 3.4.2 Ceramic Tile Grout Ceramic tile grout shall be prepared and installed in accordance with ANSI Al08.10. # 3.4.3 Mosic Tile Grout Mosic Tile grout (epoxy) shall be prepared and installed in accordance with ANSI A108.6. #### 3.5 CONTROL JOINTS Joints shall be formed as indicated and sealed as specified in Section 07920 JOINT SEALING. # 3.5.1 Walls Control joints shall be provided at control joints in backing material. Wherever backing material changes, a control joint shall be formed to separate the different materials. # 3.5.2 Floors REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 Control joints shall be provided over construction joints, control joints, and expansion joints in concrete slabs. Control joints shall also be provided where tile abuts restraining surfaces such as perimeter walls, curbs, and columns and at intervals of 24 to 36 ft each way in large interior floor areas. Expansion joints shall extend through setting beds and fill. ### 3.6 CLEANING AND PROTECTING Upon completion, tile surfaces shall be thoroughly cleaned in accordance with manufacturer's approved cleaning instructions. Acid shall not be used for cleaning glazed tile. Floor tile with resinous grout or with factory mixed grout shall be cleaned in accordance with instructions of the grout manufacturer. After the grout has set, tile wall surfaces shall be given a protective coat of a noncorrosive soap or other approved method of protection. Tiled floor areas shall be covered with building paper before foot traffic is permitted over the finished tile floors. Board walkways shall be laid on tiled floors that are to be continuously used as passageways by workmen. Damaged or defective tiles shall be replaced. END OF SECTION SECTION 09510 #### ACOUSTICAL CEILINGS # PART 1 GENERAL # 1.1 RELATED DOCUMENTS Drawings and general provisions of Contract, including General and Supplementary Conditions and Division 1 specifications, apply to work of this section. #### 1.2 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. # AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | ASTM C 635 | (1995) Manufacture, Performance, and Testing of
Metal Suspension Systems for Acoustical Tile and
Lay-In Panel Ceilings | |-------------|--| | ASTM C 636 | (1992) Installation of Metal Ceiling Suspension
Systems for Acoustical Tile and Lay-In Panel
Ceilings | | ASTM E 119 | (1995a) Fire Tests of Building Construction and Materials | | ASTM E 1264 | (1990) Standard Classification for Acoustical Ceiling Products | | ASTM E 1414 | (1991a) Standard Test for Airborne Sound
Attenuation Between Rooms Sharing a Common
Ceiling Plenum. | # UNDERWRITERS LABORATORIES (UL) UL-05 (1996) Fire Resistance Directory ### 1.3 GENERAL REQUIREMENTS Acoustical treatment shall consist of sound controlling units mechanically mounted on a ceiling suspension system. The unit size, texture, finish, and color shall be as specified. The location and extent of acoustical treatment shall be as shown on the drawings. ### 1.4 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 following shall be submitted in accordance with Section 01300 SUBMITTALS: REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 SD-01 Data Acoustical Ceiling System; GA. Manufacturer's descriptive data, catalog cuts, and installation instructions. ### SD-04 Drawings Acoustical Ceiling System; GA. Drawings showing suspension system, method of anchoring and fastening, details, and reflected ceiling plan. #### SD-13 Certificates Acoustical Units; FIO. Certificate attesting that the mineral based acoustical units furnished for the project contains recycled material and showing an estimated percent of such material. # SD-14 Samples Acoustical Units; FIO. Two samples of each type of acoustical unit and each type of suspension grid tee section showing texture, finish, and color. ### 1.5 DELIVERY AND STORAGE Materials shall be delivered to the site in the manufacturer's original unopened containers with brand name and type clearly marked. Materials shall be carefully handled and stored in dry, watertight enclosures. Immediately before installation, acoustical units shall be stored for not less than 24 hours at the same temperature and relative humidity as the space where they will be installed in order to assure proper temperature and moisture acclimation. # 1.6 ENVIRONMENTAL REQUIREMENTS A uniform temperature of not less than 60 degrees F nor more than 85 degrees F and a relative humidity of not more than 70 percent shall be maintained before, during, and after installation of acoustical units. # 1.7 SCHEDULING Interior finish work shall be complete and dry before installation. Mechanical, electrical, and other work above the ceiling line shall be completed and heating, ventilating, and air conditioning systems shall be installed and operating in order to maintain temperature and humidity requirements. 00029/11 REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 1.8 WARRANTY > Manufacturer's standard performance guarantees or warranties that extend beyond a one year period shall be provided. # 1.9 EXTRA MATERIALS Spare tiles of each color shall be furnished at the rate of 5 tiles for each 1000 tiles installed. Tiles shall be from the same lot as those installed. # PART 2 PRODUCTS #### 2.1 ACOUSTICAL UNITS Acoustical units shall conform to ASTM E 1264, Class A, and the following requirements: ### 2.1.1 Units for Exposed-Grid System - Type: III (mineral fiber with painted finish) Type III, form 2, pattern C D acoustical units shall have a minimum recycled material content of 18 percent. - Minimum NRC: 0.55 when tested on mounting No. E-400 - Pattern: Not applicable. - Nominal size: 24 by 48 by 5/8 inches. - Edge detail: Angled, tegular. - Finish: Factory-applied standard finish. - Minimum LR coefficient: 0.80. - Minimum CAC: 33. #### 2.2 SUSPENSION SYSTEM Suspension system shall be exposed-grid as shown on drawings, and shall conform to ASTM C 635 for intermediate-duty systems. Surfaces exposed to view shall be aluminum or steel with a factory-applied baked-enamel finish to match ACT-1 ceiling tile color. Wall molding shall have a flange of not less than 15/16 inch. Standard corners shall be provided. Suspended ceiling framing system shall have the capability to support the finished ceiling, light fixture, air diffusers and accessories, as shown. The suspension system shall have a maximum defraction of 1/360 of span length. # 2.3 HANGERS Hangers shall be galvanized steel wire. Hangers and attachment shall support a minimum 300-pound ultimate vertical load without failure of supporting material or attachment. # 2.4 ACCESS PANELS Access panels shall match adjacent acoustical units and shall be designed and equipped with suitable framing and fastenings for removal and replacement without damage. Panel shall be not less than 12 by 24 inches. An identification plate of 0.032 inch thick aluminum, 3/4 inch in diameter, stamped with the letters "AP" and finished the same as the unit, shall be attached near one corner on the face of each access panel. #### 2.5 FINISHES Acoustical units and suspension system members shall have manufacturer's standard textures, patterns and finishes as specified. Ceiling suspension system components shall be treated to inhibit corrosion. #### 2.6 COLORS AND PATTERNS Colors and patterns for acoustical units and suspension system components shall be as indicated on drawings. #### 2.7 CEILING ATTENUATION CLASS AND TEST Ceiling attenuation class (CAC) range of acoustical units, when required, shall be determined in accordance with ASTM E 1414. Test ceiling shall be continuous at the partition and shall be assembled in the suspension system in the same manner that the ceiling will be installed on the project. System shall be tested with all acoustical units installed. #### PART 3 EXECUTION #### 3.1 INSTALLATION Acoustical work shall be provided complete with necessary fastenings, clips, and other accessories required for a complete installation. Mechanical fastenings shall not be exposed in the finished work. Hangers shall be laid out for each individual room or space. Hangers shall be placed to support framing around beams, ducts, columns, grilles, and other penetrations through ceilings. Main runners and carrying channels shall be kept clear of abutting walls and partitions. At least two main runners shall be provided for each ceiling span. Wherever
required to bypass an object with the hanger wires, a subsuspension system shall be installed, so that all hanger wires will be plumb. # 3.1.1 Suspension System Suspension system shall be installed in accordance with ASTM C 636 and as specified herein. # 3.1.1.1 Plumb Hangers Hangers shall be plumb and shall not press against insulation covering ducts and pipes. # 3.1.1.2 Splayed Hangers Where hangers must be splayed (sloped or slanted) around obstructions, the resulting horizontal force shall be offset by bracing, countersplaying, or other acceptable means. # 3.1.2 Wall Molding Wall molding shall be provided where ceilings abut vertical surfaces. Wall molding shall be secured not more than 3 inches from ends of each length and not more than 16 inches on centers between end fastenings. Miter corners where wall moldings intersect or install corner caps. Wall molding springs shall be provided at each acoustical unit in semi-exposed or concealed systems. ### 3.1.3 Acoustical Units Acoustical units shall be installed in accordance with the approved installation instructions of the manufacturer. Edges of acoustical units shall be in close contact with metal supports, with each other, and in true alignment. Acoustical units shall be arranged so that units less than one-half width are minimized. Units in exposed-grid system shall be held in place with manufacturer's standard hold-down clips, if units weigh less than 1 psf or if required for fire resistance rating. #### 3.2 CEILING ACCESS PANELS Ceiling access panels shall be located directly under the items which require access. #### 3.3 CLEANING Following installation, dirty or discolored surfaces of acoustical units shall be cleaned and left free from defects. Units that are damaged or improperly installed shall be removed and new units provided as directed. END OF SECTION SECTION 09650 # RESILIENT FLOORING, BASE, AND TRANSITION STRIPS #### PART 1 GENERAL #### 1.1 RELATED DOCUMENTS Drawings and general provisions of Contract, including General and Supplementary Conditions and Division 1 specifications, apply to work of this section. #### REFERENCES 1.2 The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | ASTM D 4 | 078 (1 | 992) Water Emulsion Floor Polish | |----------|---------|---| | ASTM E 6 | 48 | (1994a) Critical Radiant Flux of Floor-Covering
Systems Using a Radiant Heat Energy Source | | ASTM E 6 | 62 | (1995a) Specific Optical Density of Smoke | | ASTM F 1 | .066 (1 | 995a) Vinyl Composition Floor Tile | | ASTM F 1 | .303 | (1995) Sheet Vinyl Floor Covering with Backing | FEDERAL SPECIFICATIONS (FS) | FS | RR-T-650 | (Rev E) Treads, Metallic and Nonmetallic | |----|-----------|---| | FS | SS-T-312B | (Rev B; Int Am 1; Notice 1) Tile, Floor: Asphalt, Rubber, Vinyl | # 1.3 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01300 SUBMITTALS: SD-01 Data Resilient Flooring, Base, and Transition Strips; GA. Manufacturer's descriptive data and installation instructions including cleaning and maintenance instructions. SD-09 Reports Resilient Flooring, Base, and Transition Strips; FIO. Copies of test reports showing that representative product samples of the base and transition strips proposed for use have been tested by an independent testing laboratory within the past three years or when formulation change occurred and conforms to the requirements specified. SD-14 Samples Resilient Flooring, Base, and Transition Strips; FIO. Three samples of each indicated color and type base and transition strips. Sample size shall be minimum 2-1/2 by 4 inches. ### 1.4 DELIVERY AND STORAGE Materials shall be delivered to the building site in original unopened containers bearing the manufacturer's name, project identification, and handling instructions. Materials shall be stored in a clean dry area with temperature maintained above 70 degrees F for 2 days prior to installation, and shall be stacked according to manufacturer's recommendations. Materials shall be protected from the direct flow of heat from hot-air registers, radiators and other heating fixtures and appliances. # 1.5 ENVIRONMENTAL REQUIREMENTS Areas to receive resilient flooring shall be maintained at a temperature above 70 degrees F and below 100 degrees F for 2 days before application, during application and 2 days after application. A minimum temperature of 55 degrees F shall be maintained thereafter. ### 1.6 WARRANTY Manufacturer's standard performance guarantees or warranties that extend beyond a one-year period shall be provided. ### 1.7 EXTRA MATERIALS Extra materials shall be from the same lot as those installed. Extra base material composed of 20 linear feet of each color shall be furnished. # PART 2 PRODUCTS #### 2.1 VINYL - COMPOSITION TYPE A Vinyl-Composition tile shall conform to ASTM F 1066, Class 2, Composition 1 asbestos-free and shall be 12 inches square and 1/8-inch thick. Tile shall have color and pattern uniformly distributed throughout the thickness of the tile. Flooring in any one continuous REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 > area shall be from the same lot and shall have the same shade and pattern. Color and pattern are indicated on the drawings. #### 2.2 RESILIENT BASE Base shall be manufacturers standard rubber coved style. Base shall be 4 or 6 inches high as indicated, and a minimum 1/8-inch thick. Job formed corners shall be furnished. # 2.3 TRANSITION STRIP A vinyl transition strip tapered to meet ceramic tile floor from sealed concrete floor and from carpet to vinyl composition tile shall be provided. Width shall be a minimum of 2 inches. Location shall be as indicated in drawings. #### 2.4 ADHESIVE Adhesive for flooring, wall base, and transition strips shall be as recommended by the flooring manufacturer. ### 2.5 CAULKING AND SEALANTS Caulking and sealants shall be in accordance with Section 07920 JOINT SEALING. # 2.6 MANUFACTURER'S COLOR AND TEXTURE Color and texture shall be as indicated in drawings. # 2.7 POLISH Polish shall conform to ASTM D 4078. #### PART 3 EXECUTION ### 3.1 EXAMINATION/VERIFICATION OF CONDITIONS The Contractor shall examine and verify that site conditions are in agreement with the design package and shall report all conditions that will prevent a proper installation. The Contractor shall not take any corrective action without written permission from the Government. # 3.2 SURFACE PREPARATION Flooring shall be in a smooth, true, level plane, except where indicated as sloped. Before any work under this section is begun, all defects such as a rough or scaling concrete, low spots, high spots, and uneven surfaces shall have been corrected, and all damaged portions of concrete slabs shall have been repaired as recommended by the flooring manufacturer. Concrete curing compounds, other than the type that does not adversely affect adhesion, shall be entirely removed from the slabs. Paint, varnish, oils, release agents, sealers, waxers, and adhesives shall be removed, as recommended by the flooring manufacturer. Wall surfaces shall be dry, clean, smooth, structurally sound and free from moisture, alkali, dust, dirt, wax, oils, grease, loose paint or plaster, wall coverings, or any other foreign matter. Maintain room temperature at a minimum of 65°F for 48 hours before installation, during installation, and 48 hours after completion. Allow all wall base materials and adhesive to condition to the room temperature before starting the installation. # 3.3 MOISTURE TEST The suitability of the walls for receiving the resilient base with regard to moisture content shall be determined by a moisture test as recommended by the flooring manufacturer. #### 3.4 INSTALLATION OF TRANSITION STRIPS Transition strips shall be secured with adhesive as recommended by the manufacturer. Transition strips shall be provided at locations where flooring termination is higher than the adjacent finished flooring, except at doorways where thresholds are provided. See drawings for location and color selection. #### 3.5 INSTALLATION OF RESILIENT BASE Wall base shall be installed with adhesive in accordance with the manufacturer's written instructions. Base joints shall be tight and base shall be even with adjacent resilient flooring. Voids along the top edge of base at masonry walls shall be filled with caulk. ### 3.6 INSTALLATION OF VINYL COMPOSITION TILE Tile flooring shall be installed with adhesive in accordance with the manufacturer's installation instructions. Tile lines and joints shall be kept square, symmetrical, right, and even. Edge width shall vary as necessary to maintain full size tile in the field, but no edge tile shall be less than one half the field tile size, except where irregular shaped make it impossible. Flooring shall be cut to, and fitted around, all permanent fixtures, built-in furniture and cabinets, pipes, and outlets. Edge tile shall be cut fitted and scribed to wall and partitions after field flooring has been installed. #### 3.7 PROTECTION From the time of laying until acceptance, flooring, wall base and transition strips shall be protected from damage as recommended by the wall base manufacturer. Wall base and transition strips, which become damaged, loose, broken, or curled shall be removed and replaced. # 3.8 CLEANING Immediately upon completion of installation of tile in a room or an area, flooring and adjacent surfaces shall be cleaned to remove all surplus adhesive. After installation, flooring shall be washed with cleaning solution, rinsed
thoroughly with clear cold water, and given two coats of polish in accordance with manufacturer's written instructions. After each polish coat, floors shall be buffed to an even luster with an electric polish shining machine. END OF SECTION SECTION 09680 # CARPET # PART 1 GENERAL #### 1.1 RELATED DOCUMENTS Drawings and general provisions of Contract, including General and Supplementary Conditions and Division 1 specifications, apply to work of this section. ### 1.2 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. ## AMERICAN ASSOCIATION OF TEXTILE CHEMISTS AND COLORISTS (AATCC) | AATCC 16 | (1993) Test Method: Colorfastness to Light | | |--------------------------------|---|--| | AATCC 134 | (1991) Test Method: Electrostatic Propensity of Carpets | | | AATCC 165 | (1993) Test Method: Colorfastness to Crocking:
Carpets - AATCC Crockmeter Method | | | AMERICAN SOCIET | TY FOR TESTING AND MATERIALS (ASTM) | | | ASTM D 418 | (1993) Pile Yarn Floor Covering Construction | | | ASTM D 1335 | (1967; R 1972) Tuft Bind of Pile Floor Coverings | | | ASTM D 1423 | (1992) Twist in Yarns by the Direct Counting Method | | | ASTM D 3278 | (1989) Flash Point of Liquids by Setaflash
Closed-Cup Apparatus | | | ASTM D 3676 | (1978; R 1989) Rubber Cellular Cushion Used for Carpet or Rug Underlay | | | ASTM D 3936 | (1980) Delamination Strength of Secondary Backing of Pile Floor Coverings | | | ASTM E 648 | (1995a) Critical Radiant Flux of Floor-Covering
Systems Using a Radiant Heat Energy Source | | | CARPET AND RUG INSTITUTE (CRI) | | | | CRI 104 | (1994) Commercial Carpet Installation Standard | | REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 CODE OF FEDERAL REGULATIONS (CFR) 16 CFR 1630 Standard for the Surface Flammability of Carpet and Rugs REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 #### 1.3 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01300 SUBMITTALS: SD-01 Data Carpet and Accessories; GA. Manufacturer's catalog data and printed documentation stating physical characteristics, durability, resistance to fading, and flame resistance characteristics for each type of carpet material and installation accessory. SD-04 Drawings Installation; FIO. Three copies of drawings indicating areas receiving carpet, carpet types, textures and patterns, direction of pile, location of seams, and locations of edge molding. SD-06 Instructions Carpet and Accessories; FIO. Three copies of the manufacturer's printed installation instructions for the carpet, including preparation of substrate, seaming techniques, and recommended adhesives and tapes. SD-09 Reports Moisture and Alkalinity Tests; FIO. Three copies of test reports of moisture and alkalinity content of concrete slab stating date of test, person conducting the test, and the area tested. SD-13 Certificates Carpet and Accessories; FIO. Certificates of compliance from a laboratory accredited by the National Laboratory Accreditation Program of the National Institute of Standards and Technology attesting that carpet conforms to the standards specified. SD-14 Samples Carpet and Accessories; GA. REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 - a. Carpet: Two "Production Quality" samples 27 by 18 inches of each carpet proposed for use, showing quality, pattern, and color specified. - b. Vinyl Moldings: Two pieces of each type at least 12 inches long. SD-19 Operation and Maintenance Manuals Carpet and Accessories; FIO. Three copies of carpet manufacturer's maintenance instructions describing recommended type of cleaning equipment and material, spotting and cleaning methods, and cleaning cycles. ## 1.4 REGULATORY REQUIREMENTS Carpet and adhesives shall bear the Carpet and Rug Institute (CRI) Indoor Air Quality (IAQ) label. Carpet type bearing the label will indicate that the carpet has been tested and meets the criteria of the CRI IAQ Carpet Testing Program, and minimizes the impact on indoor air quality. ## 1.5 DELIVERY AND STORAGE Materials shall be delivered to the site in the manufacturer's original wrappings and packages clearly labeled with the manufacturer's name, brand name, size, dye lot number, and related information. Materials shall be stored in a clean, dry, well ventilated area, protected from damage and soiling, and shall be maintained at a temperature above 60 degrees F for 2 days prior to installation. ## 1.6 ENVIRONMENTAL REQUIREMENTS Areas in which carpeting is to be installed shall be maintained at a temperature above 60 degrees F for 2 days before installation, during installation, and for 2 days after installation. A minimum temperature of 55 degrees F shall be maintained thereafter for the duration of the contract. Traffic or movement of furniture or equipment in carpeted area shall not be permitted for 24 hours after installation. Other work which would damage the carpet shall be completed prior to installation of carpet. ## 1.7 WARRANTY Manufacturer's standard 10 year performance guarantees or warranties that extend beyond a one-year period shall be provided. #### 1.8 EXTRA MATERIAL Extra material from same dye lot consisting of full width continuous broadloom shall be provided for future maintenance. A minimum of 10 percent of total square yards of each carpet type, pattern, and color shall be provided. REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 PART 2 PRODUCTS #### 2.1 CARPET Carpet shall be first quality; free of visual blemishes, streaks, poorly dyed areas, fuzzing of pile yarn, spots or stains, and other physical and manufacturing defects. Carpet materials and treatments shall be reasonably nonallergenic and free of other recognized health hazards. All grade carpets shall have a static control construction which gives adequate durability and performance. ## 2.1.1 Physical Characteristics Carpet shall comply with the following: - a. Carpet Construction: Precision Cut and Loop. - b. Type: Broadloom 12 feet minimum usable carpet width - c. Pile Type: Multilevel loop. - d. Pile Fiber: Commercial 100% branded solution dyed soil-hiding nylon. - e. Pile or Wire Height: Minimum .250 inch in accordance with ASTM D 418. - f. Yarn Ply: Minimum 3 in accordance with ASTM D 1423. - g. Gauge or Pitch: Minimum 1/8 inch in accordance with ASTM D 418. - h. Stitches or Rows/Wires: Minimum 14.5 per square inch. - i. Finished Pile Yarn Weight: Minimum 40 ounces per square yard. This does not include weight of backings. Weight shall be determined in accordance with ASTM D 418. - j. Pile Density: Minimum 5760. - k. Dye Method: Skein dyed & Space dyed - 1. Backing Materials: Primary backing materials shall be those customarily used and accepted by the trade for each type of carpet synthetic hardback. Secondary backing to suit project requirements shall be those customarily used and accepted by the trade for each type of carpet, except when a special unitary back designed for gluedown is provided. # 2.1.2 Performance Requirements REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 - a. Static Control: Static control shall be provided to permanently control static buildup to less than 3.0 kV when tested at 20 percent relative humidity and 70 degrees F in accordance with AATCC 134. - b. Flammability and Critical Radiant Flux Requirements: Carpet shall comply with 16 CFR 1630. Carpet in corridors and exits shall have a minimum average critical radiant flux of 0.45 watts per square centimeter when tested in accordance with ASTM E 648. - c. Tuft Bind: Tuft bind force required to pull a tuft or loop free from carpet backing shall be a minimum 20 pound average force for loop pile when tested in accordance with ASTM D 1335. - d. Additional Performance Characteristics: - e. Colorfastness to Crocking: Dry and wet crocking shall comply with AATCC 165 and shall have a minimum rating of step 4 on the AATCC Color Transference Chart for all colors. - f. Colorfastness to Light: Colorfastness to light shall comply with AATCC 16 and shall have a minimum 4 grey scale rating after 40 hours. - g. Delamination Strength: Delamination strength for tufted carpet with a secondary back shall be minimum of 2.5 lb./inch in accordance with ASTM D 3936. ## 2.2 ADHESIVES AND CONCRETE PRIMER Adhesives and concrete primers for installation of carpet shall be waterproof, nonflammable, meet local air-quality standards, and shall be as recommended by the carpet manufacturer. Seam adhesive shall be waterproof, nonflammable, and nonstaining as recommended by the carpet manufacturer. Adhesives flashpoint shall be minimum 140 degrees F in accordance with ASTM D 3278. ## 2.3 MOLDING Vinyl molding shall be heavy-duty and designed for the type of carpet being installed. Floor flange shall be a minimum 2 inches wide. Color shall be as indicated in the drawings. #### 2.4 TAPE Tape for seams shall be as recommended by the carpet manufacturer for the type of seam used in installation. # 2.5 COLOR, TEXTURE, AND PATTERN Color, texture, and pattern shall be as indicated on drawings. #### PART 3 EXECUTION #### 3.1 SURFACE PREPARATION REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 Carpet shall not be installed on surfaces that are unsuitable and will prevent a proper installation. Holes, cracks, depressions, or rough areas shall be repaired using material recommended by the carpet or adhesive manufacturer. Floor shall be free of any foreign materials and swept broom clean. Before beginning work, subfloor shall be tested with
glue and carpet to determine "open time" and bond. #### 3.2 MOISTURE AND ALKALINITY TEST Concrete slab shall be tested for moisture content and excessive alkalinity in accordance with CRI 104. The moisture content shall not exceed a hygrometer reading of 65 percent. #### 3.3 PREPARATION OF CONCRETE SUBFLOOR Installation of the carpeting shall not commence until concrete substrate is at least 90 days old. The concrete surfaces shall be prepared in accordance with instructions of the carpet manufacturer. Type of concrete sealer, when required, shall be compatible with the carpet. #### 3.4 INSTALLATION Installation shall be in accordance with the manufacturer's instructions and CRI 104. Edges of carpet meeting hard surface flooring shall be protected with molding. Installation shall be in accordance with the molding manufacturer's instructions. ## 3.4.1 Broadloom Installation Broadloom carpet shall be installed direct glue down and shall be smooth, uniform, and secure, with a minimum of seams. Seams shall be uniform, unnoticeable, and treated with a seam adhesive. Side seams shall be run toward the light where practical and where such layout does not increase the number of seams. Breadths shall be installed parallel, with carpet pile in the same direction. Patterns shall be accurately matched. Cutouts, as at door jambs, columns and ducts shall be neatly cut and fitted securely. Seams at doorways shall be located parallel to and centered directly under doors. Seams shall not be made perpendicular to doors or at pivot points. ## 3.5 CLEANING AND PROTECTION # 3.5.1 Cleaning After installation of the carpet, debris, scraps, and other foreign matter shall be removed. Soiled spots and adhesive shall be removed from the face of the carpet with appropriate spot remover. Protruding face yarn shall be cut off and removed. Carpet shall be vacuumed clean. ## 3.5.2 Protection REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 The installed carpet shall be protected from soiling and damage with heavy, reinforced, nonstaining kraft paper, plywood, or hardboard sheets. Edges of kraft paper protection shall be lapped and secured to provide a continuous cover. Traffic shall be restricted for at least 45 hours. Protective covering shall be removed when directed by the Contracting Officer. #### 3.6 REMNANTS Remnants remaining from the installation, consisting of scrap pieces more than 2 feet in dimension with more than 6 square feet total, shall be provided. Non-retained scraps shall be removed from site. END OF SECTION REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 SECTION 09900 ## PAINTING, GENERAL ## PART 1 GENERAL #### 1.1 RELATED DOCUMENTS Drawings and general provisions of Contract, including General and Supplementary Conditions and Division 1 specifications, apply to work of this section. #### 1.2 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. AMERICAN CONFERENCE OF GOVERNMENTAL INDUSTRIAL HYGIENISTS (ACGIH) ACGIH-02 (1996) Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices ## AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | ASTM C 150 | (1996) Portland Cement | |-------------|---| | ASTM D 3273 | (1994) Resistance to Growth of Mold on the
Surface of Interior Coating in an
Environmental Chamber | | ASTM D 3274 | (1995) Evaluating Degree of Surface
Disfigurement of Paint Films by Microbial
(Fungal or Algal) Growth or Soil and Dirt
Accumulation | | ASTM D 4214 | (1989) Evaluating the Degree of Chalking of Exterior Paint Films | | ASTM D 4258 | (1988; R 1992) Surface Cleaning Concrete for Coating | | | | ## COMMERCIAL ITEM DESCRIPTIONS (CID) | CID A-A-1500 | (Rev A) Sealer, Surface (Latex Block Filler) | |--------------|--| | CID A-A-1546 | (Rev A) Rubbing Varnish | | CID A-A-1632 | (Basic) Varnish, Asphalt | | CID A-A-1788 | (Basic) Varnish, Oil: Interior | | CID A-A-2246 | (Rev A) Paint, Latex (Gloss, Interior) | # REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 | CID A-A-2335 | (Basic) Sealer, Surface (Varnish Type, Wood and Cork Floors) | | |---|--|--| | CID A-A-2336 | (Rev A) Primer Coating (Alkyd, Exterior Wood, White and Tints) | | | CID A-A-2339 | (Basic) Stain (Wood, Solvent-Dye Type) | | | CID A-A-2542 | (Basic) Sealer, Terrazzo and Concrete Floors,
Waterbased | | | CID A-A-2834 | (Rev A) Urethane, Waterborne (Low VOC, Clear) | | | CID A-A-2867 | (Basic) Coating, Polyurethane, Single
Component Moisture Cure, Alipathic | | | CID A-A-2962 | (Basic) Enamel, Alkyd | | | CID A-A-2994 | (Basic) Primer Coating, Interior, for Walls and Wood | | | FEDERAL AVIATION ADMINI | STRATION (FAA) | | | FAA AC 70/7460-1 | (Rev J) Obstruction Marking and Lighting | | | FEDERAL SPECIFICATIONS | (FS) | | | FS TT-C-542 | (Rev E) Coating, Polyurethane, Oil-Free, Moisture Curing | | | FS TT-C-555 | (Rev B; Am 1) Coating, Textured (for Interior and Exterior Masonry Surfaces) | | | FS TT-E-2784 | (Rev A) Enamel (Acrylic-Emulsion, Exterior Gloss and Semigloss) | | | FS TT-P-28 | (Rev G) Paint, Aluminum, Heat Resisting (1200 Degrees F.) | | | FS TT-S-708 | (Rev A; Am 2) Stain, Oil; Semi-Transparent, Wood, Exterior | | | FS TT-S-001992 | (Basic) Stain, Latex, Exterior for Wood
Surfaces | | | MAPLE FLOORING MANUFACTURERS ASSOCIATION (MFMA) | | | | MFMA-03 | (1995) Floor Finish List and Specifications | |---------|---| | | for Heavy Duty and Gymnasium Finishes for | | | Maple, Beech and Birch Floors: MFMA Floor | | | Finish List Number 14 | # REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 ## STEEL STRUCTURES PAINTING COUNCIL (SSPC) | SSPC Paint 5 | (1995) Zinc Dust, Zinc Oxide and Phenolic
Varnish Paint | |---------------|--| | SSPC Paint 18 | (1991) Chlorinated Rubber Intermediate Coat
Paint | | SSPC Paint 20 | (1991) Zinc-Rich Primers (Type I - Inorganic and Type II - Organic) | | SSPC Paint 23 | (1982) Latex Primer for Steel surfaces | | SSPC Paint 25 | (1991) Red Iron Oxide, Zinc Oxide, Raw
Linseed Oil and Alkyd Primer (Without Lead
and Chromate Pigments) | | SSPC SP 1 | (1982) Solvent Cleaning | | SSPC SP 2 | (1995) Hand Tool Cleaning | | SSPC SP 3 | (1995) Power Tool Cleaning | | SSPC SP 6 | (1994) Commercial Blast Cleaning | | SSPC SP 7 | (1994) Brush-Off Blast Cleaning | ## 1.3 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-01 Data Paint; FIO. The names, quantity represented, and intended use for the proprietary brands of materials proposed to be substituted for the specified materials when the required quantity of a particular batch is 50 gallons or less. SD-06 Instructions Mixing and Thinning; FIO. Application; FIO. Manufacturer's current printed product description, material safety data sheets (MSDS) and technical data sheets for each coating system. Detailed mixing, thinning and application instructions, minimum and maximum application temperature, and curing and drying times between coats for epoxy, moisture-curing polyurethane, and liquid glaze coatings. Detailed application instructions for textured coatings shall be provided. SD-09 Reports REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 Paint; FIO. A statement as to the quantity represented and the intended use, plus the following test report for batches in excess of 50 gallons: - a. A test report showing that the proposed batch to be used meets specified requirements: - b. A test report showing that a previous batch of the same formulation as the batch to be used met specified requirements, plus, on the proposed batch to be used, a report of test results for properties of weight per gallon, viscosity, fineness of grind, drying time, color, and gloss. SD-13 Certificates Lead; FIO. Mildewcide and Insecticide; FIO. Volatile Organic Compound (VOC) Content; FIO. Certificate stating that paints for interior use contain no mercurial mildewcide or insecticide. Certificate stating that paints proposed for use contain not more than 0.06 percent lead by weight of the total nonvolatile. Certificate stating that paints proposed for use meet Federal VOC regulations and those of the of the local Air Pollution Control Districts having jurisdiction over the geographical area in which the project is located. SD-14 Samples Paint; GA. While the material is at the site or source of supply, and at a time agreeable to the Contractor and the Contracting Officer, a 1 quart sample of each color and batch, except for quantities of 50 gallons or less, shall be taken by random selection from the sealed containers by the Contractor in the presence of a representative of the Contracting Officer. The contents of the containers to be sampled shall be thoroughly mixed to ensure that the sample is representative. Samples shall be identified by designated name, specification number, manufacturer name and address, batch number, project contract number, intended use, and quantity involved. ## 1.4 PACKAGING, LABELING, AND STORING Paints shall be in sealed containers that legibly show the designated name, formula or specification number, batch number, color, quantity, date of
manufacture, manufacturer's formulation number, manufacturer's directions including any warnings and special precautions, and name of manufacturer. Pigmented paints shall be furnished in containers not larger than 5 gallons. Paints and thinner shall be stored in accordance with the manufacturer's written directions and as a minimum stored off the ground, under cover, with sufficient ventilation to prevent the buildup of flammable vapors and at temperatures between 40 and 95 degrees F. Paints shall be stored on the REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 project site or segregated at the source of supply sufficiently in advance of need to allow 30 days for testing. #### 1.5 APPROVAL OF MATERIALS When samples are tested, approval of materials will be based on tests of the samples; otherwise, materials will be approved based on test reports furnished with them. If materials are approved based on test reports furnished, samples will be retained by the Government for testing should the materials appear defective during or after application. In addition to any other remedies under the contract the cost of retesting defective materials will be at the Contractor's expense. #### 1.6 ENVIRONMENTAL CONDITIONS Unless otherwise recommended by the paint manufacturer, the ambient temperature shall be between 45 and 95 degrees F when applying coatings other than water-thinned, epoxy, and moisture-curing polyurethane coatings. Water-thinned coatings shall be applied only when ambient temperature is between 50 and 90 degrees F. Epoxy, and moisture-curing polyurethane coatings shall be applied only within the minimum and maximum temperatures recommended by the coating manufacturer. Moisture-curing polyurethane shall not be applied when the relative humidity is below 30 percent. #### 1.7 SAFETY AND HEALTH Work shall comply with applicable Federal, State, and local laws and regulations, and with the ACCIDENT PREVENTION PLAN, including the Activity Hazard Analysis as specified in the CONTRACT CLAUSES. The Activity Hazard Analysis shall include analyses of the potential impact of painting operations on painting personnel and on others involved in and adjacent to the work zone. #### 1.7.1 Worker Exposures Exposure of workers to hazardous chemical substances shall not exceed limits established by ACGIH-02, or as required by a more stringent applicable regulation. ## 1.7.2 Toxic Compounds Toxic products having ineffective physiological warning properties, such as no or low odor or irritation levels, shall not be used unless approved by the Contracting Officer. ## 1.7.3 Training Workers having access to an affected work area shall be informed of the contents of the applicable material data safety sheets (MDSS) and shall be informed of potential health and safety hazard and protective controls associated with materials used on the project. An affected work area is one which may receive mists and odors from the painting operations. Workers involved in preparation, painting and clean-up shall be trained in the safe handling and application, and the exposure limit, for each material which REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 the worker will use in the project. Personnel having a need to use respirators and masks shall be instructed in the use and maintenance of such equipment. #### 1.7.4 Coordination Work shall be coordinated to minimize exposure of building occupants, other Contractor personnel, and visitors to mists and odors from preparation, painting and clean-up operations. #### PART 2 PRODUCTS #### 2.1 PAINT The term "paint" as used herein includes emulsions, enamels, paints, stains, varnishes, sealers, cement-emulsion filler, and other coatings, whether used as prime, intermediate, or finish coat. Paint shall conform to the requirements listed in the painting schedules at the end of this section, except when the required amount of a material of a particular batch is 50 gallons or less, an approved first-line proprietary paint material with similar intended formulation, usage and color to that specified may be used. Additional requirements are as follows: #### 2.1.1 Colors and Tints Colors shall be as selected from manufacturer's standard colors, as indicated. Manufacturer's standard color is for identification of color only. Tinting of epoxy and urethane paints shall be done by the manufacturer. Stains shall conform in shade to manufacturer's standard color. The color of the undercoats shall vary slightly from the color of the next coat. #### 2.1.2 Lead Paints containing lead in excess of 0.06 percent by weight of the total nonvolatile content (calculated as lead metal) shall not be used. ## 2.1.3 Chromium Paints containing zinc chromate or strontium chromate pigments shall not be used. ## 2.1.4 Volatile Organic Compound (VOC) Content Paints shall comply with applicable federal, state and local laws enacted to insure compliance with Federal Clean Air Standards and shall conform to the restrictions of the local air pollution control authority. ## PART 3 EXECUTION #### 3.1 PROTECTION OF AREAS NOT TO BE PAINTED Items not to be painted which are in contact with or adjacent to painted surfaces shall be removed or protected prior to surface preparation and REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 painting operations. Items removed prior to painting shall be replaced when painting is completed. Following completion of painting, workmen skilled in the trades involved shall reinstall removed items. Surfaces contaminated by coating materials shall be restored to original condition. #### 3.2 SURFACE PREPARATION Surfaces to be painted shall be clean and free of foreign matter before application of paint or surface treatments. Oil and grease shall be removed prior to mechanical cleaning. Cleaning shall be programmed so that dust and other contaminants will not fall on wet, newly painted surfaces. Exposed ferrous metals such as nail heads on or in contact with surfaces to be painted with water-thinned paints, shall be spot-primmed with a suitable corrosion-inhibitive primer capable of preventing flash rusting and compatible with the coating specified for the adjacent areas. ## 3.2.1 Concrete, Stucco and Masonry Surfaces Concrete, stucco and masonry surfaces shall be allowed to dry at least 30 days before painting, except concrete slab on grade which shall be allowed to cure 90 days before painting. Surfaces shall be cleaned in accordance with ASTM D 4258. Glaze, efflorescence, laitance, dirt, grease, oil, asphalt, surface deposits of free iron and other foreign matter shall be removed prior to painting. Surfaces to receive polyurethane or epoxy coatings shall be acid-etched or mechanically abraded as specified by the coating manufacturer, rinsed with water, allowed to dry, and treated with the manufacturer's recommended conditioner prior to application of the first coat. ## 3.2.2 Ferrous Surfaces Ferrous surfaces including those that have been shop-coated, shall be solvent-cleaned or detergent-washed in accordance with SSPC SP 1. Surfaces that contain loose rust, loose mill scale, and other foreign substances shall be cleaned mechanically with hand tools according to SSPC SP 2, power tools according to SSPC SP 3 or by sandblasting according to SSPC SP 7. Shop-coated ferrous surfaces shall be protected from corrosion by treating and touching up corroded areas immediately upon detection. ## 3.2.3 Nonferrous Metallic Surfaces Galvanized, aluminum and aluminum-alloy, lead, copper, and other nonferrous metal surfaces shall be solvent-cleaned or detergent-washed in accordance with SSPC SP 1. ## 3.2.4 Gypsum Board Surfaces Gypsum board surfaces shall be dry and shall have all loose dirt and dust removed by brushing with a soft brush, rubbing with a cloth, or vacuum-cleaning prior to application of the first-coat material. A damp cloth or sponge may be used if paint will be water-based. FAIRCHILD AFB, WA. PN GJKZ 99-0151 3.2.5 Previously Painted Surfaces Previously painted surfaces specified to be repainted or damaged during construction shall be thoroughly cleaned of all grease, dirt, dust or other foreign matter. Blistering, cracking, flaking and peeling or other deteriorated coatings shall be removed. Slick surfaces shall be roughened. Damaged areas such as, but not limited to, nail holes, cracks, chips, and spalls shall be repaired with suitable material to match adjacent undamaged areas. Edges of chipped paint shall be feather edged and sanded smooth. Rusty metal surfaces shall be cleaned as per SSPC requirements. Solvent, mechanical, or chemical cleaning methods shall be used to provide surfaces suitable for painting. Chalk shall be removed so that when tested in accordance with ASTM D 4214, the chalk resistance rating is no less than 8. New, proposed coatings shall be compatible with existing coatings. If existing surfaces are glossy, the gloss shall be reduced. Previously painted surfaces that contain lead paint shall be cleaned with low-pressure steam. The intent is to encapsulate the Lead Based Paint with new painting system. Mechanically cleaning surfaces containing lead paint is not permitted. Verify areas of lead paint and provide procedures for cleaning and abatement to the Resident Engineer prior to start of painting. ## 3.3 MIXING AND THINNING When thinning is approved as necessary to suit surface, temperature, weather conditions, or application methods, paints may be thinned in accordance with the manufacturer's directions. When thinning is allowed, paints shall be thinned immediately prior to application with not more than 1 pint of suitable thinner per gallon. The use of thinner shall not relieve the Contractor from obtaining complete hiding, full film thickness, or required gloss. Thinning shall not cause the paint to exceed limits on volatile organic compounds. Paints of different
manufacturers shall not be mixed. ## 3.3.1 Two-Component Systems Two-component systems shall be mixed in accordance with manufacturer's instructions. Any thinning of the first coat to ensure proper penetration and sealing shall be as recommended by the manufacturer for each type of substrate. #### 3.4 APPLICATION Painting practices shall comply with applicable federal, state and local laws enacted to insure compliance with Federal Clean Air Standards. Unless otherwise specified or recommended by the paint manufacturer, paint may be applied by brush, roller, or spray. At the time of application, paint shall show no signs of deterioration. Uniform suspension of pigments shall be maintained during application. Each coat of paint shall be applied so dry film shall be of uniform thickness and free from runs, drops, ridges, waves, pinholes or other voids, laps, brush marks, and variations in color, texture, and finish. Hiding shall be complete. Rollers for applying paints and enamels shall be of a type designed for the coating to be applied and the surface to be coated. Special attention shall be given to insure that all edges, corners, crevices, welds, and rivets receive a film thickness REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 equal to that of adjacent painted surfaces. Paints, except water-thinned types, shall be applied only to surfaces that are completely free of moisture as determined by sight or touch. ### 3.4.1 Ventilation Affected areas shall be ventilated during paint application so that workers exposure to chemical substances shall not exceed limits as established by ACGIH-02, or as required by a more stringent applicable regulation. Interior work zones having a volume of 10,000 cubic feet or less shall be ventilated at a minimum of 2 air exchanges per hour. Ventilation in larger work zones shall be maintained by means of mechanical exhaust. Solvent vapors shall be exhausted outdoors, away from air intakes and workers. Return air inlets in the work zone shall be temporarily sealed before start of work until the coatings have dried. ## 3.4.2 Respirators Operators and personnel in the vicinity of operating paint sprayers shall wear respirators. #### 3.4.3 First Coat The first coat on plaster, gypsum wallboard, and other surfaces shall include repeated touching up of suction spots or overall application of primer or sealer to produce uniform color and gloss. Excess sealer shall be wiped off after each application. The first coat on both faces of wood doors shall be applied at essentially the same time. Glazed doors and sashes shall be given the specified coating system within 3 weeks of the time they are glazed, but not before the glazing material has set; paint shall overlay glass about 70 mils all around. Each varnish coat shall be sanded lightly prior to application of subsequent coats. # 3.4.4 Timing Surfaces that have been cleaned, pretreated, and otherwise prepared for painting shall be given a coat of the specified first coat as soon as practical after such pretreatment has been completed, but prior to any deterioration of the prepared surface. Sufficient time shall elapse between successive coats to permit proper drying. This period shall be modified as necessary to suit weather conditions. Oil-based or oleoresinous solvent-type paints shall be considered dry for recoating when the paint feels firm, does not deform or feel sticky under moderate pressure of the thumb, and the application of another coat of paint does not cause the undercoat to lift or lose adhesion. Manufacturer's instructions for application, curing and drying time between coats of two-component systems shall be followed. ## 3.5 SURFACES TO BE PAINTED Surfaces listed in the painting schedules at the end of this section, other than those listed in paragraph SURFACES NOT TO BE PAINTED, shall be painted as scheduled. REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 ## 3.6 SURFACES NOT TO BE PAINTED Surfaces in the following areas shall not to be painted: Interior Concrete Block. In addition, surfaces of hardware, fittings, and other factory finished items shall not be painted. #### 3.7 CLEANING Cloths, cotton waste and other debris that might constitute a fire hazard shall be placed in closed metal containers and removed at the end of each day. Upon completion of the work, staging, scaffolding, and containers shall be removed from the site or destroyed in an approved manner. Paint and other deposits on adjacent surfaces shall be removed and the entire job left clean and acceptable. ## 3.8 PAINTING SCHEDULES The following painting schedules identify the surfaces to be painted and prescribe the paint to be used and the number of coats of paint to be applied. Contractor options are indicated by ----- between optional systems or coats. #### EXTERIOR PAINTING SCHEDULE | Surface | First Coat | Second Coat | Third Coat | |-------------------------------|--------------------|------------------------|------------| | | | | | | Ferrous metal unless otherwis | Shop Primed e | TT-P-29 | TT-P-29 | | specified.
Brown 2000") | (Exterior Doors to | Match Sherwin Williams | "Fairchild | Exterior Water Tank Aluminum CID A-A 2867 CID A-A 2867 Aluminum-alloy 4.0 - 6.0 mil 3.0 - 5.0 mil Stainless Steel Mil-P-23377D CID A-A 2867 (2coats) Bands (Primer) 3.0 - 5.0 mils Color to match Federal Standard 595a, color no. X3578 "Antique Linen" | INTERIOR PAINTING SCHEDULE | | | | |--|---------------|--------------|--------------| | Gypsum board unless otherwise specified. | CID A-A-2994 | CID A-A-2246 | CID A-A-2246 | | Shop Primed Ferrous Metal Unless otherwise | SSPC Paint 23 | TT-P-2784 | TT-P-2784 | # 00029/11 REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 specified. | Ferrous metal in concealed damp spaces or in exposed areas having unpainted adjacent surfaces | CID A-A 1632 | None | None | |---|--|--------------------------|--------------------------| | Ferrous metal factory-primed mechanical and electrical equipment. | Two coats of pairecommended by tequipment manufa | the | None | | Wood: stain and
Varnish finishes | Comercially available stain | CID A-A 1788 | CID A-A 1788 | | Metal: Convector Enclosures, Electrical Conduit runs Metallic tubing, Uninsulated ducts And pipes, pipe Hangars, louvers, Grilles, and air Outlets in areas Having painted Adjacent surfaces. | TT-E-2784 | CID A-A 2246 | CID A-A 2246 | | Galvanized metal: | SSPC Paint 23 | FS TT-E-2784
Type III | FS TT-E-2784
Type III | | Concrete Masonry
Units Requiring a
Smooth Finish | CID A-A-1500 | CID A-A-2994
Type II | CID A-A 2246 | END OF SECTION SECTION 09986 #### FIBERGLASS REINFORCED POLYESTER PANELS ## PART 1 GENERAL #### 1.1 RELATED DOCUMENTS Drawings and general provisions of Contract, including General and Supplementary Conditions and Division 1 specifications, apply to work of this section. #### 1.2 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. ## AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | ASTM D 149 | Dielectric Breakdown Voltage and Dielectric
Strength of Solid Electrical Insulating
Materials at Commercial Power Frequencies. | |-------------|--| | ASTM D 256 | Determining the Pendulum Impact Resistance of Notched Specimens of Plastics. | | ASTM D 543 | Resistance of Plastics to Chemical Reagents. | | ASTM D 570 | Water Absorption of Plastics. | | ASTM D 638 | Tensile Properties of Plastics. | | ASTM D 696 | Coefficient of Linear Thermal Expansion of Plastics Between 30 degrees C and 30 degrees C. | | ASTM D 790 | Flexural Properties of Unreinforced and
Reinforced Plastics and
Electrical Insulating Materials. | | ASTM D 792 | Density and Specific Gravity (Relative Density) of Plastics by Displacement. | | ASTM D 2583 | Indentation Hardness of Rigid Plastics by Means of a Barcol Impressor. | | ASTM D 3841 | Glass-Fiber-Reinforced Polyester Plastic Panels. | | ASTM E 84 | Surface Burning Characteristics of Building Materials. | ## 1.3 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01300 SUBMITTALS: #### SD-01 Data Fiberglass reinforced composite panels; FIO. Trim and installation accessories; FIO. Manufacturer's catalog data. #### SD-06 Instructions Fiberglass reinforced composite panels; FIO. Trim and installation accessories; FIO. Manufacturer's preprinted installation and cleaning instructions. #### SD-13 Certificates Fiberglass reinforced composite panels; FIO. Trim and installation accessories; FIO. Certificates indicating conformance with specified requirements. ## SD-14 Samples Fiberglass reinforced composite panels; FIO. Trim and installation accessories; FIO. Samples: 6 inches by 6 inches square for all surface materials, 6 inches long for running trim or individual trim. #### DELIVERY, STORAGE, AND HANDLING 1.4 Deliver products to the job site in an undamaged condition. Store products indoors and protect from moisture, construction traffic, and damage. Store panels flat on clean, dry surface. Do not stand on edge or stack on fresh concrete or other surfaces that emit moisture. Store panels at least 24 hours at temperature and humidity conditions approximating the average environment of the finish room. #### PART 2
PRODUCTS #### 2.1 PANEL MATERIALS ## 2.1.1 General Characteristics Composite plastic panels of random chopped fiberglass roving, modified polyester copolymer, inorganic fillers, and pigments. Panels shall be resistant to rot, corrosion, staining, denting, peeling, and splintering. Panels shall comply with ASTM D 3841, Type II. ## 2.1.2 Typical Standard Panel Physical Properties: - a. - Surface burning classification: Class C. 1. Flame spread (ASTM E 84): 200 or less. - Smoke developed (ASTM E 84): 450 or less. - Flexural strength (ASTM D 790): 1.7 x 10⁴ psi. - Flexural modulus (ASTM D 790): 6.0 x 10(6) psi. - Tensile strength (ASTM D 638): 8.0×10^3 psi. Tensile modulus (ASTM D 638): 9.43×10^3 psi. d. - е. - Impact strength, IZOD (ASTM D 256): 7.0 ft. lb./in. f. - Barcol hardness (ASTM D 2583): 40. a. - h. Water absorption (ASTM D 570): 0.17% in 24 hrs. @ 77 deg.F. - Coefficient of linear thermal expansion (ASTM D 696): 1.57 i. $\times 10^{-5}$ in./in./deg.F. - Specific gravity (ASTM D 792): 1.53. j. REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 - k. Dielectric Strength (ASTM D 149): 400 volts/mil. - 1. Chemical resistance (ASTM D 543): #### 2.1.3 Size: - a. Wall panel width: 48 inches. - b. Wall panel length as indicated on the drawings. - 2.1.4 Thickness: 3/32" - 2.1.5 Dimensional Tolerances: - a. Width and length: +/- 1/8 inch. - b. Thickness: +/-10%. - c. Squareness: Not more than 1/8 inch out of square. #### 2.2 FINISHES 2.2.1 Exposed Surface Exposed surfaces to have pebble-like embossed finish. 2.2.2. Back Surface: Back surfaces to be smooth. Imperfections that do not affect functional properties are not cause for rejection. 2.2.3 Color Color to be as indicated on the drawings. ## 2.3 TRIM ACCESSORIES - 2.3.1 Provide panel manufacturer's standard vinyl moldings to meet project conditions. - a. 3/32" Standard trim: White. - 1. Division bar. - 2. Inside corner. - 3. Outside corner. - 4. End cap. - 2.3.2 Fasteners Non-staining nylon drive rivets. - a. Match panel colors. - b. Length to suit project conditions. - 2.3.3 Adhesive Structural construction adhesive as recommended by manufacturer. 2.3.4 Sealant Clear silicone sealant as recommended by manufacturer. #### PART 3 EXECUTION ## 3.1 PREPARATION Examine substrates to receive panels to ensure that surfaces are smooth, dry, true, and free of dirt, dust, oil, or grease. Remove high spots. Fill low spots. Apply leveling coat of plaster to concrete block walls, 00029/11 REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 > if required to bring surface to a true plane. Verify that substrate construction is completed and approved. Correct deficiencies in substrate before installing panels. #### 3.2 INSTALLATION #### 3.2.1 General Install in accordance with manufacturer's printed installation instructions, using both mechanical fasteners and adhesive. #### 3.2.2 Cutting Panels Cut panels with carbide-tipped saw blade or swivel head shear. Allow 1/2-inch clearance in length per 8-foot panel length. Allow 1/8-inch clearance at cut-outs for penetrations. ## 3.2.3 Pre-Drilling Pre-drill fastener holes before applying adhesive. Use carbidetipped drill. Drill 3/8-inch holes for 1/4-inch nominal fasteners. Space at 8 inches maximum on center at perimeter, approximately 1 inch from panel edge. Space at in field in rows 16 inches on center, with fasteners spaced at 12 inches maximum on center. #### 3.2.4 Adhesive Apply adhesive between 50 and 90 degrees F, unless otherwise approved. Spread adhesive 1/4-inch deep over entire back side of panel to achieve 100% coverage. Do not use beads of adhesive. Do not use mechanical fasteners or adhesive alone. Allow open time recommended by adhesive manufacturer before setting panels into position. Once in position, apply sufficient pressure to make full contact between panel and wall. Roll panel surface to ensure complete contact. If necessary, install bracing to maintain intimate contact until adhesive cures in accordance with manufacturer's instructions. ## 3.2.5 Panel Fasteners Apply silicone sealant in pre-drilled fastener holes. Drive fasteners for snug fit. Do not over-tighten. Fasten leading edge of each panel after installing moldings. ## 3.2.6 Moldings Trim division bar to accommodate ceiling and base moldings. Apply bead of silicone sealant to one side of division bar and install on leading edge of first panel. Push molding all the way onto panel and pull back to allow 1/8-inch clearance. Check plumb. Fasten molding with coated lath nails, installed to leading edge of molding, only. Complete fastening of panel, and remove excess sealant. Apply sealant to leading edge of molding to receive next panel. Allow 1/8-inch clearance when installing panel. Remove excess sealant from panels and moldings. # 3.2.7 Sealants Seal corner seams, ceiling and base junctures, around door frames and other openings, and between penetrating items and panel cutouts. #### 3.3 ADJUST AND CLEAN Remove scraps and debris from the site, and leave in a neat and clean condition. END OF SECTION # SECTION 10100 VISUAL COMMUNICATION SPECIALITIES ## PART 1 GENERAL #### 1.1 RELATED DOCUMENTS Drawings and general provisions of Contact, including General and Supplementary Conditions and Division 1 specifications, apply to work of this section. #### 1.2 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. ## AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI) ANSI Z97.1 (1984; R 1994) Safety Glazing Materials Used In Buildings #### AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | ASTM B 221 | (1995a) Aluminum and Aluminum-Alloy
Extruded Bars, Rods, Wire, Shapes, and | |--------------------|--| | Tubes | | | ASTM C 1048
HS. | (1992) Heat-Treated Flat Glass - Kind | | | Kind FT Coated and Uncoated Glass | | ASTM E 84 | (1995) Surface Burning Characteristics of
Building Materials | | ASTM F 148 | (1995) Binder Durability of Cork
Composition Gasket Materials | | ASTM F 152 | (1995) Tension Testing of Nonmetallic
Gasket Materials | | ASTM F 793 | (1993; R 1994) Standard Classification of Wallcovering by Durability Characteristics | #### 1.3 GENERAL REQUIREMENTS The term visual display board when used herein includes visual aid board units, marker boards, tackboards, board cases, display track system and horizontal sliding units. Visual display boards shall be from manufacturer's standard product line. #### 1.4 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-01 Data Visual Display Boards; GA. Manufacturer's descriptive data and catalog cuts. SD-06 Instructions Visual Display Boards; FIO. Manufacturer's installation instructions, and cleaning and maintenance instructions. SD-13 Certificates Visual Display Boards; FIO. Certificate of compliance signed by Contractor attesting that visual display boards conform to the requirements specified. SD-14 Samples Materials; GA. Section of core material showing the lamination of colored cork, natural cork, woven fabric, non-woven fabric, and vinyl wall covering. Sample of hardwood and plastic laminate finish, and glass type. Samples shall be minimum 4 by 4 inches and show range of color. ## 1.5 DELIVERY, STORAGE AND HANDLING Materials shall be delivered to the building site in the manufacturer's original unopened containers and shall be stored in a clean dry area with temperature maintained above 50 degrees F. Materials shall be stacked according to manufacturer's recommendations. Visual display boards shall be allowed to acclimate to the building temperature for 24 hours prior to installation. ## 1.6 WARRANTY Manufacturer's standard performance guarantees or warranties that extend beyond a one year period shall be provided. #### PART 2 PRODUCTS ## 2.1 COLOR Finish colors for required items shall be as specified in the drawings. #### 2.2 MATERIALS ## 2.2.1 Porcelain Enamel Marker board writing surface shall be composed of porcelain enamel fused to a nominal 0.0149 inches (28 gauge) thick steel, laminated to a minimum 1/4 inch thick core material with a steel or foil backing sheet. Writing surface shall be capable of supporting paper by means of magnets. Marker board surface for display track system may be a powder paint dry erase surface adhered to a nominal 0.0478 inches (18 gauge) thick steel. ### 2.2.2 Cork Cork shall be a continuous resilient sheet made from soft, clean, granulated cork relatively free from hardback and dust and bonded with a binder suitable for the purpose intended. The wearing surface shall be free from streaks, spots, cracks or other imperfections that would impair its usefulness or appearance. The material shall be seasoned, and a clean cut made not less than 1/2 inch from the edge shall show no evidence of soft sticky binder. #### 2.2.2.1 Natural Cork Material shall be a single layer of pure grain natural cork without backing or facing. The color shall be light tan. The cork sheet shall have a tensile strength of not less than 40 psi when tested in accordance with ASTM F 152. ## 2.2.3 Hardwood Exposed hardwood for frames, cabinets, and cases shall be oak. Hardwood shall be provided with a durable factory-applied stain and lacquer finish of a type standard with the manufacturer. ## 2.3 MARKERBOARD Markerboard shall have a porcelain enamel writing surface and a chalktray. Markerboard shall be a factory assembled unit complete in one piece, without joints whenever possible. When markerboard dimensions require delivery in separate sections, components shall be prefit at the factory, disassembled for delivery and
jointed at the site. Frame shall be oak. Chalktray shall be the same material as the frame and extend the full length of the liquid markerboard in locations indicated on the drawings. The markerboard shall not include a map rail. Dry erase markings shall be removable with a felt eraser or dry cloth without ghosting. Each unit shall come complete with an eraser and four different color compatible dry erase markers. The size shall be as shown in the drawings. ## 2.4 TACKBOARDS ## 2.4.1 Cork Tackboard shall consist of a minimum 1/4 inch thick natural cork laminated to a minimum 1/4 inch thick hardboard, and shall have an oak frame. The size shall be as shown in the drawings. ## PART 3 EXECUTION #### 3.1 INSTALLATION Installation and assembly shall be in accordance with manufacturer's printed instructions. Concealed fasteners shall be used. Visual display boards shall be attached to the walls with suitable devices to anchor each unit. The Contractor shall furnish and install trim items, accessories and miscellaneous items in total, including but not limited to hardware, grounds, clips, backing materials, adhesives, brackets, and anchorages incidental to or necessary for a sound, secure, complete and finished installation. Installation shall not be initiated until completion of room painting and finishing operations. Visual display boards shall be installed in locations and at mounting heights indicated. Visual display boards shall be installed level and plumb, and if applicable doors shall be aligned and hardware shall be adjusted. Damaged units shall be repaired or replaced by the Contractor as directed by the Resident Engineer. ## 3.2 CLEANING Writing surfaces shall be cleaned in accordance with manufacturer's instructions. END OF SECTION REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 SECTION 10160 #### TOILET PARTITIONS ## PART 1 GENERAL #### 1.1 RELATED DOCUMENTS Drawings and general provisions of Contract, including General and Supplementary Conditions and Division 1 specifications, apply to work of this section. #### 1.2 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. CODE OF FEDERAL REGULATIONS (CFR) 36 CFR 1191 Americans with Disabilities Act (ADA) Accessibility Guidelines for Buildings and Facilities FEDERAL SPECIFICATIONS (FS) FS RR-P-1352 (Rev C) Partitions, Toilet, Complete FEDERAL STANDARDS (FED-STD) FED-STD 795 (Basic) Uniform Federal Accessibility Standards COMMERCIAL ITEM DESCRIPTIONS (CIO) CID A-A-60003 Partitions, Toilet, Complete ## 1.3 SYSTEM DESCRIPTION Toilet partition system, including toilet enclosures and urinal screens, shall be a complete and usable system of panels, hardware, and support components. The partition system shall be provided by a single manufacturer and shall be a standard product as shown in the most recent catalog data. The partition system shall comply with FED-STD 795 and 36 CFR 1191 for areas as shown. ## 1.4 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01300 SUBMITTALS: SD-01 Data REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 Toilet Partition System; GA. > Manufacturer's technical data and catalog cuts including installation and cleaning instructions. REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 SD-04 Drawings Toilet Partition System; FIO. Drawings showing plans, elevations, details of construction, hardware, reinforcing, fittings, mountings, and anchorings. SD-14 Samples Toilet Partition System; FIO. Manufacturer's standard color charts and color samples. #### 1.5 DELIVERY, STORAGE, AND HANDLING Components shall be delivered to the job site in the manufacturer's original packaging with the brand, item identification, and project reference clearly marked. Components shall be stored in a dry location that is adequately ventilated and free from dust, water, or other contaminants and shall have easy access for inspection and handling. #### 1.6 WARRANTY Manufacturer's standard performance quarantees or warranties that extend beyond a 1 year period shall be provided. #### PART 2 **PRODUCTS** #### TOILET ENCLOSURES 2.1 Toilet enclosures shall conform to FS RR-P-1352 and CRD A-A-60003, Type I, Style A. Width, length and height of toilet enclosures shall be as shown. Finish surface of panels shall be baked enamel finish. #### 2.2 URINAL SCREENS Urinal screens shall conform to FS RR-P-1352 and CID A-A-60003, Type III, Style A. Finish surface of screens shall be baked enamel finish. Width and height of urinal screens shall be as shown. #### 2.3 HARDWARE Hardware for the toilet partition system shall conform to FS RR-P-1352 for the specified type and style of partitions. Hardware finish shall be highly resistant to alkalies, urine, and other common toilet room acids. #### 2.4 COLORS Color of finishes for toilet partition system components shall be as indicated on drawings. ## PART 3 EXECUTION REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 ## INSTALLATION Toilet partitions shall be installed straight and plumb in accordance with approved manufacturer's instructions with horizontal lines level and rigidly anchored to the supporting construction. Where indicated, anchorage to walls shall be by through-bolting. Drilling and cutting for installation of anchors shall be at locations that will be concealed in the finished work. #### 3.2 ADJUSTING AND CLEANING Doors shall have a uniform vertical edge clearance of approximately 3/16 inch and shall rest open at approximately 30 degrees when unlatched. Baked enamel finish shall be touched up with the same color of paint that was used for the finish. Toilet partitions shall be cleaned in accordance with approved manufacturer's instructions and shall be protected from damage until accepted. END OF SECTION REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 SECTION 10210 #### METAL WALL LOUVERS ## PART 1 GENERAL #### 1.1 RELATED DOCUMENTS Drawings and general provisions of Contract, including General and Supplementary Conditions and Division 1 specifications, apply to work of this section. #### 1.2 APPLICABLE PUBLICATIONS The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only. The latest issue of the publications shall be used. AIR MOVEMENT AND CONTROL ASSOCIATION (AMCA) STANDARDS: AMCA 500 Test Method for Louvers, Dampers and Shutters AMCA 511 Certified Ratings Program for Air Control Devices AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) PUBLICATIONS: ASTM B 221 Aluminum-Alloy Extruded Bar, Rod, Wire, Shape, and Tube #### 1.3 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01300 SUBMITTALS: SD-13 Certificates; Wall louvers. FIO SD-01 Data; Wall louvers. FIO SD-04 Drawings; Wall louvers. GA REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 Show all information necessary for fabrication and installation of louvers. Indicate materials, sizes, thicknesses, fastenings, profiles, and structural supports. Samples; Wall louvers. GA Submit 2 color samples on squares of same metal to be used to fabricate louvers. Color to be as indicated. 1.4 DELIVERY, STORAGE, AND PROTECTION Deliver materials to the site in an undamaged condition. Carefully store materials off the ground to provide proper ventilation, drainage, and protection against dampness. Louvers shall be free from nicks, scratches, and blemishes. Replace defective or damaged materials with new. PART 2 - PRODUCTS #### 2.1 MATERIALS: #### 2.1.1 Extruded Aluminum ASTM B 221, alloy 6063-T5 or -T52. ## 2.2 METAL WALL LOUVERS Weather resistant type, with bird screens and made to withstand a wind load of not less than 20 pounds per square foot. Wall louvers shall bear the AMCA certified ratings program seal for air performance and water penetration in accordance with AMCA-500 and AMCA-511. 2.2.1 Extruded Aluminum Fixed Wall Louvers (Type FW) Heads, sills, jambs and mullions to be one piece structural members of 6063-T52 alloy with integral caulking slot and retaining beads. Mullions shall be concealed type. Blades to be one piece extrusions with reinforcing bosses, 4 inches in nominal depth. Extrusion thicknesses shall be as follows: Heads, sills, jambs and mullions: 0.081". Fixed Drainable Blades: 0.081". All fasteners to be aluminum or stainless steel. All louvers to be furnished with ½" mesh, .063" diameter aluminum wire intercrimp bird screen secured within a .081" extruded aluminum frame. Screens and screen frame to be standard mill finish. 2.2.1.1 Structural supports shall be designed and furnished by the louver manufacturer to carry a wind load of not less than 90 psf. ## 2.2.1.2 Size As indicated on drawings. REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 - 2.2.1.3 Applicable performance attributes based on a 4-foot by 4-foot size louver - a. Free area = 8.80 sq. ft. - b. Percent free area 55%, minimum. - c. Maximum recommended air intake velocity = 690 FPM Air volume @ 690 FPM free area velocity = 6072 CFM Pressure drop @ 690 FPM free area velocity = .11 in. w.g. # 2.3 FASTENERS AND ACCESSORIES Provide stainless steel screws and fasteners for aluminum louvers. Provide other accessories as required for complete and proper installation. # 2.4 FINISHES ### 2.4.1 Aluminum Provide factory-applied organic coating to match color of the exterior of the building. ### PART 3 -
EXECUTION # 3.1 INSTALLATION: # 3.1.1 Wall Louvers Install using stops or moldings, flanges, strap anchors, or jamb fasteners as appropriate for the wall construction and in accordance with manufacturer's recommendations. ### 3.1.2 Screens and Frames Attach frames to louvers with screws or bolts. # 3.2 PROTECTION FROM CONTACT OF DISSIMILAR MATERIALS: #### 3.2.1 Aluminum Where aluminum contacts metal other than zinc, paint the dissimilar metal with a primer and two coats of aluminum paint. # 3.2.2 Metal Paint metal in contact with mortar, concrete, or other masonry materials with alkali-resistant coatings such as heavy-bodied bituminous paint. REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 SECTION 10440 INTERIOR SIGNAGE # PART 1 GENERAL #### 1.1 RELATED DOCUMENTS Drawings and general provisions of Contract, including General and Supplementary Conditions and Division 1 specifications, apply to work of this section. #### 1.2 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. # ALUMINUM ASSOCIATION (AA) | AA DAF-45 | (1980; R 199) | 3) Designat | tion System for | |-----------|---------------|--------------------------|-----------------| | | Aluminum Fin: | ishes 7 th Ed | dition | Standards for Anodized Architectural Aluminum # AMERICAN ARCHITECTURAL MANUFACTURERS ASSOCIATION (AAMA) | AAMA 605 | (1992; Addenda Jan 1995) Voluntary | |----------|--| | | Specification, Performance Requirements and | | | Test Procedures for High Performance Organic | Coatings on Aluminum Extrusions and Panels Specifications and Methods of Test for Safety Glazing Materials Used in Buildings ### AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI) | ANSI B18.2.1 | Square and Hex Bolts and Screws Inch Series
Including Hex Cap Screws and Lag Screws | |--------------|--| | ANSI B18.6.1 | Wood Screws (Inch Series) | | ANSI B18.6.2 | Slotted Head Cap Screws, Square Head Set
Screws and Slotted Headless Set Screws | | ANSI B18.6.3 | Machine Screws and Machine Screw Nuts | | ANSI B18.7 | General Purpose Semi-Tubular Rivets, Full
Tubular Rivets, Split Rivets and Rivet Caps | | ANSI Z97.1 | (1984; Rev 1994) Safety Performance | # REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 # AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | ASTM A123 | Zinc (Hot-Galvanized) Coatings on Products
Fabricated from ASTM A123 Zinc (Hot-
Galvanized) Coatings on Products Fabricated
from Rolled, Pressed and Forged Steel Shapes,
Plates, Bars, and Strip | |-------------------------|---| | ASTM A153 | Zinc-Coating (Hot-Dip) on Iron and Steel
Hardware | | ASTM A167 | Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet, and Strip | | ASTM A386 | Zinc-Coating (Hot-Dip) on Assembled Steel
Products | | ASTM A525 | Sheet, Zinc-Coated (Galvanized), by the Hot-
Dip Process | | ASTM D3841 | Glass Fiber-Reinforced Polyester Plastic Panels | | ASTM B 209 | (1996) Aluminum and Aluminum-Alloy Sheet and Plate | | ASTM B 209M | (1995) Aluminum and Aluminum-Alloy Sheet and Plate (Metric) | | ASTM B 221 | (1996) Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes | | | (1996) Aluminum and Aluminum-Alloy Extruded
Bars, Rods, Wire, Profiles, and Tubes
(Metric) | | ASTM C 1036 | (1991; R 1997) Flat Glass | | AMERICAN WELDING SOCIET | Y (AWS) | | | | AWS D1.2 (1990) Structural Welding Code - Aluminum NATIONAL FIRE PROTECTION ASSOCIATION (NFPA) NFPA 70 (1996; Errata 96-4) National Electrical Code # 1.3 GENERAL Interior signage shall be of the design, detail, sizes, types, and message content shown on the drawings, shall conform to the requirements specified, and shall be provided at the locations indicated. Signs shall be complete with lettering, framing as detailed, and related components for a complete installation. REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 1.3.1 Character Proportions and Heights Letters and numbers on indicated signs in handicapped-accessible buildings, which do not designate permanent rooms or spaces, shall have a width-to-height ratio between 3:5 and 1:1 and a stroke-width-to-height ratio between 1:5 and 1:10. Characters and numbers on indicated signs shall be sized according to the viewing distance from which they are to be read. The minimum height is measured using an upper case letter "X". Lower case characters are permitted. Suspended or projected overhead signs shall have a minimum character height of 3 inches. # 1.3.2 Raised and Brailled Characters and Pictorial Symbol Signs (Pictograms) Letters and numbers on indicated signs which designate permanent rooms and spaces in handicapped-accessible buildings shall be raised 1/32 inch upper case, sans serif or simple serif type and shall be accompanied with Grade 2 Braille. Raised characters shall be at least 5/8 inch in height, but no higher than 2 inches. Pictograms shall be accompanied by the equivalent verbal description placed directly below the pictogram. The border dimension of the pictogram shall be 6 inches minimum in height. Indicated accessible facilities shall use the international symbol of accessibility. #### 1.4 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-01 Data Interior Signage; FIO. Manufacturer's descriptive data, catalogs cuts, installation and cleaning instructions. SD-04 Drawings Interior Signage; GA. Drawings showing elevations of each type of sign, dimensions, details and methods of mounting or anchoring, shape and thickness of materials, and details of construction. A schedule showing the location, each sign type, and message shall be included. SD-14 Samples Interior Signage; GA. One sample of each of the following sign types showing typical quality and workmanship. The samples may be installed in the work, provided each sample is identified and location recorded. a. Door identification sign. REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 Two samples of manufacturer's standard color chips for each material requiring color selection. SD-19 Operation and Maintenance Manuals Interior Signage; GA. Six copies of operating instructions outlining the step-by-step procedures required for system operation shall be provided. The instructions shall include simplified diagrams for the system as installed. Six copies of maintenance instructions listing routine procedures, repairs, and guides shall be provided. The instructions shall include the manufacturer's name, model number, service manual, parts list, and brief description of all equipment and their basic operating features. Each set shall be permanently bound and shall have a hard cover. The following identification shall be inscribed on the covers: the words "OPERATING AND MAINTENANCE INSTRUCTIONS", name and location of the facility, name of the Contractor, and contract number. # 1.5 QUALIFICATIONS Signs, plaques, and dimensional letters shall be the standard product of a manufacturer regularly engaged in the manufacture of such products and shall essentially duplicate signs that have been in satisfactory use at least 2 years prior to bid opening. # 1.6 DELIVERY AND STORAGE Materials shall be delivered to the jobsite in manufacturer's original packaging and stored in a clean, dry area in accordance with manufacturer's instructions. # PART 2 PRODUCTS #### 2.1 ALUMINUM ALLOY PRODUCTS Where anodic coatings are specified, alloy shall conform to Aluminum Association's alloy designation 514.0 or A514.0. #### 2.1.1 Aluminum Finishes Exposed aluminum surfaces shall be factory finished with anodic coating. # 2.1.1.1 Anodic Coatinge Exposed aluminum surfaces shall be cleaned and given an anodized finish conforming to AA "Designation System for Aluminum Finishes". #### 2.2 STEEL PRODUCTS ASTM A36 for structural steel, ASTM A167 for sheet and plates. # 2.3 THERMOSETTING PLASTIC REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 Type MP laminated thermosetting plastic suitable for engraving. Signs shall consist of matte finish laminated thermosetting Type MP plastic. Frames shall be aluminum. Corners to be as shown ### 2.4 ANCHORS AND FASTENERS Materials in exposed anchors and fasteners shall be compatible with metal to which applied. Provide materials compatible with sign materials. Protect against galvanic action or chemical interaction of adhesives. 2.4.1 Bolts, Nuts, Studs, and Rivets ANSI B18.2.1 or ANSI B18.7. 2.4.2 Screws ANSI B18.6.3, ANSI B18.2.1, ANSI B18.6.1, ANSI B18.6.2. - 2.5 FABRICATION AND MANUFACTURE - 2.5.1 Workmanship Drill or punch holes for bolts and screws. Drilling and punching shall produce clean, true lines, and surfaces. Exposed surfaces of work shall have a smooth finish and exposed riveting shall be flush. Conceal fastenings where practicable. Items specified to be galvanized shall be by hot-dip process after fabrication, if practicable. Galvanize in accordance with ASTM A123, ASTM A153, ASTM A386, and ASTM A525, as applicable. Form joints exposed to the weather to exclude water. Include drainage and weep holes required to prevent build-up of condensation. ### 2.5.2 Dissimilar Materials Where dissimilar metals are in contact, or where aluminum is in contact with concrete, mortar, masonry, wet or pressure-treated wood, or absorptive
materials subject to wetting, protect the surfaces with a coat of asphalt varnish conforming to Fed. Spec. TT-V-51 or a coat of zinc chromate primer conforming to Fed. Spec. TT-P-664 to prevent galvanic or corrosive action. - 2.6 INTERIOR WALL PLAQUE (IDENTIFICATION): - 2.6.1 All signage to follow approved Fairchild Air Force standardization. All signage shall conform with Fed. Std. 795, Uniform Federal Accessibility Standards. All plaques to be fabricated in accordance with Fed. Spec. P 387, Type NDP 1/8" thick. - 2.6.2 Size: - 2.6.2.1 Type A Signage used primarily for room identification and standardized at $9" \times 9"$, 1/4" separating the letters and the braille characters. REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 # 2.6.3 Graphics Characters shall be 5/8" tall letter forms. Type to be Transbold. Characters shall be raised 1/32" minimum, upper and lower case, and shall be accompanied with Grade 2 braille characters placed above the raised or indented characters, as indicated. # 2.6.4 Character Proportion Letters and numbers on signs shall have a width-to-height ratio between 3:5 and 1:1 and a stroke width-to-height ratio between 1:5 and 1:10. #### 2.6.5 Construction Signs to be constructed of 1/8" plastic with raised characters and braille identification. Colors of these signs to match ICI Paint Color #1680 - Snowfield with letters matching ICI Paint Color #2004 - Egret. The characters and background of signs shall be eggshell, matte, or other non-glare finish. # 2.6.6 Mounting Signs should be positioned at eye level, 60" from floor to the centerline of the sign, on the latch side of the door or at Contracting Officer's direction. Double faced foam tape adhered to the back of the sign shall be the mounting method. # 2.6.7 Message Applicable signs are all room identifications. Provide for room numbers as determined by the Contracting Officer. # 2.7 STANDARD INTERIOR WALL PLAQUE (INFORMATION): 2.7.1 All signage to follow approved Fairchild Air Force Base standardization. All signage shall conform with Fed. Std. 795, Uniform Federal Accessibility Standards. All plaques to be fabricated in accordance with Fed. Spec. L-P-387, type NDP 1/8" thick. # 2.7.2 Size: # 2.7.2.1 Type B and C Signage used primarily for information is standardized at $9" \times 9"$ with 1/4" separating the letters and the Braille characters. # 2.7.3 Graphics As shown on drawing. Characters shall be raised 1/32" minimum, upper and lower case, and shall be accompanied with Grade 2 Braille characters placed above the raised or indented characters, as indicated. ### 2.7.4 Character Proportion REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 Letters and numbers on signs shall have a width-to-height ratio between 3:5 and 1:1 and a stroke width-to-height ratio between 1:5 and 1:10. #### 2.7.5 Construction Signs to be constructed of 1/8" plastic with raised characters and Braille identification. Colors of these signs to match ICI Paint #1680 - Snowfield with letters matching ICI Paint Color #2004 - Egret. The characters and background of signs shall be eggshell, matte, or other non-glare finish. # 2.7.6 Mounting Signs should be positioned at eye level, 60" from floor to the centerline of the sign, on the latch side of the door or Contracting Officer's direction. Double faced foam tape adhered to the back of the sign shall be the mounting method. #### 2.7.7 Message Provide standard Mens and Womens restroom signs only. ### PART 3 - EXECUTION #### 3.1 INSPECTION Inspect condition of locations and surfaces on which signs will be installed. Do not proceed with installation until defects or errors which would result in poor installation have been corrected. # 3.2 INSTALLATION Install signs at locations shown in the SIGNAGE SCHEDULE. Ensure that signs are installed plumb and true, at mounting heights indicated, and by method shown or specified. Do not install signs on doors or other surfaces until finishes on such surfaces have been applied. # 3.2.1 Anchorage Provide anchorage where necessary for fastening signs securely in place. Anchorage not otherwise specified or indicated shall include slotted inserts, expansion shields, and powder-driven fasteners when approved for concrete; toggle bolts and through bolts for masonry; machine and carriage bolts for steel; through bolts, lag bolts, and screws for sheet metal. Provide slotted inserts of types required to engage with the anchors. # 3.3 PROTECTION Protect the work and adjacent work and materials against damage during progress of the work until completion. Wrap finished work with paper, polyethylene film, or strippable waterproof tape for shipment and storage and protect from damage during installation. ### 3.4 ADJUST AND CLEAN REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 Repair any damage to signs incurred during installation. Replace signs which cannot be repaired to new condition. Clean glass, frames, and other sign surfaces, adjust hardware for proper operation. #### 3.5 INTERIOR SIGNAGE SCHEDULE: Refer to drawings. SECTION 10505 METAL LOCKERS #### PART 1 GENERAL #### 1.1 RELATED DOCUMENTS Drawings and general provisions of Contract, including General and Supplementary Conditions and Division 1 specifications, apply to work of this section. #### 1.2 SUMMARY Section Includes: Standard duty metal lockers. Locker-room benches. Work Not Included: Padlocks: Provided by the owner. #### 1 3 DEFINITIONS Standard Duty: This term is used to designate a particular type of locker specified in this section, regardless of individual manufacturer designations. #### SUBMITTALS 1.4 Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. Product Data: GA Manufacturer's data and installation instructions. Shop Drawings: GA Show layouts, dimensions, trim, fillers, and accessories. Indicate installation and anchoring methods. Show verified field measurements. Show locker numbering scheme. Samples for Color Selection: GA Locker manufacturer's full range of colors. Maintenance Data for Lockers: FIO Manufacturer's instructions for adjustment, repair, and replacement of doors and latching mechanisms. #### 1.5 **OUALITY ASSURANCE** Manufacturer Qualifications: Not less than 5 years of experience manufacturing lockers of types similar to those required for this project. REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 #### 1.6 PROJECT CONDITIONS Fit lockers neatly to actual construction; take field measurements before fabrication, unless taking of such measurements will delay the work. In that case, provide trim and filler panels as required. #### 1.7 DELIVERY, STORAGE, AND HANDLING Do not deliver lockers until spaces to receive lockers are clean and dry. Protect lockers from damage. #### PART 2 **PRODUCTS** #### 2.1 LOCKER CONFIGURATIONS AND COMPONENTS #### Lockers: Location: Men's and Women's toilet rooms. Standard duty. Single-tier. Height: 72 inches. Width: 15 inches. Depth: 18 inches. Doors: Perforated. Sides and vertical dividers: Solid. Shelves: Solid. Door handles. Shelf. Hang rod. Ceiling hook. 6 inch Z-base. #### 2.2 STANDARD DUTY LOCKERS Provide all standard duty lockers and accessories by one manufacturer. # Components: Frame: 16 gage steel channels or 13 gage steel angles, minimum. Tops: 24 gage steel sheet, minimum. Bottoms: 24 gage steel sheet, minimum. Horizontal dividers: 24 gage steel sheet, minimum. Sides and vertical dividers: 24 gage steel sheet, minimum. Backs: 24 gage steel sheet, minimum. Perforated doors: 14 gage steel sheet, minimum. Door handles: Standard type. Latching mechanism: Concealed in door, designed so that door can be closed while locked, with spring-loaded latches engaging beveled strikes on frame. Doors over 36 inches high: Three-point latching, minimum. Miscellaneous Components and Trim: 18 gage steel sheet, minimum. Fabrication: Weld all joints between frame members. Weld hinges to frame and fasten to door with at least 2 fasteners which are either tamperproof or concealed when door is closed. Base: 6 inch, 16 gauge, Z-base, color to match lockers. #### 2.3 LOCKER-ROOM BENCHES Benches: Locker manufacturer's standard products. Tops: Hardwood, solid or glued-laminated; 24 inches wide to comply with handicapped codes; finished with clear varnish. Pedestals: Steel with same baked enamel finish as lockers; 6 feet on center, maximum. Lengths: As indicated on drawings. Provide fasteners to anchor pedestals to benches and to floor. #### 2.4 MATERIALS Steel Sheet: Cold-rolled, leveled mild steel. Fasteners: Zinc-, cadmium-, or nickel-plated steel or stainless steel. Exposed bolt heads: Tamperproof type. For fastening moving components: Use lock washers or self-locking nuts. 5-knuckle, non-removable pin hinges, of loop style with 2 full thicknesses in each leaf; minimum 2 inches high. Minimum of 2 hinges per door. Doors over 42 inches high: Three hinges. Standard Door Handles: Die-cast zinc alloy or chrome-plated steel latch lifter and padlock hasp, designed so that door can be closed while locked; pry-resistant. Interior Fittings: Cadmium- or zinc-plated steel or cast aluminum, except shelves. Number Plates: Aluminum, zinc alloy, or stainless steel; raised or recessed numerals at least 3/8 inch high. Sequential numbering. Fasten to doors, centered near the top, using 2 fasteners. #### 2.5 FABRICATION - ALL LOCKERS Factory-fabricate and fully assemble lockers; do not knock down for shipping. Make lockers square with rigid joints, without dents or warped surfaces. Exposed metal edges: Smooth off sharp edges and corners. Exposed welds: Grind flush. Door and frame fronts: No exposed bolts or rivet heads. Where exposed holes for built-in locks are not used, cover holes neatly using permanent materials. Doors: Fabricate with flanged edges, reinforced if
required for stiffness, and designed to open and close without springing. Fabricate sheet steel doors of one piece. Provide extra stiffeners for doors more than 15 inches wide. Miscellaneous Components: Provide all parts, filler panels, closures, clips, and fasteners required for a complete installation. Finishing: Pretreat and finish all surfaces, both exposed and concealed, except stainless steel, chrome, and aluminum. Factory-finish all accessory components to match. Pretreatment: Remove scale, rust, and contaminants; chemically degrease and phosphatize. Finish: Manufacturer's standard baked-on enamel. Color(s): As indicated on the drawings. #### PART 3 EXECUTION #### 3.1 EXAMINATION Examine floors and bases; report surfaces that are not satisfactory for installation. #### 3.2 PREPARATION Clean debris from under and behind lockers before installation. #### 3.3 INSTALLATION Install lockers plumb and level. Anchor lockers securely to substrates in manner recommended by manufacturer. Use reinforcing plates and spacers as required to prevent metal distortion. Provide anchors at not more than 48 inches on center. Conceal fasteners wherever possible. Install accessory components with flush, tight joints using concealed 00029/11 REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 fasteners. Anchor benches to floor. #### 3.4 ADJUSTING Adjust doors and latches for smooth operation. #### CLEANING 3.5 Clean and touch up finishes; if finish cannot be restored to original appearance, replace locker. Use only cleaning and touch-up materials recommended by manufacturer. REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 SECTION 10522 #### FIRE EXTINGUISHERS, CABINETS AND ACCESSORIES # PART 1 GENERAL #### 1.1 RELATED DOCUMENTS Drawings and general provisions of Contract, including General and Supplementary Conditions and Division 1 specifications, apply to work of this section. #### 1.2 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01300 SUBMITTALS: #### SD-01 Data Product information for each type of product specified; GA. For fire extinguisher cabinets include details showing mounting methods, relationships of box and trim to surrounding construction, door hardware, cabinet type and materials, trim style, door construction, panel style, and materials. Coordination: Fire extinguisher cabinets shall be sized to accommodate 10 lb, 4A: 60B:C fire extinguishers. Verify detailed dimensions and requirements with contracting officer/representative. ### PART 2 PRODUCTS # 2.1 FIRE EXTINGUISHER CABINETS General: Provide fire extinguisher cabinets where indicated, of suitable size for housing fire extinguishers of types and capacities indicated. Construction: Manufacturer's standard enameled steel box, with trim, frame, door, and hardware to suit cabinet type, trim style, and door style indicated. Weld all joints and grind smooth. Miter and weld perimeter door frames. # Cabinet Type: Surface-Mounted: Cabinet box (tub) surface-mounted on walls. Door material and Construction: Manufacturer's standard door construction, of material indicated, coordinated with cabinet types and trim styles selected. REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 Enameled Steel: Manufacturer's standard finish, hollow steel door construction with tubular stiles and rails. Identify fire extinguisher in cabinet with lettering spelling "FIRE EXTINGUISHER" applied to door. Provide lettering to comply with requirements indicated for letter style, color, size, spacing, and location or, if not otherwise indicated, as selected by Architect from manufacturer's standard arrangements. Door Style: Manufacturer's standard design. Door Glazing: Tempered Break Glass, ASTM C 1048 Kind FT, Condition A, Type 1, Quality q3, 1.5mm. Door Hardware: Provide manufacturer's standard door-operating hardware of proper type for cabinet type, trim style, and door material and style indicated. Provide either lever handle with cam action latch, or door pull, exposed or concealed, and friction latch. Provide concealed or continuous-type hinge permitting door to open 180 deg. ### 2.2 FIRE EXTINGUISHERS Multi-purpose dry chemical type: UL rated 4A:60B:C 10 Lb. Nominal capacity, in enameled steel containers for Class A, Class B, and Class C fires. # PART 3 EXECUTION # 3.1 INSTALLATION - 3.1.1 Install items included in this section in locations and at mounting heights indicated, or if not indicated, at heights to comply with applicable regulations of governing authorities. - 3.1.2 Securely fasten fire extinguisher cabinets to structure, square and plumb, to comply with manufacturer's instructions. Where exact location of surface-mounted cabinets and bracketmounted fire extinguishers is not indicated, located as directed by Contracting Officer's representative. REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 SECTION 10800 #### TOILET ACCESSORIES #### PART 1 **GENERAL** ### 1.1 RELATED DOCUMENTS Drawings and general provisions of Contract, including General and Supplementary Conditions and Division 1 specifications, apply to work of this section. #### 1.2 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) ASTM C 1036 (1991) Flat Glass COMMERCIAL ITEM DESCRIPTION (CID) CID A-A-2380 (Basic) Dispenser, Paper Towel CID-A-A-2398 (Rev B) Curtain, Shower, and Window #### SUBMITTALS 1.3 Government approval is required for submittals with a "GA" designation, submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01300 SUBMITTALS: SD-01 Data Finishes; GA. Accessory Items; GA. Manufacturer's descriptive data and catalog cuts indicating materials of construction, fasteners proposed for use for each type of wall construction, mounting instructions, and operation instructions. # SD-14 Samples Finishes; FIO. Accessory Items; FIO. One sample of each accessory proposed for use. Approved samples may be incorporated into the finished work, provided they are identified and their locations noted. SD-19 Operations and Maintenance Manuals REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 Electric Hand Dryer; GA Four (4) complete copies of maintenance instructions listing routine maintenance procedures and possible breakdowns and repairs. Instructions shall include simplified wiring and control diagrams and other information necessary for unit maintenance. #### DELIVERY, STORAGE, AND HANDLING 1.4 Toilet accessories shall be wrapped for shipment and storage, delivered to the job site in manufacturer's original packaging and stored in a clean, dry area protected from construction damage and vandalism. #### 1.5 WARRANTY Manufacturer's standard performance quarantees on warranties that extend beyond a 1-year period shall be provided. #### PART 2 **PRODUCTS** #### 2.1 MANUFACTURED UNITS Toilet accessories shall be provided where indicated in accordance with paragraph ACCESSORY ITEMS. Porcelain type, tile-wall accessories are specified in Section 09310 CERAMIC TILE. Each accessory item shall be complete with the necessary mounting plates, shall be of sturdy construction with corrosion resistant surface. ### 2.1.1 Anchors and Fasteners Anchors and fasteners shall be capable of developing a restraining force commensurate with the strength of the accessory to be mounted and shall be suited for use with the supporting construction. Exposed fasteners shall be of tamperproof design and shall be finished to match the accessory. ### 2.1.2 Finishes Except where noted otherwise, finishes on metal shall be provided as follows: Finish Metal Stainless steel No. 4 satin finish #### 2.2 ACCESSORY ITEMS Accessory items shall conform to the requirements specified below. # 2.2.1 Grab Bar (GB) REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 > Grab bar shall be 18 gauge, 1-1/4 inches OD Type 304 stainless steel. Grab bar shall be form and length as indicated. Concealed mounting flange shall have set screw mounting holes concealed on the lip of the flange. Grab bar shall have peened non-slip surface. Installed bars shall be capable of withstanding a 500 pound vertical load without coming loose from the fastenings and without obvious permanent deformation. Space between wall and grab bar shall be 1-1/2 inch. ### 2.2.2 Glass Mirrors Glass for mirrors shall be Type I transparent flat type, Class 1clear. Glazing Quality q1 1/4 inch thick conforming to ASTM C 1036. Glass color shall be clear. Glass shall be coated on one surface with silver coating, copper protective coating, and mirror backing paint. Silver coating shall be highly adhesive pure silver coating of a thickness which shall provide reflectivity of 83 percent or more of incident light when viewed through 1/4 inch thick glass, and shall be free of pinholes or other defects. Copper protective coating shall be pure bright reflective copper, homogeneous without sludge, pinholes or other defects, and shall be of proper thickness to prevent "adhesion pull" by mirror backing paint. Mirror backing paint shall consist of two coats of special scratch and abrasion-resistant paint and shall be baked in uniform thickness to provide a protection for silver and copper coatings which will permit normal cutting and edge fabrication. Size shall be as indicated in the drawings. # 2.2.3 Combination Paper Towel Dispenser/Waste Receptacle Units (PTDWR) Dispenser/receptacle shall be semi-recessed and shall have a capacity of 600 sheets of C-fold, or 800 multi-fold towel. Waste receptacle
shall be designed to be locked in unit and removable for service. Locking mechanism shall be tumbler key lock. Waste receptacle shall have a capacity 12 gallons. Unit shall be fabricated of not less than 0.30 inch stainless steel welded construction with all exposed surfaces having a satin finish. Waste receptacle that accepts reusable liner standard for unit manufacturer shall be provided. #### 2.2.4 Shower Curtain and Rod Shower curtain shall conform to CID A-A-2398, style I, size to suit conditions. Shower curtain rod shall be Type 304 stainless steel 1-1/4 inch O.D. by 0.049 inch minimum straight to meet installation conditions. # 2.2.5 Soap Dispenser (SD) Soap dispenser shall be lavatory mounted, liquid type consisting of a polyethylene tank with a minimum 34 fluid ounces holding capacity and a 4 inch spout length. REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 > 2.2.6 Toilet Tissue Dispenser/Sanitary Napkin Disposer/Seat Cover Dispenser (TTD/SND/SCD) Toilet seat cover dispenser and toilet tissue dispenser/sanitary napkin disposer shall be Type III - recess mounted, holds 2 rolls of tissue stacked vertically. Cabinet shall be stainless steel, satin finish. Toilet seat cover dispenser and toilet tissue dispenser/sanitary napkin disposer shall be constructed of Type 304 stainless steel and recess mounted on sidewall of single compartment to allow clearance for grab bar. Napkin disposal shall have a removable leak-proof receptacle for disposable liners. Fifty disposable liners of the type standard with the manufacturer shall be provided. Receptacle shall be retained in cabinet by tumbler lock. Disposer shall be provided with a door for inserting disposed napkins. Toilet seat cover dispenser shall hold 1000 single or half folded paper toilet seat covers. ### 2.2.7 Electric Hand Dryer (EHD) Electric hand dryer shall be wall mounted and shall be designed to operate on 110/125 volts, 60 cycle, single-phase alternating current with a heating element core rating of not more than 2100 watts. Dryer housing shall be of single piece construction and shall be chrome-plated steel. #### PART 3 EXECUTION #### INSTALLATION 3.1 Toilet accessories shall be securely fastened to the supporting construction in accordance with the manufacturer's approved instructions. Accessories shall be protected from damage from the time of installation until acceptance. See drawings for locations of accessories. REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 SECTION 11452 ### RESIDENTIAL APPLIANCES PART 1 - GENERAL #### 1.1 APPLICABLE PUBLICATIONS The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only. - 1.1.1 NATIONAL FIRE PROTECTION ASSOCIATION (NFPA) - 70 1993 National Electrical code - 1.1.2 UNDERWRITERS LABORATORIES INC. (UL) All appliances shall be U.L. listed # 1.1.1 RELATED REQUIREMENTS Division 15 Mechanical and 16 Electrical specifications apply to this section. # 1.1.2 SUBMITTALS Provide submittals in accordance with Division One requirements. - 1.3.1 Manufacturer's Catalog Data: Kitchen equipment - 1.3.2 Instructions: Kitchen equipment - 1.3.3 Operation and Maintenance Manuals: Kitchen equipment # 1.1.3 WARRANTY All appliances shall be furnished with a full unlimited two-year warranty including all travel, per-trip, labor and material costs. The warranty period shall begin at the date of acceptance by Resident Engineer. # PART 2 - PRODUCTS # 2.1 KITCHEN EQUIPMENT # 2.1.1 Materials Except as modified herein, provide manufacturer's standard materials for kitchen equipment. Provide quantities, functions, physical dimensions and features, colors, and electrical characteristics as specified. Provide REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 appliances from a single source manufacturer, to the greatest extent possible, to facilitate warranty service work. ### 2.1.2 Built-in Cabinet Microwave Oven: - a. Size: 23-13/16 inches wide by 11-3/16 inches high by 12-5/16 inches deep - b Oven Cavity: 16-1/2 inches wide by 7-7/16 inches high by 11-7/32 inches deep. Capacity: .8 cubic feet. - c. Electronic Touch Controls - d. Time Defrost - e. Time Cook - f. Express Cook - g. Cooking Complete Reminder - h. Digital Cooking Timer - i. Power Levels: 10 - j. Word Prompting - k. Program Cooking 4 Stage - 1. Electronic Digital Display with Clock - m. Color: White # 2.1.3 Top-Mount, No Frost Refrigerator/Freezer: - a. Size: 34-1/2 inches wide by 31-1/2 inches deep (including protruding handle) by 67-1/2 inches high. - b. Capacity: 23.6 cubic feet (fresh food, 16.35 cubic feet; freezer, 7.20 cubic ft.) - c. High energy-efficiency model - d. Automatic ice maker (interior of freezer) - e. Cabinet Shelves: Glass, 4-split adjustable, spill proof - f. Meat Pan: Adjustable temperature - g. Vegetable/Fruit Crisper: 2 adjustable humidity - h. Cabinet Construction: Textured steel doors and case, foam insulated cabinet, coil free back. - i. Color: White # 2.2 EQUIPMENT SCHEDULE # 2.2.1 Equipments as shown in the drawing A2.2: - a. Refrigerator - b. Built-in Cabinet Microwave Oven ### PART 3 - EXECUTION # 3.1 INSTALLATION NFPA 70, Section 15400, "Plumbing," and Section 16400, "Service and Distribution." Install kitchen equipment in accordance with manufacturer's instructions. # 3.2 FIELD QUALITY CONTROL Conduct inspection and testing in the presence of the Resident Engineer. # 3.2.1 Field Inspection Before and after installation, inspect each piece of kitchen equipment for compliance with specified requirements. 3.2.2 Operation Tests: Upon completion, but before final acceptance, perform operation tests on each piece of equipment to determine that components, including controls. Safety devices, and attachments, operate properly and in accordance with specified requirements. 00029/11 REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 ### 3.3 ON SITE OPERATION INSTRUCTIONS # 3.3.1 Instruction Sessions On two separate occasions, after occupancy of the facility, prior to the end of the one year warranty period, provide on site instruction in the use and maintenance of all equipment. The length of each session may be a maximum of 1/2 day. Dates for instruction sessions shall be corrdinated with the Resident Engineer. REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 SECTION 12490 ### WINDOW TREATMENT ### PART 1 WORK DESCRIPTION #### 1.1 RELATED DOCUMENTS Drawings and general provisions of Contract, including General and Supplementary Conditions and Division 1 specifications, apply to work of this section. #### 1.2 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. FEDERAL SPECIFICATIONS (FS) FS AA-V-00200 (Rev B) Venetian Blinds NATIONAL FIRE PROTECTION (NFPA) NFPA 701 (1996) Methods of Fire Tests for Flame-Resistant Textiles and Films # 1.3 GENERAL Window treatment shall be provided, complete with necessary brackets, fittings, and hardware. Equipment shall be mounted and operated as indicated. Windows to receive a treatment shall be completely covered. The Contractor shall take measurements at the building and shall be responsible for the proper fitting and hanging of the equipment. # 1.4 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-01 Data Window Treatments and Hardware; FIO. Manufacturer's data composed of catalog cuts, brochures, product information, and maintenance instructions. SD-04 Drawings Window Treatments and Hardware; FIO. REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 Drawings showing fabrication and installation details. Drawings shall show layout and locations of track, direction of draw, mounting heights, and details. SD-14 Samples Window Treatments and Hardware; GA. Three samples of each type and color of window treatment. Blind slats or louvers shall be 6 inches in length for each color. Track shall be 6 inches in length. # 1.4 DELIVERY, STORAGE, AND HANDLING Components shall be delivered to the jobsite in the manufacturer's original packaging with the brand or company name, item identification, and project reference clearly marked. Components shall be stored in a dry location that is adequately ventilated and free from dust, water, or other contaminants and shall have easy access for inspection and handling. Materials shall be stored flat in a clean dry area with temperature maintained above 50 degrees F. ### 1.5 FIELD MEASUREMENTS The Contractor shall become familiar with details of the work, verify dimensions in the field, and shall advise the Contracting Officer of any discrepancy before performing the work. ### 1.6 WARRANTY Manufacturer's standard performance guarantees or warranties that extend beyond a 1 year period shall be provided. # PART 2 PRODUCTS #### 2.1 WINDOW BLINDS Each blind, including hardware, accessory items, mounting brackets and fastenings, shall be provided as a complete unit produced by one manufacturer. All parts shall be one color unless otherwise shown, and match the color of the blind slat. Steel features shall be treated for corrosion resistance. # 2.1.1 Horizontal Blinds Horizontal blinds shall conform to FS AA-V-00200, Type II (1 inch slats). Blind units shall be capable of nominally 180 degree partial tilting operation and full-height raising. Blinds shall be mounted as shown. ### 2.1.1.1 Head Channel and Slats Head channel shall be aluminum nominal 0.024 for Type II. Slats shall be aluminum, not less than 0.008 inch thick, and of sufficient strength to prevent sag or
bow in the finished blind. A sufficient amount of slats REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 shall be provided to assure proper control, uniform spacing, and adequate overlap. #### 2.1.1.2 Controls The slats shall be tilted by a transparent tilting wand, hung vertically by its own weight, and shall swivel for easy operation. The tilter control shall be of enclosed construction. Moving parts and mechanical drive shall be made of compatible materials which do not require lubrication during normal expected life. The tilter shall tilt the slats to any desired angle and hold them at that angle so that any vibration or movement of ladders and slats will not drive the tilter and change the angle of slats. A mechanism shall be included to prevent over tightening. The wand shall be of sufficient length to reach to within 5 feet of the floor. # 2.2 COLOR Color shall be as indicated on the drawings. #### PART 3 EXECUTION ### 3.1 INSTALLATION Installation shall be in accordance with the approved detail drawings and manufacturer's installation instructions. Units shall be level, plumb, secure, and at proper height and location relative to window units. The Contractor shall furnish and install supplementary or miscellaneous items in total, including clips, brackets, or anchorages incidental to or necessary for a sound, secure, and complete installation. Installation shall not be initiated until completion of room painting and finishing operations. Upon completion of the installation, window treatments shall be adjusted for form and appearance, shall be in proper operating condition, and shall be free from damage or blemishes. Damaged units shall be repaired or replaced by the Contractor as directed by the Contracting Officer. ### SECTION 13082 # SEISMIC PROTECTION FOR ARCHITECTURAL, AND MECHANICAL SYSTEMS AND EQUIPMENT (ZONE 2) ### PART 1 - GENERAL - 1. APPLICABLE PUBLICATIONS: The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only. - 1.1 Federal Specification (Fed. Spec.): RR-W-410D Wire Rope and Strand 1.2 American National Standards Institute, Inc. (ANSI) Standards: B18.2.1-81 Square and Hex Bolts and Screws Inch Series Including Hex Cap Screws and Lag Screws B18.2.2-72 Square and Hex Nuts (R 1983) 1.3 American Society for Testing and Materials (ATSM) Publications: | A 36-84a | Structural Steel | |----------------------|--| | A 307-84 | Carbon Steel Externally Threaded
Standard Fasteners | | A 325-84 | High-Strength Bolts for Structural Steel Joints | | A 501-84 | Hot-Formed Welded and Seamless Carbon
Steel Structural Tubing | | A 576-81 | Steel Bars, Carbon, Hot-Wrought,
Special Quality | | E 580-78
(R 1984) | Application of Ceiling Suspension
Systems for Acoustical Tile and
Lay-In Panels in Areas Requiring | 1.4 National Fire Protection Association (NFPA) Standard: 13-1985 Installation of Sprinkler Systems Seismic Restraint 2. GENERAL: The requirements for seismic protection measures to be applied to architectural/mechanical equipment and systems specified herein are in 00029/11 REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PNGJKZ 99-0151 addition to any other items called for in other sections of these specifications. 2.1 Architectural/Mechanical Equipment: Architectural/mechanical equipment to be provided seismic protection shall include the following: Boilers Storage Tanks for Water Water Heaters Expansion Tanks Expansion Tanks Environmental Exhaust Fan Air and Refrigerant Compressors Pumps with Motors Environmental Air Handlers Storage Racks Suspended Ceiling Assemblies 2.2 Mechanical Systems: Mechanical systems to be provided seismic protection shall include the following: Gas Distribution Systems Water Supply Systems Sanitary Sewer Systems Process Piping Air Distribution and Return Duct Systems - 2.4 Zone: This facility is located in seismic zone 2. - 2.5 Piping in Buildings: - 2.5.1 Fire Protection System: Seismic protection of water pipes for fire protection systems will be installed in strict accordance with the provisions of NFPA 13 and appendix A thereto as specified in SECTIONS 13945 and 13935. - 2.5.2 Pipes and Ducts Not Requiring Special Seismic Restraints: Seismic restraints may be omitted from the following installations: - a. Gas piping less than 1 inch inside diameter. - b. Piping in boiler and mechanical equipment rooms less than 1-1/4 inches inside diameter. - c. All other piping less than 2-1/2 inches inside diameter. - e. All rectangular air handling ducts less than 6 square feet in cross sectional area. - f. All round air handling ducts less than 28 inches in diameter. - g. All piping suspended by individual hangers 12 inches or less in length from the top of pipe to the bottom of the support for the hanger. - h. All ducts suspended by hangers 12 inches or less in length from the top of the duct to the bottom of the support for the hanger. - 2.5.3 Service Pipes Not Related to Fire Protection: Piping not governed by paragraphs 2.4.1 and 2.4.2 will be installed in accordance with the provisions specified hereinafter. 00029/11 REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PNGJKZ 99-0151 3. SHOP DRAWINGS along with catalog cuts, templates, and erection and installation details, as appropriate, for the items specified herein shall be submitted in accordance with the SPECIAL CLAUSES. Submittals shall be complete in detail; shall indicate thickness, type, grade, class of metal, and dimensions; and shall show construction details, reinforcement, anchorage, and installation with relation to the building construction. The following items shall be included: Sway Braces Flexible Couplings or Joints Resilient Type Vibration Devices Smoke Stacks # PART 2 - PRODUCTS - 4. MATERIALS AND EQUIPMENT shall conform to the respective specifications and other requirements specified below: - 4.1 Bolts and Nuts: - 4.1.1 Squarehead bolts and heavy hexagon nuts, ANSI B18.2.1 and B18.2.2, and ASTM A $\307$ or A $\576$. - 4.1.2 Bolts, underground, ASTM A\325. - 4.2 Sway Brace: Materials used for members listed in tables I through III of this specification, except for pipes, shall be structural steel conforming with ASTM A\36. Steel pipes shall conform to ASTM A 501. - 4.3 Flexible Couplings: Flexible couplings shall have same pressure ratings as adjoining pipe. - 4.3.1 Flexible ball joints conforming to the following requirements may be employed on aboveground piping. Joints shall have cast or wrought steel casing and ball parts capable of 360 degree rotation plus not less than 15\degree angular movement. Joints shall be certified to be suitable for the service intended by the manufacturer, based on not less than 2 years satisfactory operation in a similar application. - 4.3.2 Flexible couplings and joints of the mechanical joint types may be used for aboveground or underground piping. - 4.3.2.1 Mechanical couplings for steel or cast iron pipe shall be of the sleeve type and shall provide a tight flexible joint under all reasonable conditions, such as pipe movement caused by expansion, contraction, slight settling or shifting of the ground, minor variations in trench gradients, and traffic vibrations. Where permitted in other sections of these specifications, joints utilizing split-half couplings with grooved or shoulder pipe ends may be - 4.3.2.2 Sleeve-type couplings shall be used for joining plain end pipe sections. The couplings shall consist of one steel middle ring, two steel followers, two gaskets, and necessary steel bolts and nuts to compress the gaskets. Underground bolts shall be high strength type as specified herein before. 4.4 Guy Wires: Guy wires shall conform to Fed. Spec. RR-W-410 as follows: 5/32 inch diameter Type V, Class 1 3/16 inch to 5/16 diameter Type V, Class 2 1/4 inch to 5/8 diameter Type I, Class 2 #### PART 3 - EXECUTION 5. SWAY BRACES shall be installed on piping and duct not otherwise rigidly anchored to preclude damage during seismic activity. Bracing shall conform to approved arrangements. Provisions of this paragraph apply to all piping within a 5-foot line around outside of building unless buried in the ground. Piping grouped for support on trapeze-type hangers shall be braced at the same intervals as determined by the smallest diameter pipe of the group. Hanger rods shall be increased in cross sectional area proportionate to the increased weight per linear foot of pipe and contents supported at each trapeze hanger. No trapeze-type hanger shall be secured with less than two 1/2-inch bolts. Bracing rigidly attached to pipe flanges, or similar, shall not be used where it would interfere with thermal expansion of piping. # 5.1 Sway Braces for Piping: 5.1.1 Transverse Sway Bracing: Transverse sway bracing shall be provided at intervals not to exceed those given in table I, except for cast iron soil pipe, which shall be braced at not more than 10-foot intervals. TABLE I MAXIMUM SPAN FOR TRANSVERSE SWAY BRACES | Pipe
Diameter | Standard W
Pipe - 409 | Weight Steel
S | Ex. Stro
Pipe - 8 | ong Steel
BOS | Copper Ti
Type L | ıbe | |------------------|--------------------------|-------------------|----------------------|------------------|---------------------|---------| | (in) | L (ft) | F (lbs) | L (ft) | F (lbs) | L (ft) | F (lbs) | | | | | | | | | | 1 | 28 | 35 | 28 | 40 | 14 | 10 | | 1-1/2 | 31 | 70 | 33 | 90 | 15 | 20 | | 2 | 36 | 110 | 38 | 150 | 18 | 35 | | 2-1/2 | 40 | 190 | 41 | 230 | 19 | 60 | | 3 | 43 | 280 | 44 | 360 | 21 | 80 | | 3-1/2 | 45 | 370 | 48 | 470 | 23 | 110 | | 4 | 49 | 480 | 50 | 600 | 24 | 150 | | 5 | 51 | 720 | 55 | 950 | 25 | 240 | | 6 | 56 | 1,060 | 58 | 1,380 | 28 | 370 | | 8 | 61 | 1,870 | 68 | 2,580 | 33 | 780 | | 10 | 68
 3,040 | 74 | 3,840 | 35 | 1,320 | | 12 | 73 | 4,280 | 76 | 5,180 | 39 | 1,980 | - 5.1.2 Longitudinal Sway Bracing: Longitudinal sway bracing shall be provided at $40\text{-}\mathrm{foot}$ intervals. - 5.1.3 Vertical Runs: Vertical runs of piping shall be braced at not more than 10-foot vertical intervals. For smaller tubing, bracing shall be provided at no more than 4-foot spacing. 5.1.4 Anchor Rods, Angles, and Bars: Anchor rods, angles, and bars shall be bolted to either pipe clamps or pipe flanges at one end and cast-in-place concrete or masonry insert or clip angles bolted to the steel structure on the other end. Rods shall be solid metal or pipe as specified hereinafter. Anchor rods, angles, and bars shall not exceed lengths given in table II. TABLE II MAXIMUM LENGTH FOR ANCHOR BRACES | Type | Size | Maximum Length* | Allowable Loads*
(kips) | |-------------|--------------------------------|-----------------|----------------------------| | | | | | | Angles | 1-1/2" x 1-1/2" x 1/4" | 4'-10" | 5.7 | | | 2" x 2" x 1/4" | 6'-6" | 7.8 | | | 2-1/2" x $1-1/2$ " x $1/4$ " | 8'-0" | 9.8 | | | $3" \times 2-1/2" \times 1/4"$ | 8'-10" | 10.8 | | | 3" x 3" x 1/4" | 9'-10" | 11.9 | | Rods | 3/4" | 3'-1" | 3.7 | | | 7/8" | 3 ' -8 " | 5.0 | | Flat Bars | 1-1/2" x 1/4" | 1'-2" | 3.1 | | | 2" x 1/4" | 1'-2" | 4.1 | | | 2" x 3/8" | 1'-9" | 6.2 | | Pipes (40S) | 1" | 7'-0" | 4.1 | | - , , | 1-1/4" | 9'-0" | 5.5 | | | 1-1/2" | 10'-4" | 6.6 | | | 2" | 13'-1" | 8.9 | ^{*}Based on the slenderness ratio of 1/r = 200 and ASTM A 36 steel. - 5.1.5 Clamps: Clamps on uninsulated pipes shall be applied directly to pipe. Insulated piping shall have clamps applied over insulation vapor barrier with high density inserts and metal protection shields under each clamp. - 5.1.6 Bolts: Bolts used for attachment of anchors to pipe and structure shall be not less than 1/2-inch diameter. - 5.2 Sway Braces for Ducts: - 5.2.1 Transverse Sway Bracing: Transverse sway bracing shall be provided at each horizontal turn of 45 degrees or more at the end of each duct run and otherwise at each 30-foot interval. Walls which ducts penetrate may be considered transverse braces. - 5.2.2 Longitudinal Sway Bracing: Longitudinal sway bracing shall be provided at 60-foot intervals. Transverse bracing for one duct section may also act as longitudinal bracing for a duct section connected perpendicular to it if the bracing is installed within 4 feet of the intersection and it is sized for the larger duct. 5.2.3 Bracing Angles: Bracing angles for rectangular ducts shall be in accordance with table III. # TABLE III SCHEDULE OF BRACING FOR RECTANGULAR DUCTS | Duct
Size* | Vertical and
Longitudinal
Angles | Diagonal
Angles | Horizontal
Angles | Bolt
Size | |---------------|--|-----------------------------|-----------------------------|--------------| | | | | | | | 30" sq | 2 x 2 x 16 gage | 2 x 2 x 16 gage | 2 x 2 x 16 gage | 1/4" | | 42" sq | $2-1/2 \times 2-1/2 \times$ | $2-1/2 \times 2-1/2 \times$ | $2-1/2 \times 2-1/2 \times$ | 1/4" | | | 16 gage | 16 gage | 16 gage | | | 54" sq | $2-1/2 \times 2-1/2 \times$ | $2-1/2 \times 2-1/2 \times$ | $2-1/2 \times 2-1/2 \times$ | 3/8" | | | 16 gage | 14 gage | 16 gage | | | 60" sq | 3 x 3 x 16 gage | 3 x 3 x 14 gage | 3 x 3 x 16 gage | 3/8" | | | | | | | *The duct's maximum dimension shall govern what bracing is required. Example: A 36-inch by 60-inch duct shall be braced as a 60-inch-square duct. 6. SPREADERS shall be provided between racked or adjacent piping runs to prevent contact during seismic activity whenever pipe or insulated pipe surfaces are less than 4 inches apart or four times the maximum displacement due to seismic force. Spreaders to be applied at same interval as sway braces. Spreaders shall be applied to surface of bare or insulated hot pipe and over insulation utilizing high density inserts and pipe protection shields where vapor barrier-type insulation is employed. #### 7. FLEXIBLE COUPLINGS OR JOINTS: - 7.1 Building Piping: Flexible couplings or joints in building piping shall be provided at bottom of all pipe risers 3-1/2-inch size and larger. Cast iron waste and vent piping need only comply with these provisions when calked joints are used. Flexible bell and spigot pipe joints using rubber gaskets or no-hub fittings may be used at each branch adjacent to tees and elbows for underground waste piping inside of building to comply with these requirements. - 7.2 Underground Piping: All underground piping and 4-inch or larger conduit, except heat distribution system, shall have flexible couplings installed adjacent to building as shown. Additional flexible couplings shall be provided as follows: - a. On each side of the joints of demarcation between soils having widely differing degrees of consolidation. - b. At all points that can be considered to act as anchors. - c. On every branch of a tee and each side of an elbow. - 8. EMERGENCY GAS SUPPLY CONNECTIONS: Facilities which are to be connected to natural gas distribution systems shall be provided with an above ground, locked, valved, and capped emergency gas supply connection. Provisions shall be made for attachment of a portable, commercial sized gas cylinder system to this connection. Connection shall be located within 12 inches of the exterior wall and clearly marked with an appropriate metal sign mounted on wall above. Provide an automatic device to safely interrupt the flow of gas to the building in case of an earthquake. 9. ANCHOR BOLTS: All rigidly mounted equipment will have a minimum of four anchor bolts securely fastened through bases. Anchor bolts must conform to ASTM A 307. Anchor bolts shall have an embedded straight length equal to at least ten times the nominal diameter of the bolt and shall conform to the following table of sizes for various equipment weights: | lt Sizes*
es) | |------------------| | | | /2 | | /2 | | /2 | | / 2 | | / 2 | | /2 | | / 2 | | /8 | | /:/// | *Based on four bolts per item, use equivalent total cross-sectional areas when more than four bolts per item are provided. Anchor bolts that exceed normal depth of equipment foundation piers or pads shall either extend into concrete floor or the foundation shall be increased in depth to accommodate bolt lengths. When height-to-width ratio of the equipment exceeds 8.9, overturning must be investigated. - 10. RESILIENT AND SPRING-TYPE VIBRATION ISOLATION DEVICES: Selection of anchor bolts securing vibration isolation devices to equipment base and foundations shall follow the same procedure as in paragraph ANCHOR BOLTS, except that an equipment weight equal to five times the actual equipment weight shall be used. Vibration isolation devices shall be selected so that the maximum movement of equipment from the static deflection point shall be 0.5 inches. - 11. EQUIPMENT SWAY BRACING shall be provided for all items supported from overhead floor or roof structures. Braces shall consist of angles, rods, bars, or pipes run at a 45 degree angle from the equipment frame to the building structure secured at both ends with not less than 1/2-inch bolts. Braces shall conform to table II. Bracing shall be provided in two planes of directions, 90 degrees apart, for each item of equipment. Sufficient braces shall be provided for equipment to resist a horizontal force equal to 56 percent of the weight of equipment without exceeding safe working stress of bracing components. Details of all equipment bracing shall be submitted for approval. In lieu of bracing with vertical supports, these items may be supported with hangers inclined at 45 degrees, provided that supporting members are properly sized to support operating weight of equipment when inclined at a 45 degree angle. - 12. LIGHTING FIXTURES IN BUILDINGS: See Specification 16070. - 13. SUSPENDED ACOUSTICAL CEILING ASSEMBLIES: The structural members of ceiling systems used primarily to support acoustical tile panels or acoustical panel lay-in tiles, with or without lighting fixtures, ceiling-mounted air terminals, and ceiling-mounted services, shall conform to the following: - 13.1 Design Criteria: The main runners and cross runners and their splices and intersection connections shall be designed for two times the design load or ultimate axial tension or compression (minimum 120 pounds). The connections at the splices and intersections shall be of a mechanical interlocking type that cannot easily be disengaged. All ceiling structural systems shall be designed to withstand required vertical load as well as a lateral force of 11.3 percent of the ceiling weight. The ceiling weight shall include all lighting fixtures and other equipment that are laterally supported by the ceiling and shall not be less than 4 psf. Ceiling areas of 144 square feet or less surrounded by walls that connect directly to the structure above shall be exempt from the lateral load standards of this specification. - 13.2 Minimum Installation Requirements: Minimum installation requirements shall be in accordance with ASTM E 580 as follows: - 13.2.1 Vertical Support: Hanger wires supporting a maximum tributary ceiling area of 16 square feet shall be a minimum of 12 gage in diameter. The size of wires supporting a tributary ceiling area of greater than 16 square feet shall be substantiated by design calculations. Hanger attachment devices used in ceiling systems not exceeding 4 psf shall be capable of supporting a minimum allowable load of 100 pounds. Hanger attachment devices used in ceiling systems exceeding 4 psf shall be capable of supporting the design load and shal be substantiated by design calculations. Hangers shall be plumb and shall not attach to or bend around interfacing duct pipes or similar obstructions. If hangers must be splayed more than one horizontal to six vertical, the resulting horizontal force shall be offset by bracing, counter splaying, or other acceptable means and substantiated by design
calculations. The terminal end of each cross runner or main runner shall be supported independently and within 8 inches of a wall. - 13.2.2 Lateral Support: In lieu of the design criteria stated above, where ceiling loads do not exceed 4 psf, lateral support for the ceiling system may be provided by four wires of minimum No. 12 gage, splayed in four directions, 90 degrees apart, and connected to the main runner within 2 inches of the cross runner and to the structure above at an angle not exceeding 45 degrees from the plane of the ceiling. These lateral support points shall be placed 12 feet on center in each direction with the first point within 4 feet of each wall. Allowances shall be made for lateral movement of the system. Main runners and cross runners may be attached at two adjacent walls with clearance between the wall and the runners maintained at the other two walls. - 13.3 Lighting Fixture and Air Diffuser Supports: Lighting fixtures and air diffuser supports shall be designed and installed to meet the requirements of equipment supports in the preceding paragraphs of this specification with the following exceptions: - a. Recessed lighting fixtures not over 56 pounds in weight and suspended and pendant-hung fixtures not over 20 pounds in weight may be supported and attached directly to the ceiling system runners by a positive attachment such as screws or bolts. - b. Air diffusers that weigh not more than 20 pounds and that receive no tributary loading from ductwork may be positively attached to and supported by the ceiling runners. 14. STACKS up to 50 feet total height shall be constructed of steel plates with thicknesses as follows: | Thickness* | Maximum Diameter (Inches) | |------------|---------------------------| | | | | 16 gage | 14 | | 14 gage | 16 | | 12 gage | 18 | ^{*}Increase 1/16-inch corrosion allowance for stacks without corrosion control. Stacks shall be mounted directly on boilers or heat producing appliances or on floor supporting such devices with side inlets to stacks. All stacks must be supported with steel guys attached at a point three-fourths of the stack height external to the building. Guy wires shall be in accordance with the following table, either iron, annealed steel, or improved plow steel, as noted, with galvanized coating. | | Guy Wire Diameter | (Inches)* | |----------------------------|---------------------------------|--------------------------------| | Stack Diameter (Inches) | On Ground | On Building | | Up to 14 Up to 16 Up to 18 | 5/32 (1)
3/16 (2)
1/4 (2) | 1/4 (3)
5/16 (3)
3/8 (3) | - (1) 1 x 7 cable, iron, or annealed steel. - (2) 1 \times 19 cable, iron, or annealed steel. - (3) 6 x 19 cable, improved plow steel with fiber core. *These sizes are adequate for the required seismic forces, but wind must be checked separately. Stacks passing through buildings in chases to the roof shall be supported by fire-resistant construction at not more than 20-foot intervals and the wall thickness need not be increased for building height. 16. MISCELLANEOUS EQUIPMENT: The following specific items of equipment to be furnished under this contract shall be constructed and assembled so as to be capable of withstanding the horizontal equivalent static force of 0.11 times the operating weight of the equipment, at vertical center of gravity of the equipment without causing permanent deformation, dislocations, separation of components, or other damage, which would render the equipment inoperative for significant periods of time following an earthquake. Miscellaneous Equipment _____ Boilers Air Handling Units END OF SECTION #### SECTION 13112 ## CATHODIC PROTECTION SYSTEM (IMPRESSED CURRENT) FOR FIRE PUMP SUCTION TANK(-S) #### PART 1 GENERAL #### 1.1 RELATED DOCUMENTS Drawings and general provisions of Contract, including General and Supplementary Conditions and Division 1 specifications, apply to work of this section. ## 1.2 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI) ANSI C80.1 (1995) Rigid Steel Conduit - Zinc Coated AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) - ASTM A 53 (1996) Pipe, Steel, Black and Hot-Dipped, Zinc-Coated Welded and Seamless - ASTM B 418 (1995a) Cast and Wrought Galvanic Zinc Anodes - ASTM D 1248 (1984; R 1989) Polyethylene Plastics Molding and Extrusion Materials NATIONAL ASSOCIATION OF CORROSION ENGINEERS (NACE) - NACE RP0169 (1996) Control of External Corrosion on Underground or Submerged Metallic Piping Systems - NACE RP0188 (1990) Discontinuity (Holiday) Testing of Protective Coatings NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA) - NEMA TC 2 (1990) Electrical Polyvinyl Chloride (PVC) Tubing (EPT) and Conduit (EPC-40 and EPC-80) - NEMA WC 5 (1992; Rev 1) Thermoplastic-Insulated Wire and Cable for the Transmission and Distribution of Electrical Energy NATIONAL FIRE PROTECTION ASSOCIATION (NFPA) NFPA 70 (1996; Errata) National Electrical Code UNDERWRITERS LABORATORIES (UL) UL 6 (1997) Rigid Metal Conduit UL 467 (1993; Rev through Aug 1996) Grounding and Bonding Equipment UL 506 (1994; Rev Jul 1994) Specialty Transformers UL 510 (1994) Insulating Tape UL 514A (1996) Metallic Outlet Boxes United States Army Corps of Engineers TM 5-811-7 Technical Manual - Electrical Design, Cathodic Protection Fairchild Base Design Standards Data Sheet Division 16, Section 16660 - Corrosion Control #### 1.3 GENERAL REQUIREMENTS This section involves the installation of cathodic protection for one (1) new above ground 75,000 steel suction tank (the tank) connected to the fire pump house associated with this project. The Contractor shall provide a warrantee that the installation shall provide cathodic protection for at least a twenty-five (25) year life. Cathodic protection is to be provided for both the tank bottom and interior and all AFFF piping from Fire Pump House to Nosedock Facility. The cathodic protection shall interface with the existing impressed current protection provided for the present 75,000 gal. above ground steel suction tank located at the opposite end of the fire pump house. Additional guidance for above ground tank and piping protection is referenced in appropriate mechanical and architectural/civil specifications and diagrams specific to the tank, fire pumps, fire protection, and fire pump house building assemblies. All corrosion and cathodic protection designs shall be coordinated with the Fairchild Air Force Base Cathodic Protection Engineer or Technician. A complete, operating impressed current cathodic protection system in accordance with NFPA 70, the applicable federal, state and local regulations, and the requirements of this contract shall be sized, calculated, designed, and provided by the contractor. The system shall include planning, inspecting the installation, adjusting and testing cathodic protection and test system using rectifiers and impressed current anodes, supplemented with sacrificial anodes as needed, for the connected fire pump house building, fire pumps, jockey pump, and connected fire pump piping shown. The cathodic protection system shall also include cables, connectors, splices, corrosion protection test stations, ac power panels, and any other equipment required for a complete operating system providing the specified protection. The cathodic protection system shall include: - a) calculations for rectifier, anodes, and any recommendations for supplementing or changing the minimum design criteria to provide the specified potentials and - b) equipment, wiring, and wiring devices necessary to produce a continuous flow of direct current from anodes in the soil electrolyte to the tank surfaces. The installation shall meet the specified protection criteria for a 25 year life. #### 1.3.1 Contractor's Modifications The specified system is based on an impressed current system supplemented with magnesium anodes. The Contractor may design the cathodic protection system after review of the project, site verification and analysis to provide optimum design/service economy and overall system performance. The design shall be fully described, shall be approved by the Contracting Officer and shall meet the following criteria. The proposed system shall achieve a minimum tank-to-soil "Instant Off" potential of minus 0.85 volts with reference to a saturated copper-copper sulfate reference cell on the underground components of the piping. The Contractor shall take resistivity measurements of the soil in the vicinity of the tank and ground bed sites; based upon the measurements taken, the current and voltage of the rectifier shall be adjusted as required to produce a minimum of minus 850 millivolts "Instant Off" potential between the structure being tested and the reference cell. This potential shall be obtained over 95 percent of the metallic area without the "Instant Off" potential exceeding 120 millivolts. ## 1.3.2 Insulators Insulators are required to insulate the indicated tank from any other structure. Insulators shall be provided with lightning protection and a test station as shown. ## 1.3.3 Anodes and Bond Wires Anodes shall be installed in sufficient number and of the required type, size and spacing to obtain a uniform current distribution of 2.5 milliampers per square foot minimum to underground metal surfaces. For each cathodic protection system, the metallic components and structures to be protected shall be made electrically continuous. This shall be accomplished by installing bond wires between the various structures. Bonding of existing buried structures may also be required to preclude detrimental stray current effects and safety hazards. Provisions shall be included to return stray current to its source without damaging structures intercepting the stray current. The electrical isolation of underground facilities in accordance with
acceptable industry practice [shall] [shall not] be included under this section. #### 1.3.4 Surge Protection Approved zinc grounding cells or sealed weatherproof lightning arrestor devices shall be installed across insulated flanges or fittings installed in underground piping as indicated on the drawings. The arrestor shall be gapless, self-healing, solid state type. Zinc anode composition shall conform to ASTM B 418, Type II. Lead wires shall be number 6 AWG copper with high molecular weight polyethylene (HMWPE) insulation. The zinc grounding cells shall not be prepackaged in backfill but shall be installed as detailed on the drawings. Lightning arrestors or zinc grounding cells are not required for insulated flanges on metallic components used on nonmetallic piping systems. ## 1.3.5 Sacrificial Anodes Sacrificial high potential magnesium anodes shall be located as required to provide localized cathodic protection or supplemental cathodic protection for the impressed current system. Each sacrificial magnesium anode shall be routed through a test station until the impressed current system has final power adjustment; the magnesium anode shall not be connected to the tank. Where cathodic protection is provided for the interior of the tank, care shall be taken to ensure that cable or other suspension assemblies are not subject to damage. ## 1.3.6 Pipe Systems This section involves the installation of cathodic protection of underground ductile iron AFFF pipe connected to the fire pump house and Washrack Hangar Building. The Contractor shall provide a warrantee that the installation shall provide cathodic protection for at least a twenty-five (25) year life. All corrosion and cathodic protection designs shall be coordinated with the Fairchild Air Force Base Cathodic Protection Engineer or Technician. A complete, sacrificial anode cathodic protection system in accordance with NFPA 70, the applicable federal, state and local regulations, and the requirements of this contract shall be sized, calculated, designed, and provided by the contractor. The system shall include planning, inspecting the installation, adjusting and testing cathodic protection and test system using sacrificial anodes as needed, for the underground AFFF piping shown. The cathodic protection system shall also include cables, connectors, splices, corrosion protection test stations, and any other equipment required for a complete operating system providing the specified protection. The cathodic protection system shall include: - c) calculations for anodes, and any recommendations for supplementing or changing the minimum design criteria to provide the specified potentials and - d) the installation shall meet the specified protection criteria for a 25 year life. However, connections with dissimilar materials shall be equipped with an insulated coupling between them. Steam lines providing heat to the tank will not be provided with cathodic protection, according to the direction of the Base Electrical Engineer for the project. ## 1.3.6.1 Coatings Coatings for metallic components shall be as required for metallic fittings. Protective covering (coating and taping) shall be completed and tested on each metallic component and shall be as required for underground metallic pipe. ## 1.3.7 Services of Corrosion Engineer The Contractor shall obtain the services of a corrosion engineer to supervise, inspect, and test the installation and performance of the cathodic protection system. Corrosion Engineer refers to a person, who, by reason of his knowledge of the physical sciences and the principles of engineering and mathematics, acquired by professional education and related practical experience, is qualified to engage in the practice of corrosion control. Such person may be a licensed professional Corrosion Engineer or may be a person certified as being qualified by the National Association of Corrosion Engineers (NACE), if such licensing or certification includes 3 years experience in corrosion control on underground metallic surfaces of the type under this contract. NACE certification shall be technologist, corrosion specialist, or cathodic protection specialist. The corrosion engineer shall make at least 3 visits to the project site. The first of these visits shall include obtaining soil resistivity data, acknowledging the type of pipeline coatings to be used and reporting to the Contractor the type of cathodic protection required. Once the submittals are approved and the materials delivered, the corrosion engineer shall revisit the site to ensure the Contractor understands installation practices and laying out the components. The third visit shall involve testing the installed cathodic protection systems and training applicable personnel on proper maintenance techniques. The corrosion engineer shall supervise installation and testing of all cathodic protection. #### 1.4 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01330 SUBMITTAL ## PROCEDURES: SD-01 Data Materials and Equipment [GA]. Within thirty (30) days after receipt of notice to proceed, an itemized list of equipment and materials including item number, quantity, and manufacturer 00029/11 REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 of each item. The list shall be accompanied by a description of procedures for each type of testing and adjustment, including testing of coating for thickness and holidays. Installation of materials and equipment shall not commence until this submittal is approved. Spare Parts; [FIO]. Spare parts data for each different item of material and equipment specified, after approval of detail drawings and not later than two (2)months prior to the date of beneficial occupancy. The data shall include a complete list of parts, special tools, and supplies, with current unit prices and source of supply. One spare anode of each type shall be furnished. SD-04 Drawings Cathodic Protection System; [GA]. Six (6)copies of detail drawings consisting of a complete list of equipment and material including manufacturer's descriptive and technical literature, catalog cuts, results of system design calculations including soil resistivity, installation instructions and certified test data stating the maximum recommended anode current output density and the rate of gaseous production if any at that current density. Detail drawings shall contain complete wiring and schematic diagrams and any other details required to demonstrate that the system has been coordinated and will function properly as a unit. Contractor's Modifications; [GA]. Six (6) copies of detail drawings showing proposed changes in location, scope or performance indicating any variations from, additions to, or clarifications of contract drawings. The drawings shall show proposed changes in anode arrangement, anode size and number, anode materials and layout details, conduit size, wire size, mounting details, wiring diagram, method for electrically isolating each tank, and any other pertinent information to the proper installation and performance of the system. SD-08 Statements Qualifications; [GA]. Evidence of qualifications of the corrosion engineer and technician responsible for the design and installation meeting the requirements of Part 1.2.7 above shall be submitted to the Contracting Officer and approved before initiating design. Any changes in personnel in responsible charge for this design or installation shall also have qualifications submitted for approval, prior to their involvement. SD-09 Reports Tests and Measurements; [FIO]. Test reports in booklet form tabulating field tests and measurements performed, upon completion and testing of the installed system and including close interval potential survey, casing and interference tests, final system test verifying protection, insulated joint and bond tests, and holiday coating test. Each test report shall indicate the final position of controls. A certified test report showing that the connecting method has passed a 120-day laboratory test without failure at the place of connection, wherein the anode is subjected to maximum recommended current output while immersed in a 3 percent sodium chloride solution. Contractor's Modifications; [FIO]. Final report regarding supplemental magnesium anode installation. The report shall include tank-to-soil measurements throughout the affected area, indicating that the additions corrected the conditions, which made the additional anodes necessary, and current measurements for the additional anodes. The following special materials and information are required: Calculations on current and voltage for the rectifier plus rectifier and meters specifications: - taping materials and conductors; - zinc grounding cell, - installation and testing procedures, and equipment; - coating material; - system design calculations for rectifier, - anode number, life, and parameters to achieve protective potential; - backfill shield material and installation details showing waterproofing; - bonding and waterproofing details; - insulated resistance wire; - exothermic weld equipment and material. SD-13 Certificates Cathodic Protection System; [FIO]. Proof that the materials and equipment furnished under this section conform to the specified requirements contained in the referenced standards or publications. The label or listing by the specified agency will be acceptable evidence of such compliance. SD-19 Operation and Maintenance Manuals Cathodic Protection System; [GA]. Six (6) copies of operating manual outlining the step-by-step procedures required for system startup, operation, adjustment of current flow, and shutdown. The manuals shall include the manufacturer's name, model number, service manual, parts list, and brief description of all equipment and their
basic operating features. Six (6) copies of maintenance manual listing routine maintenance procedures, recommendation for maintenance testing, possible breakdowns and repairs, and troubleshooting guides. The manuals shall include single line diagrams for the system as installed; instructions in making tank-to-reference cell potential measurements and frequency of monitoring; instructions for dielectric connections, interference and sacrificial anode bonds; instructions shall include precautions to ensure safe conditions during repair of tank system. ## PART 2 PRODUCTS ## 2.1 IMPRESSED CURRENT ANODES ## 2.1.1 Bare High Silicon Cast-Iron Anodes Cast-iron anodes shall be of the size indicated and shall conform to the following requirements: ## 2.1.1.1 Chemical Composition (Nominal) | | Percent by Weight | |-----------|-------------------| | Element | Grade 2 | | | | | Silicon | 14.20-14.75 | | Manganese | 1.50 Max. | | Carbon | 0.75-1.15 | | Chromium | 3.25-5.00 | | Iron | Balance | ## 2.1.1.2 Anode Electrical Resistivity Seventy-two microhm-centimeter at 20 degrees F. ## 2.1.1.3 Physical Properties (Nominal) | Tensile strength | 15,000 psi | |----------------------|--------------------------------| | Compressive strength | 100,000 psi | | Brinell hardness | 520 | | Density | 7.0 grams per cubic centimeter | | Melting point | 2300 degrees F | | Coefficient of | 0.00000733 centimeter | | expansion from 32 | per degree F | | to 212 degrees F | | #### 2.1.2 Bare Graphite Anodes Bare graphite anodes shall have a maximum electrical resistivity of 0.0011 ohm-centimeter. #### 2.1.3 Canister Contained Anodes Canister contained anodes shall be packed at the factory in sheet metal canisters with calcined petroleum coke breeze or metallurgical coke breeze and the canisters shall be capped with tight fitting end caps secured to the body of the canister. The canister shall provide a minimum annular space of 3 inches all around the anode. The connecting cable shall pass through a hole in an end cap designed to be tight fitting with the cable and protected from sharp edges with a plastic or rubber grommet. The anodes shall be centered in the canisters and the annular space filled with coke breeze compacted in place. ## 2.1.4 Anode Connecting Cables Anodes shall have connecting cables installed at the factory. For deep well ground bed, each anode located in the well shall be accompanied by a reel of continuous cable having the length indicated. No spliced connections will be permitted in deep well cables. #### 2.1.5 Mixed Metal Oxide Anodes Mixed metal oxide anodes shall be of the size indicated and shall conform to the following requirements. #### 2.1.5.1 Conductive Material The electrically conductive coating shall contain a mixture consisting primarily of iridium, tantalum, and titanium oxides. The average composition is generally a 50/50 atomic percent mixture of iridium and titanium oxides, with a small amount of tantalum. The resistivity, as tested by the manufacturer, shall be no more than 0.002 ohm-centimeter, and the bond strength shall be greater than 50 MPa to guarantee the current capacity life and the quality of the conductive ceramic coating. adhesion or bond strength shall be determined by epoxy bonding a 2.54 mm diameter stud to the ceramic coating and measuring the load to failure (about 70 MPa) of either the epoxy or the interface between the coating and the substrate. The anode must be inert and the electrically conductive ceramic coating dimensionally stable. The ceramic coated anode shall be capable of sustaining a current density of 100 ampere per square meter in an oxygen generating electrolyte at 150 degrees F for 20 years, to ensure the current capacity life. An accelerated current capacity life test shall be performed by the manufacturer on every lot of anode wire used to construct the anode as described. The mixed metal oxide coating shall be applied to the wire anode by a firm that is regularly engaged in and has a minimum 5 years experience in manufacturing and applying mixed metal oxide coatings to titanium anode substrates. The mixed metal oxide must be sintered to the titanium surface as to remain tightly bound to the surface when bent 180 degrees onto itself. #### 2.1.5.2 Anode Life Test The anode wire material shall sustain current densities of 100 ampere per square meter in an oxygen generating electrolyte for 20 years. The manufacturer shall certify that a representative sample taken from the same lot used to construct the anode, has been tested and meets the following criteria. The test cell sustains a current density of 10,000 ampere per square meter in a 15 weight percent sulfuric acid electrolyte at 150 degrees F without an increase in anode to cathode potential of more than 1 volt. The cell containing the anode shall be powered with a constant current power supply for the 30 day test period. The representative sample shall be 5 inch in length and be taken from the lot of wire that is to be used for the anode. #### 2.1.5.3 Canister Contained Mixed Metal Oxide Anodes Canister contained mixed metal oxide anodes shall be packed at the factory in light weight, light gauge steel uni-body TIG welded canisters with calcinated petroleum coke breeze. The canisters shall be capped with TIG welded steel and caps providing a totally encapsulated construction. The connecting cable shall pass through a hole in an end cap designed to be tight fitting with a heavy duty strain relief allowing for handling of the canister by the cable. The anode shall be centered in the canister by centralizers to maintain rod position. ## 2.1.5.4 Connecting Cables for Anodes Anodes shall have connecting cables installed at the factory. The connection between the anode rod or ribbon and the lead wire shall be made with a solid crimp couple with solder. The connection shall be sealed in cast epoxy. ## 2.1.5.5 Canister Connection Cables Canister connecting cables shall consist of an ultra low resistance solder connection which is a minimum of three times stronger than the cable. For ceramic coated canister anodes, the cable connection shall consist of two molded dielectric layers (pressure seals), a flexible backfill resin encapsulant stabilizer, a schedule 40 PVC pipe Type 1 seal, and Type 1 PVC pipe end plugs. The seals and end plugs shall resist chlorine gas and acid. ## 2.1.5.6 Deep Well Connection Cables For deep well ground beds, each anode located in the well shall be accompanied by a reel of continuous cable having the length indicated. For deep well ceramic coated anodes connecting cables shall have molded multiseal solder connections; splices will not be permitted. Chlorine gas resistant cable and shield shall be used for chlorine environments. #### 2.2 RECTIFIERS AND ASSOCIATED EQUIPMENT ## 2.2.1 Rectifier Unit The rectifier unit shall consist of a transformer, rectifying elements, transformer tap adjuster, terminal block, [one dc output voltmeter, one dc output ammeter,] [one combination volt-ammeter,] one toggle switch for each meter, fuse holders with fuses for each dc circuit, variable resistors, an ac power-supply circuit breaker, lightning arresters for both input and output, all wired and assembled in a weatherproof metal cabinet. The overall efficiency of the rectifier shall be not less than 65 percent when operated at nameplate rating and shall be capable of supplying continuous full rated output at an ambient temperature of 112 degrees F in full sunlight with expected life in excess of 10 years. 00029/11 REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 #### 2.2.1.1 Transformer Transformer shall conform to UL 506. ## 2.2.1.2 Rectifiers Rectifying elements shall be connected to provide full-wave rectification. Silicon diodes shall be protected by selenium surge cells or varistors against over-voltage surges and by current-limiting devices against over-current surges. #### 2.2.1.3 Meters Meters shall be accurate to within plus or minus 2 percent of full scale at 80 degrees F, and shall possess temperature stability above and below 80 degrees F of at least 1 percent per 10 degrees F. Separate meters shall be 2-1/2 inch nominal size or larger. #### 2.2.1.4 Circuit Breaker A single-pole, flush-mounted, fully magnetic, properly rated nonterminal type circuit breaker shall be installed in the primary circuit of the rectifier supply transformer. #### 2.2.1.5 Fuses Cartridge-type fuses with suitable fuse holders shall be provided in each leg of the dc circuit. ## 2.2.2 Cabinet Construction Cabinet shall be constructed of not lighter than No. 16 gauge steel, and shall be provided with a full door. The door shall be hinged and have a hasp that will permit the use of a padlock. The cabinet shall be fitted with screened openings of the proper size to provide for adequate cooling. Holes, conduit knockouts, or threaded hubs of sufficient size and number shall be conveniently located. ## 2.2.2.1 Wiring Diagram A complete wiring diagram of the power unit showing both the ac supply and the dc connections to anodes shall be on the inside of the cabinet door. All components shall be shown and labeled. ## 2.2.2.2 Grounding Provisions Grounding provisions shall comply with NFPA 70 and UL 467 including a grounding terminal in the cabinet. The grounding conductor from the terminal to the earth grounding system shall be solid or stranded copper not smaller than No. 6 AWG. The earth grounding system shall consist of one or more 5/8 inch diameter copper-clad steel rods. Ground rods shall be 8 feet long minimum. #### 2.2.2.3 Cabinet Paint System The cabinet and mounting support shall be [painted] [hot dipped galvanized] [aluminum] [stainless steel] with the manufacturer's standard painting system. #### 2.2.3 Wiring Wiring shall be installed in accordance with NFPA 70 utilizing type TW or RHW or polyethylene insulation. Fittings for conduit and cable work shall conform to UL 514A. Outlets shall
be of the threaded hub type with gasketed covers. Conduit shall be hub type with gasketed covers. Conduit shall be securely fastened at 8 foot intervals or less. Splices shall be made in outlet fittings only. Conductors shall be color coded for identification. Cable for anode header and distribution shall be No. 2 AWG stranded copper wire with cathodic protection high molecular weight polyethylene [Dular/Halar]. #### 2.2.4 Oil Immersed Enclosures Enclosures shall be of 11 gauge steel or heavier, with an accessible drain plug. The oil level shall be clearly marked. The lid shall be hinged and have quick release clamps to secure it in closed position. A stop shall limit the swing of the lid when opened. A compressible, oil resistant, positive sealing gasket shall be provided. The gasket shall return to its original shape upon release of lid pressure. The gasket shall be attached to the tank or lid and joints shall be free of gaps. Base mounting using 4 inch high channels shall be provided. Conduits entering the enclosure shall be internally sealed and shall enter or exit above the oil fill line. #### 2.3 COKE BREEZE ## 2.3.1 Calcined Petroleum Coke Breeze (Dry) Breeze shall conform to the following requirements: ## 2.3.1.1 Electrical Resistivity Electrical resistivity shall be: - a. 1.0 to 2.0 ohm-centimeter, tightly compacted. - b. 10 to 15 ohm-centimeter, loosely compacted. ## 2.3.1.2 Bulk Density Bulk density shall be 48 to 74 pounds per cubic foot. ## 2.3.2 Metallurgical Coke Breeze (Processed) Breeze shall conform to the following requirements: #### 00029/11 REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 #### 2.3.2.1 Electrical Resistivity (Nominal) Nominal electrical resistivity shall be: - a. 10 ohm-centimeter Max., tightly compacted. - b. 10 to 15 ohm-centimeter, lightly compacted. - c. 15 to 20 ohm-centimeter, loose. ## 2.3.2.2 Metallurgical Coke Bulk Density Bulk density shall be 38 to 42 pounds per cubic foot. #### 2.4 MISCELLANEOUS MATERIALS #### 2.4.1 Electrical Wire #### 2.4.1.1 Anode Connecting Wire Anode connecting wire shall be No. 8 AWG stranded copper wire with type CP high molecular weight polyethylene insulation, 7/64 inch thick, 600 volt rating, in accordance with NEMA WC 5. Cable-to-anode contact resistance shall be 0.003 ohms maximum. Deep anode ground bed connecting wire shall be No. 8 AWG, stranded copper wire with an inner jacket of 40 mils of Halar insulation covered by an outer jacket of 65 mils CP high molecular weight polyethylene insulation, 600 volt rating, in accordance with NEMA WC 5. Cable-to-anode contact resistance shall be 0.02 ohms maximum. #### 2.4.1.2 Anode Header Cable Cable for anode header and distribution shall be No. 8 AWG stranded copper wire with type CP high molecular weight polyethylene, 7/64 inch thick insulation, 600-volt rating, in accordance with NEMA WC 5. ## 2.4.1.3 Test Wires Test wires shall be AWG No. 12 stranded copper wire with NFPA 70 Type TW or RHW or polyethylene insulation. #### 2.4.1.4 Resistance Wire Resistance wire shall be AWG No. 16 or No. 22 nickel-chromium wire. ## 2.4.2 Deep Anode Ground Bed Casing Casing shall be 4 inch outside diameter, 1/8 inch minimum wall thickness black steel pipe, conforming to ASTM A 53, Type E or S, Grade B. The metal casing shall extend no more than 5 feet below the top of a well cap. #### 2.4.3 Anode Centering Device for Deep Anode Ground Beds Anode centering device shall be nonmetallic and capable of maintaining centering in the hole without interfering with other anode lead wiring, until coke breeze is packed in place. #### 2.4.4 Conduit Rigid galvanized steel conduit and accessories shall conform to UL 6. Nonmetallic conduit shall conform to NEMA TC 2. #### 2.4.5 Test Boxes and Junction Boxes Boxes shall be outdoor type conforming to UL 514A. ## 2.4.6 Polyethylene Insulation Polyethylene insulation shall comply with the requirements of ASTM D 1248 and of the following types, classes, and grades: ## 2.4.6.1 High Molecular Weight Polyethylene High molecular weight polyethylene shall be Type I, Class C, Grade E5. ## 2.4.6.2 High Density Polyethylene High density polyethylene shall be Type III, Class C, Grade E3. ## 2.4.7 Test Stations Test stations shall be complete with an insulated terminal block having the indicated number of terminals and shall be provided with a lockable cover and have a cast-in legend, "C.P. Test". Test stations shall be complete with an insulated terminal block having the required number of terminals. (One terminal required for each conductor). Sufficient test stations to monitor underground isolation points shall be provided. Test-bond stations (potential measurement and stray current control) shall be provided to monitor tank to soil potential, which may conduct stray current from the new cathodic protection system. The location of the test-bond stations shall ensure that the tank to soil potential of metallic pipe not designated to be protected is not made less negative by the energization of the cathodic protection system. Test station terminal connections and the terminal conductor shall be permanently tagged to identify each termination of the conductors (e.g. identify the conductors connected to the protected structures). Conductors shall be permanently identified in the station by means of plastic or metal tags, or plastic sleeves to indicate termination. Each conductor shall be color coded in accordance with the drawings. The station test facility, including permanent Cu-Cu S04 reference cells and test returns shall be installed as indicated. Pavement inserts shall be nonmetallic and shall allow Cu-Cu SO4 reference electrode to contact the electrolyte beneath the pavement surface. Abbreviations shall not be used. Welding of electrical connections shall be as follows: Exothermic welds shall be "CADweld", "Thermo-weld", or approved equal. Use and selection of these materials and welding equipment shall be in accordance with the manufacturer's recommendations. ## 2.4.8 Calibrated Shunts Shunts calibrated in current per potential (e.g. mA/V) shall be installed between the lead or header wire connected to the sacrificial anode and the current collector lead connected to the structure. The calibration of the shunt shall be clearly marked and installed to be visible. ## 2.4.9 Sealing and Dielectric Compound Sealing and dielectric compound shall be a black, rubber based compound that is soft, permanently pliable, tacky, moldable, and unbacked. Compound shall be applied as recommended by the manufacturer, but not less than 1/8 inch thick. ## 2.4.10 Protective Covering Except as otherwise specified, protective covering for underground metallic components including pipe and fittings shall be applied mechanically in a factory or field plant specially equipped for the purpose. Valves and fittings that cannot be coated and wrapped mechanically shall have the protective covering applied by hand, preferably at the plant applying the covering to the pipe. Joints shall be coated and wrapped by hand. Hand coating and wrapping shall produce a covering equal in thickness to the covering applied mechanically. Piping and components installed in valve boxes or manholes shall also receive the specified protective coating. ## 2.4.10.1 Pipeline Metallic Components Underground metallic pipelines and structures shall have a good quality factory applied coating. This includes carbon steel, cast iron and ductile iron pipelines or vessels. If nonmetallic pipelines are installed, metallic fittings or pipe sections are to be coated as follows. - a. The nominal thickness of the metallic pipe joint or other component coating shall be 16 mils, plus or minus 5 percent. - b. Pipe and joint coating for factory applied or field repair material shall be applied as recommended by the manufacturer and shall be one of the following: - (1) Continuously extruded polyethylene and adhesive coating system. - (2) Polyvinyl chloride pressure-sensitive adhesive tape. - (3) High density polyethylene/bituminous rubber compound tape. - (4) Butyl rubber tape. - (5) Coal tar epoxy. #### 2.4.10.2 Field Joints Field joints shall be coated with material compatible with the pipeline coating compound. The joint coating material shall be applied to an equal thickness as the pipeline coating. Unbonded coatings shall not be used on buried metallic piping. This prohibition includes unbonded polymer wraps or tubes. ## 2.4.10.3 Inspection of Pipe Coatings Once the pipeline or vessel is set in the trench, an inspection of the coating shall be conducted. This inspection shall include electrical holiday detection as described in paragraph TESTS AND MEASUREMENTS. ## 2.4.10.4 Above Ground Piping System Above ground piping shall be given two coats of exterior oil paint. Surface preparation shall be as recommended by paint manufacturer, except as follows: - ferrous, shop primed surfaces shall be touched up with ferrous metal primer; surfaces that have not been shop primed shall be solvent cleaned; - surfaces that contain loose rust, mil scale, or other foreign substances shall be mechanically cleaned by power wire brushing and primed with ferrous metal primer; - and primed surfaces shall be finished with two coats of exterior oil paint or vinyl paint. ## 2.4.11 Preformed Sheaths Preformed sheaths for encapsulating electrical wire splices to be buried underground shall fit the insulated wires entering the spliced joint. ## 2.4.12 Epoxy Potting Compound Epoxy potting compound for encapsulating electrical wire splices to be buried underground shall be a two package system made for the purpose. #### 2.4.13 Backfill Shields Backfill shields shall consist of approved pipeline wrapping or fiberglass reinforced, coal-tar impregnated tape, or plastic weld caps, specifically made for the purpose. ## 2.4.14 Electrical Tape Pressure-sensitive vinyl plastic electrical tape shall conform to UL 510. ## 2.4.15 Cable Marker Tape
Traceable marker tape shall be manufactured for the purpose and clearly labeled "Cathodic Protection Cable Buried Below". #### 2.4.16 Electrical Isolation of Structures Insulating fittings, including insulating flanges and couplings, shall be installed above ground or in a concrete hand hole. As a minimum, insulating flanges or unions shall be provided at the following locations: - a. Connection of new piping to existing pipes. - b. Pressure piping under floor slab to a building. Additionally, isolation shall be provided between new pipe lines and foreign pipes that cross the new lines within 10 feet. #### 2.5 MAGNESIUM ANODES Weights and dimensions of magnesium anodes shall be approximately as follows: | | | NOMINAL GROSS | | |----------|----------------|-----------------|------------------------| | NOMINAL | APPROX. | WT LBS PACKAGED | NOMINAL PACKAGE | | WT. LBS. | SIZE (IN) | IN BACKFILL | DIMENSIONS (IN) | | | | | | | 3 | 3 X 3 X 5 | 8 5 | 5 1/4 X 5 1/4 X 8 | | 5 | 3 X 3 X 8 | 13 5 | 5 1/4 X 5 1/4 X 11 1/4 | | 9 | 3 X 3 X 14 | 27 5 | 5 1/4 X 20 | | 12 | 4 X 4 X 12 | 32 7 | 7 1/2 X 18 | | 17 | 4 X 4 X 17 | 45 7 | 7 1/2 X 24 | | 32 | 5 X 5 X 20 1/2 | 68 8 | 3 1/2 X 28 | | 50 | 7 x 7 x 16 | 100 | 10 X 24 | | | | | | ## 2.5.1 Composition Anode shall be of high potential magnesium alloy, made of primary magnesium obtained from sea water or brine, and not from scrap metal. Anodes shall conform to the following analysis, unless otherwise indicated. | Element | Percent | by Weight | |---------------------------------|-------------------------|---------------------------| | Aluminum
Manganese | 0.02 | maximum
maximum | | Zinc
Silicon | 0.05 | maximum | | Copper
Nickel | 0.02
0.002 | maximum
maximum | | Iron
Impurities
Magnesium | 0.03
0.30
Remains | maximum
maximum
ler | | _ | | | The Contractor shall furnish spectrographic analyses on samples from each heat or batch of anodes used on this project. ## 2.5.2 Packaged Anodes Anodes shall be provided in packaged form with the anode surrounded by specially prepared quick-wetting backfill and contained in a cloth or paper sack. Anodes shall be centered in the backfill material. The backfill material shall have the following composition, unless otherwise indicated. | Material | Percent by Weight | |----------------|-------------------| | Gypsum | 75 | | Bentonite | 20 | | Sodium Sulfate | 5 | #### 2.5.3 Lead Wires Anode lead wires shall consist of No. 10 solid copper wire, with TW insulation. Lead wires shall be not less than 10 feet in length, without splices. #### 2.5.4 Connection Wires Wires shall consist of No. 10 solid copper wire with RHW-USE or polyethylene insulation. ## 2.5.5 Insulation Type RHW-USE insulation shall comply with NFPA 70. Polyethylene insulation shall comply with ASTM D 1248; high molecular weight polyethylene shall be Type I, Class C, Grade E5; high density polyethylene shall be Type III, Class C, Grade E3. #### 2.5.6 Conduit Steel Conduit steel shall conform to UL 6 and ANSI C80.1. ## 2.5.7 Tape Pressure-sensitive vinyl plastic electrical tape shall conform to UL 510. #### 2.5.8 Backfill Shields Shields shall consist of approved wrapping of reinforced fiberglass coal-tar impregnated tape, or plastic weld caps specifically made for the purpose and installed in accordance with the manufacturer's recommendations. When joint bonds are required, due to the use of mechanical joints, the entire joint shall be protected with kraft paper joint cover. The joint cover shall be filled with poured hot coal-tar enamel. #### 2.5.9 Electrical Connections Electrical connections shall be done as follows: - a. Exothermic welds shall be "Cadweld" or Burndy "Thermo-Weld" or approved equal. Use of these materials shall be in accordance with the manufacturer's recommendations. - b. Electrical shielded arc welds on the steel tank shall be approved via shop drawing action. - c. Other methods of welding shall be specifically approved for use by the tank manufacturer. ## 2.5.10 Anode Storage Storage for magnesium anodes will be designated by the Contracting Officer. If anodes are not stored in a building, they shall be protected from inclement weather. Packaged anodes damaged as result of improper handling or weather exposure shall be resacked by the Contractor and the required backfill added. #### 2.5.11 Anode Installation Anode configuration and size shall be as indicated. The Contractor shall determine and document calculations for the number of anodes required to achieve minus 850 millivolts "instant off" potential and indicate the tank, piping, components or structure served. The anode system shall be designed for a life of 25 years of continuous operation. #### 2.6 LEAD WIRE CONNECTIONS Lead wire to structure connections shall be by exothermic welding process. Weld charges made specifically for use on cast iron shall be used on cast iron pipe. A backfill shield filled with a pipeline mastic sealant or material compatible with the coating shall be placed over the weld connection and shall cover the exposed metal adequately. #### PART 3 EXECUTION #### 3.1 CRITERIA OF PROTECTION Acceptance criteria for determining the adequacy of protection on the tank and associated connected appurtenances shall be in accordance with NACE RP0169 and as specified below. #### 3.1.1 Iron and Steel The following method a. shall be used for testing cathodic protection voltages. If more than one method is required method b. shall be used: a. A negative voltage of at least minus 0.85 volts as measured between the tank and a saturated copper-copper sulphate reference electrode contacting the (electrolyte) earth. Determination of this voltage shall be made with the cathodic protection system in operation. Voltage drops shall be considered for valid interpretation of this voltage measurement. A minimum of minus 850 millivolts "instant off" potential between the tank being tested and the reference cell shall be achieved over 95 percent of the area of the structure. Adequate number of measurements shall be obtained over the entire tank, or other metallic component to verify and record achievement of minus 850 millivolts "instant off". This potential shall be obtained over 95 percent of the total metallic area without the "instant off" potential exceeding 1200 millivolts. between the tank and a saturated copper-copper sulphate reference electrode contacting the earth. This polarization voltage shift shall be determined by interrupting the protective current and measuring the polarization decay. When the protective current is interrupted, an immediate voltage shift will occur. The voltage reading, after the immediate shift, shall be used as the base reading from which to measure polarization decay. Measurements achieving 100 millivolts shall be made over 95 percent of the metallic surface. #### 3.2 GROUND BED INSTALLATION ## 3.2.1 Shallow Ground Beds Shallow ground beds shall contain size and quantity of anodes designed to meet performance criteria of the cathodic protection system at an initial operating current output density not exceeding 50 percent of maximum recommended current output density. #### 3.2.1.1 Horizontally Buried Bare Anodes Horizontally buried bare anodes shall be bedded on and covered with metallurgical coke breeze in a trench excavated for the purpose at depths, spacing and locations as shown. Anodes shall be completely surrounded by the backfill at bottom, sides, and top for a distance of not less than 4 inches. Backfill shall be compacted. ## 3.2.1.2 Vertically Buried Bare Anodes Vertically buried bare anodes shall be installed in vertical holes in the ground having a depth, spacing, and location shown. The holes in the ground shall be sufficiently large to provide an annular space around the anode not less than 4 inches. The anodes shall be centered in the hole and backfilled with calcined petroleum coke breeze or metallurgical coke breeze. Backfill shall be compacted. #### 3.2.1.3 Horizontally Buried Canister-Contained Anodes Horizontally buried canister-contained anodes shall be buried in a trench excavated for the purpose at depths, spacing, and locations shown. #### 3.2.1.4 Vertically Buried Canister-Contained Anodes Vertically buried canister-contained anodes shall be installed in vertical holes in the ground having depth, spacing, and locations shown. The holes in the ground shall be sufficiently larger in diameter than the canisters to facilitate easy lowering into the hole and backfilling. The space between the canister and the wall of the hole shall be completely backfilled with a wet slurry of earth free of stones. #### 3.2.1.5 Cable Protection Positive cable to the ground bed and negative cable to the tank to be protected shall be buried a minimum depth of 30 inches except where above ground construction utilizing conduit is used. ## 3.2.1.6 Multiple Anode Systems Multiple anode systems shall consist of groups of anodes connected in parallel to a header cable, buried in the ground at depths, spacing, and locations shown. ## 3.2.1.7 Distributed Anode Systems Distributed anode systems shall consist of a line or row of anodes connected in parallel to a header cable and buried in the ground parallel to the tank. The anodes shall be at the tank at depths, spacing, and locations shown. ## 3.2.2 Deep Anode Ground Beds Deep anode ground beds shall consist of an installation of anodes supported in a well spaced one above the other and supported in place by a method that does not suspend the anodes from the connecting cable. #### 3.2.2.1 Anode Centering Anodes shall be centered in the well by means of centering devices. ## 3.2.2.2 Well Casing The well casing shall be bare steel. ## 3.2.2.3 Casing Insulation The portion of casing above the top anode shall be coated with an electrically insulating underground type coating. #### 3.2.2.4 Anode Requirements Anode sizes, spacing, number of anodes, depth of well, and other details shall be as
shown. #### 3.2.2.5 Anode Lead Wire Each anode shall have a separate, continuous wire extending from the anode in the well to the junction box at the well head. #### 3.2.2.6 Anode Cables Anode cables shall terminate in a nearby junction box, equipped with individual anode current shunts. Where full length casing is used, two wire connections from casing shall terminate in the junction box. #### 3.2.2.7 Anode and Cable Installation If the method of installation utilizes backfill support for anodes and cable, slack in the cable near each anode shall be provided and the cable insulation shall be increased in thickness from 7/64 to 5/32 inch utilizing an approved composite of plastic and elastomeric materials. #### 3.2.2.8 Backfill The well shall be backfilled with calcined petroleum coke breeze or metallurgical coke breeze surrounding the anodes by a method that does not leave voids or bridging. The well shall be over-filled with coke breeze allowing for settlement so that the settled level after a number of days is as high as the level shown. The number of days allowed for settling of the coke breeze will be determined by the Contracting Officer. If the top level of coke breeze is below the level shown after settlement, additional coke breeze shall be put in the well. Anode and cable assemblies shall not be used for tamping backfill around another, previously placed anode unless recommended in writing by the manufacturer of the anode and cable assembly. The top portion of the well above the level of the coke breeze shall be filled with washed gravel. The top of the well shall be vented to the atmosphere. ## 3.2.2.9 Cable Marker Tape Traceable marker tape shall be located in the same trench above cathodic protection cables including structure leads, anode leads, anode header cables, test station leads, bonding cables, and rectifier electrical power cables. #### 3.3 MAGNESIUM ANODE INSTALLATION Installation shall not proceed without the presence of the Contracting Officer, unless otherwise authorized. Anode locations may be changed to clear obstructions when approved. Anodes shall be installed in sufficient number and of the required type, size, and spacing to obtain a uniform current distribution surface on the structure. Prepackaged anodes shall be installed as shown on the drawings. ## 3.3.1 General Requirements Packaged anodes shall be installed completely dry, and shall be lowered into holes by rope sling or by grasping the cloth gather. The anode lead wire shall not be used in lowering the anodes. The hole shall be backfilled with fine soil in 6 inch layers and each layer shall be hand-tamped around the anode. The tamper shall not strike the anode or lead wire. If immediate testing is to be performed, water shall be added only after backfilling and tamping has been completed to a point 6 inches above the anode. Approximately 2 gallons of water shall be poured into the hole; after the water is absorbed by the soil, backfilling and tamping shall be completed to the top of the hole. When rock is found prior to achieving specified depth, anode may be installed horizontally to a depth at least as deep as the bottom of the tank, with the approval of the Contracting Officer. ## 3.3.2 Lead and Resistance Wire Splices Lead wire splicing, when necessary, shall be made with copper split bolt connectors of proper size. The joint shall be carefully wrapped with at least 3 layers of electrical tape. Resistance wire connections shall be done with silver solder and the solder joints wrapped with a minimum of 3 layers of pressure-sensitive tape. ## 3.3.3 Magnesium Anodes for Metallic Components Where required by the Fairchild Air force Base Design Standards, Division 16, Section 16660 - Corrosion Control requirements to be protected: As a minimum, each metallic component shall be protected with 21b magnesium anodes located on each side of the metallic component and routed through a test station. Fire hydrant pipe component shall have a minimum of 31b magnesium anodes routed through a test station for each hydrant. Pipe under concrete slab shall have a minimum of 51b anodes for each location where metal pipe enters the building under the slab. A permanent reference cell shall be provided adjacent to the pipe entrance to the slab. Conductors shall be routed to a test station. Each valve shall have a minimum of 21b magnesium anodes routed through a test station. Sections of metallic pipe 20 foot long, when used where force mains are within 10 feet of the water pipe, shall have a minimum of 41b anodes. The Contractor shall be responsible for determining actual anode sizes required, based upon their assessment of soil test information for the area, applicable NACE standards, and the piping methods used. ## 3.4 MISCELLANEOUS INSTALLATION #### 3.4.1 Rectifier Installation Mounting shall be as shown. Wall mounting shall be equipped with a channel bracket, lifting eyes, and a keyhole at the top. #### 3.4.2 Wire Connections ## 3.4.2.1 Wire Splicing Connecting wire splicing shall be made with copper compression connectors or exothermic welds, following instructions of the manufacturer. Split-bolt type connectors shall not be used. #### 3.4.2.2 Steel Surfaces Connections to the tank shall be made by exothermic weld methods as manufactured by an approved manufacturer for the type of the tank. Electric arc welded connections and other types of welded connections to ferrous pipe and structures shall be approved before use. #### 3.4.3 Coating Mechanical joints and fittings of either the electrically conductive or insulating type shall be coated with an underground type dielectric coating system. Where external electrical continuity bonds are installed across mechanical joints, bare or exposed metal, welds, bare wire and exposed coupling parts shall be coated with a coating system. - a. Couplings and fittings which have a low profile exterior designed to permit tape coating shall be primed and wrapped with an underground type pipe tape following recommendations of the coupling or fitting manufacturer. - b. Couplings and fittings that cannot be properly taped shall be enclosed in a shroud of reinforced kraft paper and filled with cold applied dielectric compound. #### 3.4.3.1 Electrical Isolation of Structures Electrical isolation of structures shall be as follows: - a. Insulating Fittings: Insulating flanges and couplings shall be installed aboveground, or within manholes, wherever possible, but an insulating device that electrically separates a pipeline shall not be installed in a confined area where a combustible atmosphere may collect unless precautions are taken to prevent arcing such as by means of externally located surge arresters, grounding cells, or other means. Insulating flanges and couplings in lines entering buildings shall be located at least 12 inches above grade or floor level. Pipelines entering buildings either below or above ground shall be electrically isolated from the structure wall with an electrically isolating wall sleeve. - b. Steam: Electrical isolation shall be provided at each building entrance, and at other locations as indicated. d. Fire Suppression: Electrical isolation shall be provided in each pipe at the building and at the tank. #### 3.4.4 Dissimilar Metals Buried piping of dissimilar metals including new and old steel piping, excepting valves, shall be electrically separated by means of electrically insulating joints at every place of connection. The insulating joint, including the pipes, shall be coated with an underground type dielectric coating for a minimum distance of 10 diameters on each side of the joint. #### 3.4.5 Test Stations Test stations shall be preferably post mounted when not in traffic areas. Buried electrically insulating joints shall be provided with test wire connections brought to a test station. Changes in designated location shall have prior approval. Test stations shall be located as follows: a. At 1,000 foot intervals or less. ## 3.5 TESTS AND MEASUREMENTS #### 3.5.1 Baseline Potentials Each test and measurement will be witnessed by the Contracting Officer. The Contractor shall notify the Contracting Officer a minimum of five (5)working days prior to each test. After backfill of the pipe and anodes is completed, but before the anodes are connected to the tank, the static potential-to-soil of the tank shall be measured. The locations of these measurements shall be identical to the locations for tank-to-reference electrode potential measurements. ## 3.5.2 Insulation Testing Before the anode system is connected to the tank, an insulation test shall be made at each insulating joint or fitting. This test shall demonstrate that no metallic contact, or short circuit exists between the two insulated sections of the tank. Any insulating fittings installed and found to be defective shall be reported to the Contracting Officer. ## 3.5.2.1 Insulation Checker A Model 601 insulation checker or an approved equal shall be used for insulating joint (flange) electrical testing. Manufacturer's operating instructions shall be adhered to. #### 3.5.2.2 Cathodic Protection Meter A Model B3A2 cathodic protection meter or an approved equal using the continuity check circuit shall be used for insulating joint (flange) electrical testing. This test shall be performed in addition to the Model 601 insulation checker. Continuity is checked across the insulated joint after the test lead wire is shorted together and the meter adjusted to scale. A full scale deflection indicates the system is shorted at some location. The Model 601 verifies that the particular insulation under test is good and the Model B3A2 verifies that the system is isolated. If the system is shorted, further testing shall be performed to isolate the location of the short. ## 3.5.3 Anode Output As the anodes or groups of anodes are connected to the tank, current output shall be measured with an approved low resistance ammeter. The values
obtained and the date, time, and locations shall be recorded. #### 3.5.4 Electrode Potential Measurements Upon completion of the installation and with the entire cathodic protection system in operation, electrode potential measurements shall be made using a copper-copper sulphate reference electrode and a potentiometer-voltmeter, or a direct current voltmeter having an internal resistance (sensitivity) of not less than 10 megohms per volt and a full scale of 10 volts. The locations of these measurements shall be identical to the locations used for baseline potentials. The values obtained and the date, time, and locations of measurements shall be recorded. No less than 8 measurements shall be made over any length of line or component. Additional measurements shall be made at each distribution service riser, with the reference electrode placed directly over the service line. ## 3.5.5 Location of Measurements ## 3.5.5.1 Coated Piping or Conduit Locations where potentials do not meet or exceed the criteria shall be identified and reported to the Contracting Officer. ## 3.5.6 Casing Tests Before final acceptance of the installation, the electrical separation of carrier pipe from casings shall be tested and any short circuits corrected. ## 3.5.7 Interference Testing Before final acceptance of the installation, interference tests shall be made with respect to any foreign pipes or tanks in cooperation with the owner. A full report of the tests giving all details shall be made. ## 3.5.8 Holiday Test Any damage to the protective covering during transit and handling shall be repaired before installation. After field coating and wrapping has been applied, the entire pipe shall be inspected by an electric holiday detector with impressed current in accordance with NACE RP0188 using a full ring, spring type coil electrode. The holiday detector shall be equipped with a bell, buzzer, or other type of audible signal which sounds when a holiday is detected. Holidays in the protective covering shall be repaired upon detection. Occasional checks of holiday detector potential will be made by the Contracting Officer to determine suitability of the detector. Labor, materials, and equipment necessary for conducting the inspection shall be furnished by the Contractor. The coating system shall be inspected for holes, voids, cracks, and other damage during installation. ## 3.5.9 Recording Measurements All tank-to-soil potential measurements including initial potentials where required shall be recorded. The Contractor shall locate, correct and report to Contracting Officer any short circuits to foreign pipes or tanks encountered during checkout of the installed cathodic protection system. tank-to-soil potential measurements are required on the tank as necessary to determine the extent of protection or to locate short-circuits. ## 3.6 TRAINING COURSE The Contractor shall conduct a training course for the operating staff as designated by the Contracting Officer. The training period shall consist of a total of sixteen (16) hours of normal working time and shall start after the system is functionally completed but prior to final acceptance tests. The field instructions shall cover all of the items contained in the operating and maintenance instructions, as well as demonstrations of routine maintenance operations, including testing procedures included in the maintenance instructions. At least fourteen (14) days prior to date of proposed conduction of the training course, the training course curriculum shall be submitted for approval, along with the proposed training date. Training shall consist of demonstration of test equipment, providing forms for test data and the tolerances, which indicate that the system works satisfactorily. END OF SECTION ## SECTION 13206 ## STEEL STANDPIPES AND GROUND STORAGE RESERVOIRS BID OPTION #1 #### PART 1 GENERAL #### 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation, only. ## AMERICAN PETROLEUM INSTITUTE (API) API 12B Principles of Standard Specification For Bolted Steel Tank ## AMERICAN SOCIETY FOR TESTING MATERIALS (ASTM) ASTM A 53 (1996) Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless ## AMERICAN SOCIETY OF MECHANICAL ENGINEERS (ASME) ASME B40.1 (1991) Gauges - Pressure Indicating Dial Type - Elastic Element ## AMERICAN WATER WORKS ASSOCIATION (AWWA) | AWWA ANSI/AWWA C105/A21.5 | (1993) Polyethylene Encasement for Ductile-
Iron Pipe Systems | |----------------------------|---| | AWWA ANSI/AWWA C110/A21.10 | (1993) Ductile-Iron and Gray-Iron Fittings, 3 In. Through 48 In. (75 mm through 1200 mm), for Water and Other Liquids | | AWWA ANSI/AWWA C115/A21.15 | (1994) Flanged Ductile-Iron Pipe With Ductile-Iron or Gray-Iron Threaded Flanges | | AWWA ANSI/AWWA C151/A21.51 | (1996) Ductile-Iron Pipe, Centrifugally Cast, for Water or Other Liquids | | AWWA C600 | (1993) Installation of Ductile-Iron Water
Mains and Their Appurtenances | | AWWA C652 | (1992) Disinfection of Water-Storage Facilities | | AWWA D103-87 | Bolted Steel Tank Fabrication And Erection | | AWWA D100 | (1996) Welded Steel Tanks for Water Storage | AWWA D102 (1997) Coating Steel Water Storage Tanks AWWA D103 (1987) Factory-Coated Bolted Steel Tanks for Water Storage BUREAU OF RECLAMATION (BOR) BOR-01 (1976) Paint Manual FACTORY MUTUAL ENGINEERING ASSOCIATION Factory Mutual Loss Prevention Data Sheets 3-2 Water Tanks for Fire Protection Factory Mutual Approval Guide FEDERAL AVIATION ADMINISTRATION (FAA) FAA AC 150/5345-43 (Rev E) Obstruction Lighting Equipment MILITARY SPECIFICATIONS (MS) MS DOD-C-24654 (Basic) Coatings, Epoxy, Potable Water Tanks (Metric) MS MIL-P-24441/GEN (Rev B; Am 1, Supple 1) Paint, Epoxy- Polyamide (Inch-Pound) NATIONAL FIRE PROTECTION ASSOCIATION (NFPA) NFPA 22 Water Tanks For Private Fire Protection NSF INTERNATIONAL (NSF) NSF ANSI/NSF 61 (1997a) Drinking Water System Components - Health Effects (Sections 1-9) THE SOCIETY FOR PROTECTIVE COATING (SSPC) SSPC Paint 21 (1991) White or Colored Silicone Alkyd Paint SSPC Paint 25 (1991) Red Iron Oxide, Zinc Oxide, Raw Linseed Oil and Alkyd Primer (Without Lead and Chromate Pigments) SSPC Paint 104 (1991) White or Tinted Alkyd Paint SSPC-PS Guide 17.00 (1991) Guide for Selecting Urethane Painting System ### 1.2 GENERAL REQUIREMENTS # 1.2.1 Design and Construction Standards The design, fabrication, and erection of the Fire Pump Suction Tank by the Contractor shall be in accordance with the applicable requirements of AWWA D100 or AWWA D103 except as modified herein. Design metal temperature shall be 7 degrees F. Tank seismic design criteria shall be from Corps of Engineers Technical Instructions Manual (T 809-4) dated 31 Dec., 1998.No additional thickness for corrosion allowance will be required. However, the interior and exterior coatings shall be applied per the manufacturer's instructions and shall be warranted for a period of not less than ten (10) years. The entire tank is expected to have a life expectancy of a minimum of 25 years without rusting or pitting. The Tank Manufacturer shall provide certification and demonstrate that the bolted tank can provide continuos bonding of the plates for the proposed Cathodic Protection. The design and installation of the tank shall include the insulation of the tank exterior and cone roof with 3" of rigid type insulation with a weatherproof aluminum jacket. The aluminum metal covering installation shall be isolated from all-steel structures and appurtenances so as to eliminate the need for cathodic protection of the aluminum in the cathodic protection system protecting the tank and all appurtenant steel. The isolation shall consist of neoprene gasketing between all aluminum and steel. The design of the insulation-covering jacket shall include the detailed provisions for expansion and contraction of the aluminum jacket. All of the roof joints and the horizontal and vertical joints of the vertical jackets shall be thoroughly sealed and caulked with an approved silicone compound. The tank and the aluminum insulation covering shall be designed for a peak wind speed of 100 miles per hour and roof snow load of 30 psf. The temperature differentials shall be zero degrees F and 100 degrees F. The insulation material shall conform to the requirements of Section 15080 and those specific requirements stated in this Section. # 1.2.2 Welding for Tanks Qualification of Welding Procedures, Welders, and Welding Operators for Welded Tanks, Section 8.2 of AWWA D100. ### 1.2.3 Design Requirements The Fire System Water Reservoir Tank shall have a nominal storage capacity of 75,000 gallons. The actual storage tank selected shall be based upon the nearest standard commercially available pre-engineered unit that provides at least the nominal storage capacity of 75,000 gal. The high-water level of reservoir shall be at elevation 2452.83 with the top of foundation approximately at elevation 2429.83. The range between maximum high and low water levels will be approximately 23 feet. Existing grade at proposed location is approximately elevation 2428.50 with a minimum freeboard of 6 in The Fire System Water Reservoir Tank shall have such standard shell height and such diameter as will meet the requirements for the selected standard capacity and for the high-water level specified above. The reservoir may have a supported cone roof with a deck live load of 30 psf, as approved. The tank shall be designed to withstand a minimum wind speed of 100 mph when completely erected. (Provisions shall be made by the contractor to protect tank sidewalls, supports, and roof members during erection from wind storms, inclement weather, and rain/ice/snow accumulations throughout the erection period.) The Fire System Water
Reservoir Tank shall be of welded or bolted construction. Both welded and bolted tanks shall be Factory Mutual Approved and shall be seismically qualified for both the static and dynamic condition. Bolted tanks used for fire protection shall comply with Section 1.9 of NFPA 22. Interior and exterior coatings of the tank shall be factory applied and compatible with the Cathodic Protection system per Section 13112 CATHODIC PROTECTION. Coatings must be applied evenly on all surfaces of the tank including all edges with no apparent dripping. The Fire System Water Reservoir Tank shall be equipped with hot water heating facilities as set forth on the drawings and in Section 15556. The tank shall also be provided with flanged tappings as required for the installation of the incoming and outgoing pipe lines; heat exchanger; tank level controls, indicating warning lights, fill valve, drain valve, and wiring from the Pump House electrical panel therefore, as specified in this Section. The tank level float control shall be installed and adjusted to provide the following operation: - a. The high water alarm light will be activated at the 2452.83 level. - b. The fill valve will shut at the 2452.33 level. - c. The fill valve will open at the 2450.33 level. - d. The low water alarm light will be activated at 2449.83 level. All piping, valves, fittings, accessories (not specified herein) shall be in accordance with the provisions of Sections 13930 and 15556. The insulation material shall conform to the requirements of Section 15080 and those specific requirements stated in this Section. Cathodic protection for the steel tank and piping installation shall be provided in accordance with Section 13112 of the Specifications. The insulation installation design shall include the following provisions, or other approved provisions: - a. The tank vertical sidewall insulation shall consist of not less than 3" of semi-rigid fiberglass type insulation (R=0.24, 3 pound) held tight to the tank with $\frac{1}{2}$ " horizontal plastic bands located on not more than 18" centers vertically. - b. The tank cone top insulation shall be consist of not less than 3" of rigid mineral wool or fiberglass insulation (10 pound type) or other approved fiberglass type insulation. The insulation shall be cut to fit between the girts specified below. - c. The cone top shall be provided with 3" high metal girts, circular in pattern around the center, on not more than 18" centers from the outside of the tank. The outside periphery of the tank top shall be provided with a continuous vertical and a horizontal 3" girt. The horizontal girt shall fasten to the vertical metal covering. Both girts shall provide a base for the flashing of the top and vertical covering. All girts shall be spot-welded to the tank surfaces before the internal protective tank coatings are applied. - d. The vertical sidewall insulation metal covering shall stucco embossed .024" min. aluminum, 2%" type corrugated type. The covering shall be held in place with 3/4" wide, 18 gauge, 304 stainless steel bands on not more than 21" vertical centers. The end connecting points of the bands shall be provided with two double expansion type connecting springs in each band. The vertical and horizontal seams shall be sealed with silicone caulking and provided with #8 x ½" SS screws on not more than 8" centers. The screw holes shall be slightly oversized to provide for expansion and contraction of the metal. The screws shall be provided with 1/8" heavy neoprene type washers under the screw head, and underneath between the steel and the aluminum where the aluminum is secured to the girts. - e. The cone top insulation metal covering shall be stucco embossed 0.32" flat sheet type aluminum. The metal shall be proportioned in sections to match the cone configuration and shall be fastened to the metal girts with not less than #14 x ½" SS screws. The seams shall be fastened with #8 x ½" SS screws on not more than 6" centers. Sectional sheets shall be continuous from the top of the cone to the peripheral edge of the outside girt and flashing between the cone top and the vertical metal covering. All seams shall be caulked with non-setting silicone. The screws shall be provided with 1/8" heavy neoprene type washers under the screw head, and underneath between the steel and the aluminum where the aluminum is secured to the girts. - f. The bottom of the vertical covering, and at all places where the covering is placed around the access ladders, platform, and piping, shall be provided with a U-shaped neoprene ½" gasket The gasketing shall be thoroughly caulked to the adjoining surfaces. - g. The insulation shall be set in a vertical $1\ 1/2"$ high x 3" inside U-shaped stainless steel channel fastened to the concrete pad. The metal covering shall not be fastened to the channel. - h. The metal cone roof covering and the vertical side covering shall be thoroughly flashed and caulked to prevent entrance of water into the insulation. - i. Where the foregoing specified neoprene gasketing will not properly suffice at the connecting piping, ladders and plattforms special stainless steel flashing designed to fit the penetration of the insulation and the metal covering shall be provided. The flashings shall be caulked to prevent the entrance of water into the insulation. Caulking shall be of the non-setting type. - j. The steel tank roof cone girts shall be provided with a heavy 1/8" thick neoprene adhesive type gasketing tape secured to the girts at all surfaces where the girts come in contact with the aluminum covering material. ### 1.2.4 Sizing of Fire System Water Reservoir Tank Tank shall be sized as indicated in Paragraph 1.2.3, above, and as shown on the plans, and in conformity with Section 6 of AWWA D100 or Section 4 of AWWA D103. The materials, design, fabrication, and erection of the bolted or welded steel tank shall conform to AWWA D103-87, to the Principles of Standard Specification 12B of the American Petroleum Institute, or to the manufacturer's specifications, which are derived from engineering principles, industry experiences, and the aforementioned standards and specifications. ### 1.2.5 Coatings Certification Coating materials for interior applications and all other materials which will be in normal contact with potable water shall conform to NSF ANSI/NSF 61. Certification by an independent third-party organization that all interior coatings and materials that come in contact with potable water comply with NSF ANSI/NSF 61 shall be provided. ### 1.3 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-01 Data General Requirements; FIO. Foundations; GA. Design analyses and calculations including seismic calculations; GA SD-04 Drawings Ground Storage Reservoirs; GA. Detail and erection drawings, before proceeding with any fabrication. The drawings shall be complete with details of all steel, pipe, and concrete work and with details of the assembling of all items required for the complete installation. Standard welding symbols as recommended by the American Welding Society shall be used. Details of all joints referenced on the drawings shall also be included. Insulation and Metal Covering Installation; GA Detail and erection drawings, before proceeding with any fabrication. The drawings shall be complete with details of all the installation work and with details of the assembling of all items required for the complete installation. Details of all joints referenced in the Design Requirements outlined above shall also be included. SD-09 Reports REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 Tank Installation; FIO. Testing of Valves and Piping; FIO. Copies of the following test results: - a. Manufacturer's mill test reports for plate material. - b. Mill and shop inspections by a commercial inspection agency. - c. After acceptance of the structure, the radiographic film and/or test segments. - d. At the conclusion of the work, a written report prepared by the Contractor certifying that the work was inspected in accordance with Section 11 of AWWA D100 or Section 9 of AWWA D103. The report shall also cover the hydrostatic and vacuum box leak tests and shall meet the requirements of Section 11.2.1 of AWWA D100 for welded tanks. SD-13 Certificates General Requirements; FIO. Foundations; GA. Certification by an independent third-party organization that all interior coating and materials that come in contact with the potable water comply with NSF ANSI/NSF 61. A certificate signed by a registered professional engineer, providing the following information: - a. Description of the structural design loading conditions used for the design of entire tank including the foundation. - b. Description of the structural design method and codes used in establishing the allowable stresses and safety factors applied in the design. - c. A statement verifying that the structural design has been checked by experienced engineers specializing in hydraulic structures. A statement verifying that the insulation and metal covering design has been checked by experienced engineers specializing in this type of insulation installation and that the installation should meet the weather conditions specified herein before. - d. A statement verifying that the detail drawings have been checked by experienced engineers specializing in hydraulic structures to determine that they agree with the design calculations in member sizes, dimensions, and fabricating process as prescribed by the applicable AWWA standards. ### PART 2 PRODUCTS ### 2.1 MATERIALS Materials shall conform to the following requirements: ### 2.1.1 Steel and Other Tank Materials - a. Sheet. Steel sheets shall con-form to or shall be at least equal to hot-rolled quality
per ASTM A570 Grade 33 with minimum yield strength of 33,000 psi. Minimum thickness shall be 12 gauge (0.0972" minimum). - b. Plate. Steel plates shall conform to or at least be equal to the requirements of ASTM A36 with minimum yield strength of 36,000 psi. - c. Rolled Structural Shapes. Rolled structural shapes shall conform to ASTM A36. ### Bolts - a. Galvanized bolts, nuts and washers used in tank joints shall be minimum 1/2 inch bolt diameter and shall meet the minimum requirements of API 12B, Appendix A, except that bolt heads and nuts may be other than square at the option of tank manufacturer. - b. Polycapped bolt heads shall be used for additional corrosion protection. - c. Other bolts shall conform to or at least be equal to the latest revision of ASTM A307. Additionally, any steel nuts that are in contact with the liquid in the tank shall be factory-encapsulated so that the nut forms one piece with the corrosion-resistant encapsulating material. # Gaskets a. At the discretion of the Tank Manufacturer all bolted connections shall incorporate an EPDM (Buna N)* prefabricated gasket minimum width 1-3/4". A single piece double-punched gasket shall be used at vertical seams, which require two vertical rows of punching. Field caulking will be allowed when joining a discontinuous gasket section and at certain joint connections. Neoprene backed steel washers shall be provided at all bolts in contact with the stored liquid. If gasketed connections are used, the Tank Manufacturer shall certify and demonstrate that the gasketed connections are compatible with the proposed Cathodic Protection as specified in Section 13112. REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 ### 2.1.2 Shop Fabrication Section 9 of AWWA D100 or Section 7 of AWWA D103. All sheets in the shell of the tank that require multiple vertical row punching (double or triple) must be in single stroke to ensure proper alignment. ### 2.1.3 Piping Water piping and fittings shall be as specified in Section 13930, WET PIPE SPRINKLER SYSTEM, FIRE PROTECTION. The hot water heating freeze protection system piping and fittings shall be as specified in Section 15556, FORCED HOT WATER HEATING SYSTEM. ### 2.1.3.1 Pressure Ratings Flanged water pipes, fittings and specials shall conform to the applicable portions of AWWA ANSI/AWWA C110/A21.10, AWWA ANSI/AWWA C115/A21.15, and AWWA ANSI/AWWA C151/A21.51 for working pressure not less than 150 psi unless otherwise shown or specified. Hot water heating piping and fittings shall be for 150 psig. working pressure. ### 2.1.3.2 Joints Grooved and shouldered joints shall not be used. ### 2.1.4 Valves & Automatic Valve Controllers ### 2.1.4.1 Valves—General All valves for water piping shall conform to the applicable requirements specified in Section 13930 and the applicable requirements of Section 15556. All wiring and conduits runs required for the automatic fill valves, level controllers and indicators shall be provided by the subcontractor installing the reservoir tank. Connections shall be made to spare electrical circuits in the electrical service panels. See Section 2.1.4.5 below. # 2.1.4.1 Valve—Automatic Water Fill Valve (SV-1) The supply to the reservoir shall be controlled by a 6 inch electronically controlled type control valve. The valve shall have flanged ends and a heavy bronze body, shall be bronze fitted, straight through pattern, 150 psig. operating pressure. The valve shall be a hydraulically operated from solenoid pilot valves operating integral diaphragms. The solenoid operations either add or relieve line pressure from the diaphragms of the valve, causing it to open or close as directed by the electronic controller. The valve shall be configured for level type controlling. The valve controllers shall be NEMA Type 4, voltage to be compatible with the controller requirements specified below, general purpose type, water tight. ### 2.1.4.2 Valve-Automatic Water Drain Solenoid Valve Provide a 2" electric automatic solenoid valve at the low point of the 6" water fill line at a point inside of the Pump House. The valve shall be a "Type AR-Normally Open," full port electric solenoid valve: 2-way straight through design, packless construction, 100 psi minimum differential pressure rating, continuous duty coil, 60 hertz AC, Construction shall be cast bronze valve body, globe straight though valve pattern with screwed ends, cast bronze piston, stainless steel trim with Viton body seal and orifice seal. ### 2.1.4.3 Controller-Automatic Water Fill & Drain Valve Provide a remote type four-point capacitance instrument control system which will monitor and control the operations of a water fill valve, a water drain valve, and the operations of a high and low water level alarm lights. The controller shall be rigid remote probe type with 4 ft. stainless steel ½" diameter probe extending down into the storage tank for a fitting in the top of the tank. The probe shall be flange type, 150 psig. rated. Amplifier and the high and low level lights shall be provided, and shall be mounted in the Pump House. The lights shall be tagged with Bakelite tags as to indicate the high and low level alarms respectively. The controller shall operate the valves and the lights directly if of sufficient capacity, if not through relays. All level settings in the amplifier shall be meet the conditions stated in Paragraph 1.2.3. above, and shall be fully adjustable. # 2.1.4.4 Control Sequence-Automatic Water Fill Valve & Drain Valve The tank level float control shall be installed and adjusted so the sequence and levels shall be in accordance with Paragraph 1.2.3. above. The drain valve shall open when the fill valve is closed (and stay open) and shall close when the fill valve is open to fill position. The fill valve shall be normally closed and the drain valve shall be normally open. The alarm lights shall show the position of the water in the tank if other than within the normal limits stated above. ### 2.1.4.5 Control Wiring All control and obstruction lighting wiring and conduits for the storage reservoir installation shall be provided under this Section. All wiring shall conform to the requirements of Section 16000. All exterior conduits and connection shall be weather proof. Under this Section a connection shall be made to a Pump House Electrical Panel 120V, 20A circuit breaker which shall be dedicated only for this control circuit. All wiring conductors, raceway, obstruction light, and control equipment from this point of connection shall be provided under this Section. ### 2.1.5 Pressure Gauge Pressure gauge of the direct-reading type, equipped with a shutoff cock, shall be provided, in the valve chamber, on the tank side and on the discharge side of the check or altitude valve. Gauges shall have 6 inch dials, shall be stem mounted, and shall conform to ASME B40.1. Accuracy of gauges shall be Grade A or better. Gauges shall be calibrated in pounds per square inch in not more than 2 pound increments form 0 to 50 pounds in excess of the normal operating pressure at the tank. ### 2.1.6 Insulation and Metal Covering The materials and installation shall be as specified in Part I herein above. ### 2.2 ASSEMBLIES ### 2.2.1 Tank Accessories Section 7 of AWWA D100 or Section 5 of AWWA D103 and as hereinafter specified. Additional requirements for accessories are as follows: ### 2.2.1.1 Manholes and Pipe Connections Section 7 of AWWA D100 and Section 5 of AWWA D103 represent the minimum requirements. Number, type, location, and size of manholes and pipe connections will be as shown on the drawings. All piping connections to the tank shall be flanged, 150 psig. Centerline inlet pipe connections to extend 23 feet, 4 inches above tank bottom and shall be provided with deflectors. Outlet pipe connections to extend 2 feet, 4 inches above tank bottom and shall be provided with vortex breakers. The tank roof hatch shall have a curbed, upward opening 24" square. The curb shall extend at least four inches above the tank. The hatch cover lip shall be hinged and provisions made for locking. The hatch cover lip should extend for a distance of two inches down on the outside of the curb. A 24" x 46" Flush Cleanout Door (24" Diameter Shell Manway) shall be provided. The flush cleanout door (Shell Manway) shall conform to the sizes and locations specified on the plan sheets. ### 2.2.1.2 Overflow The overflow for the tank shall consist of an overflow weir and outside drop pipe, adequately supported and capable of discharging at a rate of 400 gpm with 30 inches of head without the water level exceeding the tangent line of the top of the shell. The top of the weir shall be 3 inches below the tangent line of the top of the shell. The weir shall be located as directed. The overflow pipe shall be schedule 40 steel, ASTM A 53 or equal, and shall terminate one to two feet above grade and shall be fitted with a flapper valve to prevent ingress of animals and insects. ### 2.2.1.3 Vent A mushroom-screened vent shall be furnished above maximum water level of sufficient size to accommodate normal inlet and outlet water flow. The vent will be tank manufacturer's standard type mushroom vent with aluminum bird screen. The vent shall be so designed and constructed as to prevent the entrance of birds or animals. The free area of the vent shall be sized 50 percent in excess of the 400 gpm pump-in rate and 2500 gpm pump-out rate. The overflow pipe shall not be considered to be a tank vent. Screening for vent shall conform to Section 7.7.2 of AWWA D100 or Section 5.7.2 of AWWA D103 which ensures fail-safe operation in the event that screen frosts over and the bottom of the screen shall be sufficiently elevated for snow considerations in the area. Vent shall be welded or bolted to the cover plate of the center manhole on the roof. # 2.2.1.4 Ladders and Safety Devices An outside OSHA ladder shall be furnished at the location designated.
Ladders and safety devices shall be provided in accordance with Sections 7.4 and 7.5 of AWWA D100 or Sections 5.4 and 5.5 of AWWA D103. Location of ladders shall be as shown on the drawings. Sections 7.4 and 7.5 of AWWA D100 and Sections 5.4 and 5.5 of AWWA D103 represent the minimum requirement. In addition, safety cage, rest platforms, roof ladder handrails, and other safety devices shall be provided as required by federal or local laws or regulations. ### 2.2.1.5 Scaffold Cable Support Provision shall be made for the attachment of a scaffold cable support at the top of the roof on the Fire Pump Suction Tank ### 2.2.1.6 Not Used ### 2.2.1.7 Internal Nozzle with Overflow Weir Cone The internal nozzle with overflow weir shall conform to the size and location specified on the plan sheets. ### 2.2.1.8 Inlet and Outlet Connections Inlet, outlet, and overflow connections shall conform to the sizes and locations specified on the plan sheets. # 2.2.2 Anchors The following requirements shall be met: a. An adequate number of anchors designed to prevent overturning and sliding of the reservoir both when empty and full shall be installed. Wind and seismic loading shall be considered in the design of the anchors. If anchor bolts are used, the nominal diameter shall not be less than one inch, plus a corrosion allowance of at least 1/4-inch REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 on the diameter. If anchor straps are used, they shall be pretensioned before welding to the tank shell. - b. The anchor bolts shall be a right angle bend, hook, or plate washer, while anchor straps shall have only a plate welded to the bottom. The anchors shall be inserted into the foundation to resist the computed uplift. - c. Attachment of anchors to the shell shall not add significant localized stresses to the shell. The method of attachment shall consider the effects of deflection and rotation of the tank shell. Anchors shall not be attached to the tank bottom. Attachment of the anchor bolts to the shell shall be through stiffened chair-type assemblies or anchor rings of adequate size and height. ### 2.2.3 Coatings All metal plates, supports, members, and miscellaneous parts, except bolts, certain accessories, and appurtenances of Bolted Tanks and all interior surfaces of Welded tanks, shall be factory coated in accordance with the provisions of these specifications. Material must be acceptable for use with Cathodic Protection and conform to AWWA D102-97 Inside Coating System #1, #2, and #3. See Paragraph 3.9 Painting and Coating of Tank ### PART 3 EXECUTION ### 3.1 Preparation for Transport - a. Material to be marked or tagged with part number and order number for field assembly requirements. All plates, supports, members, and miscellaneous parts shall be packaged for shipment in such manner to prevent abrasion or scratching of the finished coating. - b. Tank material to be placed in racks or on pallets to facilitate transportation to jobsite. The racks will also prevent scratching by erection crews. - c. Touch-up paint with instructions for application by erection personnel. ### 3.2 Foundation Foundations for the reservoir shall be constructed in conformance with the applicable requirements of Section 03300 CAST-IN-PLACE STRUCTURAL CONCRETE and as shown in the contract plans. REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 Steel Bottom Tanks: The foundation shall be installed per AWWA D103-87, Section 11.4. Supplying and installing these foundation materials shall be the responsibility of the contractor. The foundation shall be level with differential not exceeding +1/8 inch in any 30-foot circumference under the shell. The levelness on the circumference shall not vary more than +1/4 inch from an established plane. # 3.3 EXCAVATING, FILLING, AND GRADING Excavating, filling, and grading shall conform to the applicable requirements of Section 02315 EXCAVATION, FILLING AND BACKFILLING FOR BUILDINGS. ### 3.4 CATHODIC PROTECTION Cathodic protection shall be designed and installed by the contractor to conform to Section 13112 CATHODIC PROTECTION SYSTEM (STEEL WATER TANKS). This protection shall be impressed current design. It is required the aluminum covering be isolated (insulated) from the steel structure so as not to require connections and protection from the cathodic protection system. ### 3.5 OBSTRUCTION LIGHTING Obstruction lighting and beacon shall be provided and shall conform to FAA AC 150/5345-43. Automatic control of the obstruction lights will be by a light sensitive device. Wiring for the lighting and the controls shall be provided for under this Section as is stated herein before. ### 3.6 SECTION NOT USED ### 3.7 TANK INSTALLATION Tank installation shall be in accordance with the following requirements: # 3.7.1 Welding Section 8 of AWWA D100 or Section 6 of AWWA D103. ### 3.7.2 Erection Section 10 of AWWA D100 or Section 8 of AWWA D103. Field erection of the Fire Pump Suction Tank shall be in strict accordance with the tank manufacturer's recommendations. Particular care shall be exercised in handling and bolting or welding of the tank plates, supports, and members to avoid abrasion or scratching of the coating. Touch-up coating shall be done in accordance with tank manufacturer's recommendations where and as directed. ### 3.7.3 Inspections and Testing Tank inspections and testing shall be in accordance with Section 11 of AWWA D100 or Section 9 of AWWA D103. Mill and shop inspections shall be performed by an approved commercial inspection agency. Radiographic inspections of the welded tank shell shall be performed by the Contractor. The Contractor shall perform the hydrostatic test and the vacuum box leak test of the tank bottom. Final leak test and hydrostatic test shall be performed before painting of welded tanks. Following completion of erection and cleaning of the tank, the tank shall be tested for liquid-tightness by filling the tank to its overflow elevation. Any leaks disclosed by this tank test shall be corrected by the Contractor in accordance with the tank manufacturer's recommendations. Clean water required for testing shall be furnished by Owner without charge at the time of erection completion. Filling the tank is the responsibility of Contractor. The tank manufacturer shall warrant the tank against any defects in workmanship and materials for a period of one (1) year from the date of contract acceptance. In the event any defect should appear, it shall be reported in writing to the manufacturer during the warranty period. This warranty is exclusive of the Ten (10) year warranty for the interior and exterior coating as outlined in paragraph 1.2.1. ### 3.8 PIPING INSTALLATION Piping installation (except for overflow piping): ### 3.8.1 General Guidelines Where details of fabrication or installation are not shown on the drawings, installation shall conform to AWWA C600. ### 3.8.2 Testing of Valves and Piping After the reservoir has been erected and the valves and piping installed, and before field painting is begun, the valves and piping shall be hydrostatically tested in accordance with Section 4 of AWWA C600. The Contractor shall replace with sound material any defective material disclosed by the pressure test, and the test shall be repeated until the test results are satisfactory. ### 3.8.3 Polyethylene Encasement of Underground Ductile-Iron Piping Polyethylene encasement of underground ductile-iron piping shall be provided in addition to asphaltic coating in accordance with AWWA ANSI/AWWA C105/A21.5. ### 3.8.4 Plugging Ends Pipe ends left for future connections shall be capped or plugged as directed. ### 3.9 PAINTING AND COATING OF TANK Coating materials shall be delivered to the job site, if not installed at factory, in their original containers bearing the manufacturers name, product number, and volatile organic compound (VOC) content (grams per liter). Material Safety Data Sheets (MSDS) shall be provided for coatings. ### 3.9.1 Welded Tanks ### 3.9.1.1 InteriorExterior Surfaces - a. A prime coat a minimum of 2.0 mil thick. The prime coat shall be rust inhibitive red iron oxide, zinc oxide, oil and alkyd primer without lead or chromate pigments, in accordance with SSPC Paint 25. - b. Interior/Exterior Coatings: HI-Solids Catalyzed Epoxy as manufactured by Sherwin Williams or approved equal. (Includes underneath side of steel bottom, Part A B62W201, Part B B60V20). Thermoset Powder Epoxy Coating is an approved alternative. - 1. First coat: Hi-solids Catalyzed Epoxy @ 3.0 6.0 mils dft. - Second/Third coat: Hi-solids Catalyzed Epoxy @5.0 6.0 mils drft ### 3.9.2 Bolted Tanks The tanks shall have a coating applied to both the interior and exterior surfaces in accordance with AWWA D102-97. Color shall be White. Application Procedures for Factory Coating ### a. Surface Preparation - 1. Tank parts are thoroughly washed and rinsed to remove grease, oil and foreign matter. - 2. Parts are then immediately oven-dried. - 3. Parts are grit-blasted to SSPC-SP10-63T (near white blast cleaning) to 2-3 mils profile. - 4. All parts must be coated within 15 minutes after blasting, and no further processing other than coating application shall be done. - b. Interior/Exterior Coatings: HI-Solids Catalyzed Epoxy as manufactured by Sherwin Williams or approved equal. (Includes underneath side of steel bottom, Part A B62W201, Part B B60V20). Thermoset Powder Epoxy Coating is an approved alternative. - 1. First coat: Hi-solids Catalyzed Epoxy @ 3.0 6.0 mils dft. - Second/Third coat: Hi-solids Catalyzed Epoxy @5.0 6.0 mils drft. - c. Drying Coated Parts Baking ovens to be used after each coat. Final coat is to be cured in bake oven for at least 15 minutes. # 3.9.3 Alternate Coating for Welded and Bolted Tanks: Acceptable Alternative for Interior and Exterior: Thermoset Powder Epoxy coated by electrostatic application with a powder formulated and certified
to meet the compositional limits of the Code of Federal Regulations, title 21 (FDA), Subchapter B, Part 175, Section 175.300. The dry powder shall be deposited at a rate to yield 3- mil minimum dry film thickness. The surfaces shall be oven cured in accordance wit the dry-coating manufacturer's standard practice and specifications. ### 3.10 DISINFECTION The reservoir and connecting lines thereto shall be disinfected with chlorine before being placed in operation. ### 3.10.1 Tank The reservoir shall be disinfected by the Contractor in accordance with AWWA C652. After the chlorination procedure is completed and before the storage facility is placed in service, the Contracting Officer will collect samples of water in properly sterilized containers for bacteriological testing from the full facility in accordance with paragraph 4.4.3 of AWWA C652. The tank will not be accepted until satisfactory bacteriological results have been obtained. ### 3.10.2 Piping The valves and piping shall be disinfected by the Contractor in accordance with Section 02510 WATER DISTRIBUTION SYSTEM. END OF SECTION Fairchild AFB, WA PN: GJKZ 99-0151 SECTION 13280 # ASBESTOS ABATEMENT # PART 1 GENERAL ### 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. # AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI) | ANSI Z9.2 | (1979; R 1991) Fundamentals Governing the Design and Operation of Local Exhaust Systems | |---|---| | ANSI Z87.1 | (1989; Errata; Z87.1a) Occupational and Educational Eye and Face Protection | | ANSI Z88.2 | (1992) Respiratory Protection | | AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | | | ASTM C 732 | (1995) Aging Effects of Artificial Weathering on Latex Sealants | | ASTM D 522 | (1993a) Mandrel Bend Test of Attached Organic
Coatings | | ASTM D 1331 | (1989; R 1995) Surface and Interfacial
Tension of Solutions of Surface-Active Agents | | ASTM D 2794 | (1993) Resistance of Organic Coatings to the Effects of Rapid Deformation (Impact) | | ASTM D 4397 | (1996) Polyethylene Sheeting for
Construction, Industrial, and Agricultural
Applications | | ASTM E 84 | (1996a) Surface Burning Characteristics of Building Materials | | ASTM E 96 | (1995) Water Vapor Transmission of Materials | | ASTM E 119 | (1995a) Fire Tests of Building Construction and Materials | | ASTM E 736 | (1992) Cohesion/Adhesion of Sprayed Fire-
Resistive Materials Applied to Structural
Members | | ASTM E 1368 | (1997) Visual Inspection of Asbestos
Abatement Projects | # Repair Fuel Systems Maintenance Dock - Building 1012, Fairchild AFB, WA PN: GJKZ 99-0151 CODE OF FEDERAL REGULATIONS (CFR) | | TOTAL (OF IC) | |---|---| | 29 CFR 1910 | Occupational Safety and Health Standards | | 29 CFR 1926 | Safety and Health Regulations for Construction | | 40 CFR 61 | National Emissions Standards for Hazardous
Air Pollutants | | 40 CFR 763 | Asbestos | | 42 CFR 84 | Approval of Respiratory Protective Devices | | 49 CFR 107 | Hazardous Materials Program Procedures | | 49 CFR 171 | General Information, Regulations and Definitions | | 49 CFR 172 | Hazardous Materials Table, Special
Provisions, Hazardous Materials
Communications, Emergency Response
Information, and Training Requirements | | 49 CFR 173 | Shippers - General Requirements for Shipments and Packagings | | COMPRESSED GAS ASSOCIATION (CGA) | | | CGA G-7 | (1990) Compressed Air for Human Respiration | | CGA G-7.1 | (1989) Commodity Specification for Air | | ENGINEERING MANUALS (EM) | | | EM 385-1-1 | (1996) Safety and Health Requirements Manual | | ENVIRONMENTAL PROTECTION AGENCY (EPA) | | | EPA 340/1-90-018 | (1990) Asbestos/NESHAP Regulated Asbestos
Containing Materials Guidance | | EPA 340/1-90-019 | (1990) Asbestos/NESHAP Adequately Wet
Guidance | | EPA 560/5-85-024 | (1985) Guidance for Controlling Asbestos-
Containing Materials in Buildings | | NATIONAL FIRE PROTECTION ASSOCIATION (NFPA) | | | NFPA 701 | (1996) Methods of Fire Test for Flame-
Resistant Textiles and Films | | NATIONAL INSTITUTE FOR OCCUPATIONAL SAFETY AND HEALTH (NIOSH) | | | NIOSH Pub No. 84-100 | (1984; Supple 1985, 1987, 1988 & 1990) NIOSH
Manual of Analytical Methods | | | | # Repair Fuel Systems Maintenance Dock - Building 1012, Fairchild AFB, WA PN: GJKZ 99-0151 UNDERWRITERS LABORATORIES (UL) UL 586 (1996) High-Efficiency, Particulate, Air Filter Units WASHINGTON STATE ADMINISTRATIVE CODE (WAC) 296-62 (1997) Asbestos, Tremolite, Anthophylite, and Actinolite 296-65 (1996) Asbestos Removal and Encapsulation Spokane County Air Pollution Control Authority Regulation I Article IX: Asbestos Control Standards (1998) ### 1.2 DEFINITIONS - a. Adequately Wet: A term defined in 40 CFR 61, Subpart M, and EPA 340/1-90-019 meaning to sufficiently mix or penetrate with liquid to prevent the release of particulate. If visible emissions are observed coming from asbestos-containing material (ACM), then that material has not been adequately wetted. However, the absence of visible emissions is not sufficient evidence of being adequately wetted. - b. Aggressive Method: Removal or disturbance of building material by sanding, abrading, grinding, or other method that breaks, crumbles, or disintegrates intact asbestos-containing material (ACM). - c. Amended Water: Water containing a wetting agent or surfactant with a surface tension of at least 29 dynes per square centimeter when tested in accordance with ASTM D 1331. - d. Asbestos: Asbestos includes chrysotile, amosite, crocidolite, tremolite asbestos, anthophylite asbestos, actinolite asbestos, and any of these minerals that have been chemically treated and/or altered. - e. Asbestos-Containing Material (ACM): Any materials containing more than one percent asbestos. - f. Asbestos Fiber: A particulate form of asbestos, 5 micrometers or longer, with a length-to-width ratio of at least 3 to 1. - g. Authorized Person: Any person authorized by the Contractor and required by work duties to be present in the regulated areas. - h. Building Inspector: Individual who inspects buildings for asbestos and has EPA Model Accreditation Plan (MAP) "Building Inspector" training; accreditation required by 40 CFR 763, Subpart E, Appendix C. - i. Certified Industrial Hygienist (CCIH): An Industrial Hygienist certified in the practice of industrial hygiene by the American Board of Industrial Hygiene. # Repair Fuel Systems Maintenance Dock - Building 1012, Fairchild AFB, WA PN: GJKZ 99-0151 - j. Class I Asbestos Work: Activities defined by OSHA involving the removal of thermal system insulation (TSI) and surfacing ACM. - k. Class II Asbestos Work: Activities defined by OSHA involving the removal of ACM which is not thermal system insulation or surfacing material. This includes, but is not limited to, the removal of asbestos- containing wallboard, floor tile and sheeting, roofing and siding shingles, and construction mastic. Certain "incidental" roofing materials such as mastic, flashing and cements when they are still intact are excluded from Class II asbestos work. Removal of small amounts of these materials which would fit into a glovebag may be classified as a Class III job. - 1. Class III Asbestos Work: Activities defined by OSHA that involve repair and maintenance operations, where ACM, including TSI and surfacing ACM, is likely to be disturbed. Operations may include drilling, abrading, cutting a hole, cable pulling, crawling through tunnels or attics and spaces above the ceiling, where asbestos is actively disturbed or asbestos-containing debris is actively disturbed. - m. Class IV Asbestos Work: Maintenance and custodial construction activities during which employees contact but do not disturb ACM and activities to clean-up dust, waste and debris resulting from Class I, II, and III activities. This may include dusting surfaces where ACM waste and debris and accompanying dust exists and cleaning up loose ACM debris from TSI or surfacing ACM following construction. - n. Clean room: An uncontaminated room having facilities for the storage of employees' street clothing and uncontaminated materials and equipment. - o. Competent Person: In addition to the definition in 29 CFR 1926, Section .32(f), a person who is capable of identifying existing asbestos hazards as defined in 29 CFR 1926, Section .1101, selecting the appropriate control strategy, has the authority to take prompt corrective measures to eliminate them and has EPA Model Accreditation Plan (MAP) "Contractor/Supervisor" training; accreditation required by 40 CFR 763, Subpart E, Appendix C. - p. Contractor/Supervisor: Individual who supervises asbestos abatement work and has EPA Model Accreditation Plan "Contractor/Supervisor" training; accreditation required by 40 CFR 763, Subpart E, Appendix C. - q. Critical Barrier: One or more layers of plastic sealed over all openings into a regulated area or any other similarly placed physical barrier sufficient to prevent airborne asbestos in a regulated area from migrating to an adjacent area. - r. Decontamination Area: An enclosed area adjacent and connected to the regulated area and consisting of an equipment room, shower area, and clean room, which is used for the decontamination of workers, materials, and equipment that are contaminated with asbestos. # Repair Fuel Systems Maintenance Dock - Building 1012, Fairchild AFB, WA PN: GJKZ 99-0151 - s. Demolition: The wrecking or taking out of any load-supporting structural member and any related razing, removing, or stripping of asbestos products. - t. Disposal Bag: A
6 mil thick, leak-tight plastic bag, pre-labeled in accordance with 29 CFR 1926, Section .1101, used for transporting asbestos waste from containment to disposal site. - u. Disturbance: Activities that disrupt the matrix of ACM, crumble or pulverize ACM, or generate visible debris from ACM. Disturbance includes cutting away small amounts of ACM, no greater than the amount which can be contained in 1 standard sized glovebag or waste bag, not larger than 60 inches in length and width in order to access a building component. - v. Equipment Room or Area: An area adjacent to the regulated area used for the decontamination of employees and their equipment. - w. Employee Exposure: That exposure to airborne asbestos that would occur if the employee were not using respiratory protective equipment. - x. Fiber: A fibrous particulate, 5 micrometers or longer, with a length to width ratio of at least 3 to 1. - y. Friable ACM: A term defined in 40 CFR 61, Subpart M and EPA 340/1-90-018 meaning any material which contains more than 1 percent asbestos, as determined using the method specified in 40 CFR 763, Subpart E, Appendix A, Section 1, Polarized Light Microscopy (PLM), that when dry, can be crumbled, pulverized, or reduced to powder by hand pressure. If the asbestos content is less than 10 percent, as determined by a method other than point counting by PLM, the asbestos content is verified by point counting using PLM. - z. Glovebag: Not more than a 60 by 60 inch impervious plastic baglike enclosure affixed around an asbestos-containing material, with glove-like appendages through which material and tools may be handled. - aa. High-Efficiency Particulate Air (HEPA) Filter: A filter capable of trapping and retaining at least 99.97 percent of all monodispersed particles of 0.3 micrometers in diameter. - bb. Homogeneous Area: An area of surfacing material or thermal system insulation that is uniform in color and texture. - cc. Industrial Hygienist: A professional qualified by education, training, and experience to anticipate, recognize, evaluate, and develop controls for occupational health hazards. - dd. Intact: ACM which has not crumbled, been pulverized, or otherwise deteriorated so that the asbestos is no longer likely to be bound with its matrix. Removal of "intact" asphaltic, resinous, cementitious products does not render the ACM non-intact simply by being separated into smaller pieces. # Repair Fuel Systems Maintenance Dock - Building 1012, Fairchild AFB, WA PN: GJKZ 99-0151 - ee. Model Accreditation Plan (MAP): USEPA training accreditation requirements for persons who work with asbestos as specified in 40 CFR 763, Subpart E, Appendix C. - ff. Modification: A changed or altered procedure, material or component of a control system, which replaces a procedure, material or component of a required system. - gg. Negative Exposure Assessment: A demonstration by the Contractor to show that employee exposure during an operation is expected to be consistently below the OSHA Permissible Exposure Limits (PELs). - hh. NESHAP: National Emission Standards for Hazardous Air Pollutants. The USEPA NESHAP regulation for asbestos is at 40 CFR 61, Subpart M. - ii. Nonfriable ACM: A NESHAP term defined in 40 CFR 61, Subpart M and EPA 340/1-90-018 meaning any material containing more than 1 percent asbestos, as determined using the method specified in 40 CFR 763, Subpart E, Appendix A, Section 1, Polarized Light Microscopy, that, when dry, cannot be crumbled, pulverized or reduced to powder by hand pressure. - jj. Nonfriable ACM (Category I): A NESHAP term defined in 40 CFR 61, Subpart E and EPA 340/1-90-018 meaning asbestos-containing packings, gaskets, resilient floor covering, and asphalt roofing products containing more than 1 percent asbestos as determined using the method specified in 40 CFR 763, Subpart F, Appendix A, Section 1, Polarized Light Microscopy. - kk. Nonfriable ACM (Category II): A NESHAP term defined in 40 CFR 61, Subpart E and EPA 340/1-90-018 meaning any material, excluding Category I nonfriable ACM, containing more than 1 percent asbestos, as determined using the methods specified in 40 CFR 763, Subpart F, Appendix A, Section 1, Polarized Light Microscopy, that when dry, cannot be crumbled, pulverized, or reduced to powder by hand pressure. - 11. Permissible Exposure Limits (PELs): - (1) PEL-Time weighted average(TWA): Concentration of asbestos not in excess of 0.1 fibers per cubic centimeter of air (f/cc) as an 8 hour time weighted average (TWA), as determined by the method prescribed in 29 CFR 1926, Section .1101, Appendix A, or the current version of NIOSH Pub No. 84-100 analytical method 7400. - (2) PEL-Excursion Limit: An airborne concentration of asbestos not in excess of 1.0 f/cc of air as averaged over a sampling period of 30 minutes as determined by the method prescribed in 29 CFR 1926, Section .1101, Appendix A, or the current version of NIOSH Pub No. 84-100 analytical method 7400. - mm. Project Designer: A person who has successfully completed the training requirements for an abatement project designer established by EPA Asbestos Model Accrediation Plan: Interim Final Rule(40 CFR Part 763, Appendix C to Subpart E) and whose certification is current. - nn. Regulated Area: An OSHA term defined in 29 CFR 1926, Section .1101 meaning an area established by the Contractor to demarcate areas where Class I, II, and III asbestos work is conducted; also any adjoining area where debris and waste from such asbestos work accumulate; and an area within which airborne concentrations of asbestos exceed, or there is a reasonable possibility they may exceed, the permissible exposure limit. - oo. Removal: All operations where ACM is taken out or stripped from structures or substrates, and includes demolition operations. - pp. Repair: Overhauling, rebuilding, reconstructing, or reconditioning of structures or substrates, including encapsulation or other repair of ACM attached to structures or substrates. If the amount of asbestos so "disturbed" cannot be contained in 1 standard glovebag or waste bag, Class I precautions are required. - qq. Spills/Emergency Cleanups: Cleanup of sizable amounts of asbestos waste and debris which has occurred, for example, when water damage occurs in a building, and sizable amounts of ACM are dislodged. A Competent Person evaluates the site and ACM to be handled, and based on the type, condition and extent of the dislodged material, classifies the cleanup as Class I, II, or III. Only if the material was intact and the cleanup involves mere contact of ACM, rather than disturbance, could there be a Class IV classification. - rr. Surfacing ACM: Asbestos-containing material which contains more than 1% asbestos and is sprayed-on, troweled-on, or otherwise applied to surfaces, such as acoustical plaster on ceilings and fireproofing materials on structural members, or other materials on surfaces for acoustical, fireproofing, or other purposes. - ss. Thermal system insulation (TSI) ACM: ACM which contains more than 1% asbestos and is applied to pipes, fittings, boilers, breeching, tanks, ducts, or other interior structural components to prevent heat loss or gain or water condensation. - tt. Transite: A generic name for asbestos cement wallboard and pipe. - vv. Worker: Individual (not designated as the Competent Person or a supervisor) who performs asbestos work and has completed asbestos worker training required by 29 CFR 1926, Section .1101, to include EPA Model Accreditation Plan (MAP) "Worker" training; accreditation required by 40 CFR 763, Subpart E, Appendix C, if required by the OSHA Class of work to be performed or by the state where the work is to be performed. # 1.3 DESCRIPTION OF WORK The work covered by this section includes the removal of asbestos-containing materials (ACM) which are encountered during renovation activities associated with this project and describes procedures and equipment required to protect workers and occupants of the regulated area from contact with airborne asbestos fibers and ACM dust and debris. Activities include OSHA Class II work operations involving ACM. The work also includes containment, storage, transportation and disposal of the generated ACM wastes. More specific operational procedures shall be detailed in the required Accident #### 00029/1 Repair Fuel Systems Maintenance Dock - Building 1012, Fairchild AFB, WA PN: GJKZ 99-0151 Prevention Plan and its subcomponents, the Asbestos Hazard Abatement Plan and Activity Hazard Analyses required in paragraph SAFETY AND HEALTH PROGRAM AND PLANS. ### 1.3.1 Abatement Work Tasks Refer to Table 1- Individual Work Task Data Elements for location, type, and quantity of ACM to be abated. ### 1.3.2 Unexpected Discovery of Asbestos For any previously untested building components suspected to contain asbestos and located in areas impacted by the work, the Contractor shall notify the Contracting Officer (CO) who will have the option of ordering up to 2 bulk samples to be obtained at the Contractor's expense and delivered to a laboratory accredited under the National Institute of Standards and Technology (NIST) "National Voluntary Laboratory Accreditation Program (NVLAP)" and analyzed by PLM at no additional cost to the Government. ### 1.4 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-01 Data Materials and Equipment; FIO. Manufacturer's catalog data for all materials and equipment to be used in the work, including brand name, model, capacity, performance characteristics and any other pertinent information. Test results and certificates from the manufacturer of encapsulants substantiating compliance with performance requirements of this specification. Material Safety Data Sheets for all chemicals to be used onsite in the same format as
implemented in the Contractor's HAZARD COMMUNICATION PROGRAM. Data shall include, but shall not be limited to, the following items: - a. High Efficiency Filtered Air (HEPA) local exhaust equipment - b. Vacuum cleaning equipment - c. Pressure differential monitor for HEPA local exhaust equipment - d. Air monitoring equipment - e. Respirators - f. Personal protective clothing and equipment - (1) Coveralls - (2) Underclothing - (3) Other work clothing - (4) Foot coverings - (5) Hard hats - (6) Eye protection Repair Fuel Systems Maintenance Dock - Building 1012, Fairchild AFB, WA PN: GJKZ 99-0151 - (7) Other items required and approved by Contractors Designated CIH and Competent Person - g. Glovebag - h. Duct Tape - i. Disposal Containers - j. Sheet Plastic - k. Wetting Agent - 1. Strippable Coating - m. Prefabricated Decontamination Unit - n. Other items - o. Chemical encapsulant - p. Chemical encasement materials - q. Material Safety Data Sheets (for all chemicals proposed) SD-04 Drawings Site Layout; GA. Descriptions, detail project drawings, and site layout to include worksite containment area techniques, local exhaust ventilation system locations, decontamination and load-out units, other temporary waste storage facility, access tunnels, location of temporary utilities (electrical, water, sewer) and boundaries of each regulated area. SD-08 Statements Qualifications; GA. A written report providing evidence of qualifications for personnel, facilities and equipment assigned to the work. Training Program; FIO. A copy of the written project site-specific training material as indicated in 29 CFR 1926, Section .1101 that will be used to train onsite employees. The training document shall be signed by the Contractor's Designated CIH and Competent Person. Medical Requirements; FIO. Physician's written opinion. Repair Fuel Systems Maintenance Dock - Building 1012, Fairchild AFB, WA PN: GJKZ 99-0151 Encapsulants; GA. Certificates stating that encapsulants meet the applicable specified performance requirements. SD-09 Reports Exposure Assessment and Air Monitoring; GA. Initial exposure assessments, negative exposure assessments, air-monitoring results and documentation. Local Exhaust Ventilation; FIO. Pressure differential recordings. Licenses, Permits and Notifications; GA. Licenses, permits, and notifications. SD-13 Certificates Vacuum, Filtration and Ventilation Equipment; FIO. Manufacturer's certifications showing compliance with ANSI Z9.2 for: - a. Vacuums. - b. Water filtration equipment. - c. Ventilation equipment. - d. Other equipment required to contain airborne asbestos fibers. SD-18 Records Respiratory Protection Program; GA. Records of the respirator program. Cleanup and Disposal; GA. Waste shipment records. Weigh bills and delivery tickets shall be furnished for information only. ### 1.5 OUALIFICATIONS # 1.5.1 Written Qualifications and Organization Report The Contractor shall furnish a written qualifications and organization report providing evidence of qualifications of the Contractor, Contractor's Project Supervisor, Designated Competent Person, Project Designer, supervisors and workers; Designated CIH (person assigned to project and firm name); independent testing laboratory; all subcontractors to be used including disposal transportation and disposal facility firms, subcontractor supervisors, subcontractor workers; and any others assigned to perform asbestos abatement and support activities. The report shall be signed by #### 00029/1 Repair Fuel Systems Maintenance Dock - Building 1012, Fairchild AFB, WA PN: GJKZ 99-0151 the Contractor. The Contractor shall include the following statement in the report: "By signing this report I certify that the personnel I am responsible for during the course of this project fully understand the contents of 29 CFR 1926, Section .1101, 40 CFR 61, Subpart M, and the federal, state and local requirements specified in paragraph SAFETY AND HEALTH PROGRAM AND PLANS for those asbestos abatement activities that they will be involved in." ### 1.5.2 Specific Requirements The Contractor shall designate in writing, personnel meeting the following qualifications: - a. Designated Competent Person: The Contractor shall provide the name of the Competent person and evidence that this person is qualified in accordance with 29 CFR 1926, Sections .32 and .1101, has EPA Model Accreditation Plan (MAP) "Contractor/Supervisor" training accreditation required by 40 CFR 763, Subpart E, Appendix C. The Designated Competent Person shall be responsible for compliance with applicable federal, state and local requirements, the Contractor's Accident Prevention Plan and Asbestos Hazard Abatement Plan. The Designated Competent Person shall provide, and the Contractor shall submit, the "Contractor/Supervisor" course completion certificate and the most recent certificate for required refresher training with the employee "Certificate of Worker Acknowledgment required by this paragraph. The Contractor shall submit evidence that this person has a minimum of 2 years of onthe-job asbestos experience relevant to OSHA competent person requirements abatement within the past 4 years. The Designated Competent Person shall be onsite at all times during the conduct of this project. - b. Project and Other Supervisors: The Contractor shall provide the name and resume of the Project Supervisor and other supervisors who have responsibility to implement the Accident Prevention Plan, including the Asbestos Hazard Abatement Plan and Activity Hazard Analyses, the authority to direct work performed under this contract and verify compliance, and have EPA Model Accreditation Plan (MAP) "Contractor/Supervisor" training accreditation required by 40 CFR 763, Subpart E, Appendix C. The Project Supervisor and other supervisors shall provide, and the Contractor shall submit, the "Contractor/Supervisor" course completion certificate and the most recent certificate for required refresher training with the employee "Certificate of Worker Acknowledgment" required by this paragraph. The Contractor shall submit evidence that the Project Supervisor has a minimum of 2 years of on-the-job asbestos abatement experience. - c. Designated Certified Industrial Hygienist: The Contractor shall provide the name and resume and other information specified below for the Certified Industrial Hygienist (CIH) selected to prepare the Contractor's Asbestos Hazard Abatement Plan, prepare and perform training, direct air monitoring and assist the Contractor's Competent Person in implementing and ensuring that safety and health requirements are complied with during the performance of all required work. The Designated CIH shall be a person who is board certified in the practice of industrial hygiene as determined and documented by the American Board of Industrial Hygiene (ABCIH), has EPA Model Accreditation Plan (MAP) "Contractor/Supervisor" training accreditation required by 40 CFR 763, Subpart E, Appendix C, and has a minimum of 2 years of comprehensive experience in planning and overseeing asbestos abatement activities. - d. Asbestos Abatement Workers: Asbestos abatement workers shall meet the requirements contained in 29 CFR 1926, Section .1101, 40 CFR 61, Subpart M, and other applicable federal, state and local requirements. Worker training documentation shall be provided as required on the "Certificate of Workers Acknowledgment" in this paragraph. - e. Worker Training and Certification of Worker Acknowledgment: Training documentation will be required for each employee who will perform OSHA Class I, Class II, Class III, or Class IV asbestos abatement operations. Such documentation shall be submitted on a Contractor generated form titled "Certificate of Workers Acknowledgment", to be completed for each employee in the same format and containing the same information as the example certificate at the end of this section. Training course completion certificates (initial and most recent update refresher) required by the information checked on the form shall be attached. - f. AHERA Project designer. The Contractor shall provide the name of the Project Designer and evidence that this person is qualified in accordance with 29 CFR 1926, Sections .32 and .1101, has EPA Model Accreditation Plan (MAP) "Project Designer" training accreditation required by 40 CFR 763, Subpart E, Appendix C. The Project Designer shall be responsible for compliance with applicable federal, state and local requirements, the Contractor's Accident Prevention Plan and Asbestos Hazard Abatement Plan. The project designer shall have a minimum of two years abatement design experience within the last four years. A copy of the EPA project designer certificate and most recent refresher course completion shall be included with the abatement plan. - g. First Aid and CPR Trained Persons: The names of at least 2 persons who are currently trained in first aid and CPR by the American Red Cross or other approved agency shall be designated and shall be onsite at all times during site operations. - h. Independent Testing Laboratory: The Contractor shall provide the name, address and telephone number of the independent testing laboratory selected to perform the sample analyses and report the results. The testing laboratory shall be completely independent from the Contractor as recognized by federal, state or local regulations. The laboratory shall be a NVLAP approved facility. A copy of the NVLAP certification shall be provided. - i. Disposal Facility, Transporter: The Contractor shall provide written evidence that the landfill to be used is approved for asbestos disposal by the Washington State regulatory agencies. The Contractor and transporters shall meet the DOT requirements of 49 CFR 171, 49 CFR 172, and 49 CFR 173 as well as registration requirements of 49 CFR 107 and other applicable state or local Repair Fuel Systems Maintenance Dock - Building 1012, Fairchild AFB, WA PN: GJKZ 99-0151 requirements.
The disposal facility shall meet the requirements of 40 CFR 61, Sections .154 or .155, as required in 40 CFR 61, Section .150(b), and other applicable state or local requirements. ### 1.5.3 Federal, State or Local Citations on Previous Projects The Contractor and all subcontractors shall submit a statement, signed by an officer of the company, containing a record of any citations issued by Federal, State or local regulatory agencies relating to asbestos activities (including projects, dates, and resolutions); a list of penalties incurred through non-compliance with asbestos project specifications, including liquidated damages, overruns in scheduled time limitations and resolutions; and situations in which an asbestos-related contract has been terminated (including projects, dates, and reasons for terminations). If there are none, a negative declaration signed by an officer of the company shall be provided. ### 1.6 REGULATORY REQUIREMENTS In addition to detailed requirements of this specification, work performed under this contract shall comply with EM 385-1-1, applicable federal, state, and local laws, ordinances, criteria, rules and regulations regarding handling, storing, transporting, and disposing of asbestos waste materials. This includes, but is not limited to, OSHA standards, 29 CFR 1926, especially Section .1101, 40 CFR 61, Subpart M and 40 CFR 763. Matters of interpretation of standards shall be submitted to the appropriate administrative agency for resolution before starting work. Where the requirements of this specification, applicable laws, criteria, ordinances, regulations, and referenced documents vary, the most stringent requirements shall apply. ### 1.7 ACCIDENT PREVENTION PLANS The Contractor shall develop and submit a written comprehensive site-specific Accident Prevention Plan at least 21 days prior to the preconstruction conference. The Accident Prevention Plan shall address requirements of EM 385-1-1, Appendix A, covering onsite work to be performed by the Contractor and subcontractors. The Accident Prevention Plan shall incorporate an Asbestos Hazard Abatement Plan, and Activity Hazard Analyses as separate appendices into 1 site specific Accident Prevention Plan document. The plan shall be prepared, signed (and sealed, including certification number if required), and dated by the Contractor's Designated CIH, Competent Person, and Project Supervisor. ### 1.7.1 Asbestos Hazard Abatement Plan Appendix The Asbestos Hazard Abatement Plan appendix to the Accident Prevention Plan shall include, but not be limited to, the following: - a. The personal protective equipment to be used; - b. The location and description of regulated areas including clean and dirty areas, access tunnels, and decontamination unit (clean room, shower room, equipment room, storage areas such as load-out unit); - c. Initial exposure assessment in accordance with 29 CFR 1926, Section .1101; Repair Fuel Systems Maintenance Dock - Building 1012, Fairchild AFB, WA PN: GJKZ 99-0151 - d. Level of supervision; - e. Method of notification of other employers at the worksite; - f. Abatement method to include containment and control procedures; - g. Interface of trades involved in the construction; - h. Sequencing of asbestos related work; - i. Storage and disposal procedures and plan; - j. Type of wetting agent and asbestos encapsulant to be used; - k. Location of local exhaust equipment; - 1. Air monitoring methods (personal, environmental and clearance); - m. Bulk sampling and analytical methods (if required); - n. A detailed description of the method to be employed in order to control the spread of ACM wastes and airborne fiber concentrations; - o. Fire and medical emergency response procedures; - p. The security procedures to be used for all regulated areas. # 1.7.2 Activity Hazard Analyses Appendix Activity Hazard Analyses, for each major phase of work, shall be submitted and updated during the project. The Activity Hazard Analyses format shall be in accordance with EM 385-1-1 (Figure 1-1). # 1.8 PRECONSTRUCTION CONFERENCE AND ONSITE SAFETY The Contractor and the Contractor's Designated Competent Person, Project Supervisor, Project Designer, and Designated CIH shall meet with the Contracting Officer prior to beginning work at a safety preconstruction conference to discuss the details of the Contractor's submitted Accident Prevention Plan to include the Asbestos Hazard Abatement Plan and Activity Hazard Analyses appendices. Deficiencies in the Accident Prevention Plan will be discussed and the Accident Prevention Plan shall be revised to correct the deficiencies and resubmitted for acceptance. Onsite work shall not begin until the Accident Prevention Plan has been accepted. A copy of the written Accident Prevention Plan shall be maintained onsite. Changes and modifications to the accepted Accident Prevention Plan shall be made with the knowledge and concurrence of the Designated CIH, the Project Supervisor, Project Designer, Designated Competent Person, and the Contracting Officer. # 1.9 SECURITY A log book shall be kept documenting entry into and out of the regulated area. Entry into regulated areas shall only be by personnel authorized by the Contractor and the Contracting Officer. Personnel authorized to enter regulated areas shall be trained, be medically evaluated, and wear the ### 00029/1 Repair Fuel Systems Maintenance Dock - Building 1012, Fairchild AFB, WA PN: GJKZ 99-0151 required personal protective equipment, for the specific regulated area to be entered. ### 1.10 MEDICAL REQUIREMENTS Medical requirements shall conform to 29 CFR 1926, Section .1101. ### 1.10.1 Medical Examinations Before being exposed to airborne asbestos fibers, workers shall be provided with a medical examination as required by 29 CFR 1926, Section .1101 and other pertinent state or local requirements. This requirement shall have been satisfied within the last 12 months. # 1.10.1.1 Information Provided to the Physician The Contractor shall provide the following information in writing to the examining physician: - a. A copy of 29 CFR 1926, Section .1101 and Appendices D, E, G, and I; - b. A description of the affected employee's duties as they relate to the employee's exposure; - c. The employee's representative exposure level or anticipated exposure level; - d. A description of any personal protective and respiratory equipment used or to be used; - e. Information from previous medical examinations of the affected employee that is not otherwise available to the examining physician. ### 1.10.1.2 Written Medical Opinion For each worker, a written medical opinion prepared and signed by a licensed physician indicating the following: - a. Summary of the results of the examination. - b. The ability of the individual to wear personal protective equipment, including respirators, while performing strenuous work tasks under cold and/or heat stress conditions. - c. A statement that the employee has been informed of the results of the examination, provided with a copy of the results, informed of the increased risk of lung cancer attributable to the combined effect of smoking and asbestos exposure, and informed of any medical condition that may result from asbestos exposure. # 1.10.2 Medical and Exposure Records Complete and accurate records shall be maintained of each employee's medical examinations, medical records, and exposure data, as required by 29 CFR 1910, Section .1910.20 and 29 CFR 1926, Section .1101. Repair Fuel Systems Maintenance Dock - Building 1012, Fairchild AFB, WA PN: GJKZ 99-0151 ### 1.11 TRAINING PROGRAM ### 1.11.1 General Training Requirements The Contractor shall establish a training program as specified by EPA Model Accreditation Plan (MAP), training requirements at 40 CFR 763, Subpart E, Appendix C, and OSHA requirements at 29 CFR 1926, Section .1101(k)(9). ### 1.11.2 Project Specific Training Prior to commencement of work, each worker shall be instructed by the Contractor's Designated CIH and Competent Person in the following project specific training: - a. The hazards and health effects of the specific types of ACM to be abated; - b. The content and requirements of the Contractor's Accident Prevention Plan to include the Asbestos Hazard Abatement Plan and Activity Hazard Analyses and site-specific safety and health precautions; - c. Hazard Communication Program; - d. Hands-on training for each asbestos abatement technique to be employed; - e. Heat and/or cold stress monitoring specific to this project; - f. Air monitoring program and procedures; - g. Medical surveillance to include medical and exposure record-keeping procedures; - h. The association of cigarette smoke and asbestos-related disease; - i. Security procedures; - j. Specific work practice controls and engineering controls required for each Class of work in accordance with 29 CFR 1926, Section .1101. ### 1.12 RESPIRATORY PROTECTION PROGRAM The Contractor's Designated CIH shall establish in writing, and implement a respiratory protection program in accordance with 29 CFR 1926, Section .1101, 29 CFR 1910, Section .134, ANSI Z88.2, CGA G-7, CGA G-7.1. The Contractor's Designated CIH shall establish minimum respiratory protection requirements based on measured or anticipated levels of airborne asbestos fiber concentrations encountered during the performance of the asbestos abatement work. ### 1.12.1 Respiratory Fit Testing A qualitative or quantitative fit test conforming to 29 CFR 1926, Section 1101, Appendix C shall be conducted by the Contractor's Designated CIH for each Contractor worker required to wear a respirator, and for the Repair Fuel Systems Maintenance Dock - Building 1012, Fairchild AFB, WA PN: GJKZ 99-0151 Contracting Officer and authorized visitors who enter a regulated area where respirators are required to be worn. ### 1.12.2 Respirator Selection and Use Requirements The Contractor shall provide respirators, and ensure that they are used as required by 29
CFR 1926, Section .1101 and in accordance with the manufacturer's recommendations. Respirators shall be approved by the National Institute for Occupational Safety and Health (NIOSH) under the provisions of 42 CFR 84, for use in environments containing airborne asbestos fibers. Personnel who handle ACM, enter regulated areas that require the wearing of a respirator, or who are otherwise carrying out abatement activities that require the wearing of a respirator, shall be provided with approved respirators that are fully protective of the worker at the measured or anticipated airborne asbestos concentration level to be encountered. The initial respirator selection and the decisions regarding the upgrading or downgrading of respirator type shall be made by the Contractor's Designated CIH based on the measured or anticipated airborne asbestos fiber concentrations to be encountered. Recommendations made by the Contractor's Designated CIH to downgrade respirator type shall be submitted in writing to the Contracting Officer. The Contractor's Designated Competent Person in consultation with the Designated CIH, shall have the authority to take immediate action to upgrade or downgrade respiratory type when there is an immediate danger to the health and safety of the wearer. Respirators shall be used in the following circumstances: - a. During all Class I asbestos jobs. - b. During all Class II work where the ACM is not removed in a substantially intact state. - c. During all Class II and III work which is not performed using wet methods. Respirators need not be worn during removal of ACM from sloped roofs when a negative exposure assessment has been made and ACM is removed in an intact state. - d. During all Class II and III asbestos jobs where the Contractor does not produce a negative exposure assessment. - e. During all Class III jobs where TSI or surfacing ACM is being disturbed. - f. During all Class IV work performed within regulated areas where employees performing other work are required to wear respirators. - g. During all work where employees are exposed above the PEL-TWA or PEL-Excursion Limit. - h. In emergencies # 1.12.3 Sanitation Employees who wear respirators shall be permitted to leave work areas to wash their faces and respirator facepieces whenever necessary to prevent skin irritation associated with respirator use. ### 00029/1 Repair Fuel Systems Maintenance Dock - Building 1012, Fairchild AFB, WA PN: GJKZ 99-0151 ### 1.13 HAZARD COMMUNICATION PROGRAM A hazard communication program shall be established and implemented in accordance with 29 CFR 1926, Section .59. Material safety data sheets (MSDSs) shall be provided for all hazardous materials brought onto the worksite. One copy shall be provided to the Contracting Officer and 1 copy shall be included in the Contractor's Hazard Communication Program. ### 1.14 LICENSES, PERMITS AND NOTIFICATIONS # 1.14.1 General Legal Requirements Necessary licenses, permits and notifications shall be obtained in conjunction with the project's asbestos abatement, transportation and disposal actions and timely notification furnished of such actions as required by federal, state, regional, and local authorities. The Contractor shall notify the local air pollution control district/agency (Spokane County Air Pollution Control Authority), Fairchild AFB Environmental office and the Contracting Officer in writing, at least 10 days prior to the commencement of work, in accordance with 40 CFR 61, Subpart M, and any other required notification documents. Notification shall be by Certified Mail, Return Receipt Requested. The Contractor shall furnish copies of the receipts to the Contracting Officer, in writing, prior to the commencement of work. Local fire department shall be notified 3 days before fire-proofing material is removed from a building and the notice shall specify whether or not the material contains asbestos. A copy of the rental company's written acknowledgment and agreement shall be provided as required by paragraph RENTAL EQUIPMENT. For licenses, permits, and notifications that the Contractor is responsible for obtaining, the Contractor shall pay any associated fees or other costs incurred. ### 1.14.2 Litigation and Notification The Contractor shall notify the Contracting Officer if any of the following occur: - a. The Contractor or any of the subcontractors are served with notice of violation of any law, regulation, permit or license which relates to this contract; - b. Proceedings are commenced which could lead to revocation of related permits or licenses; permits, licenses or other Government authorizations relating to this contract are revoked; - c. Litigation is commenced which would affect this contract; - d. The Contractor or any of the subcontractors become aware that their equipment or facilities are not in compliance or may fail to comply in the future with applicable laws or regulations. # 1.15 PERSONAL PROTECTIVE EQUIPMENT The contractor shall provide workers with personal protective clothing and equipment and the Contractor shall ensure that it is worn properly. The Contractor's Designated CIH and Designated Competent Person shall select and approve all the required personal protective clothing and equipment to be used. Repair Fuel Systems Maintenance Dock - Building 1012, Fairchild AFB, WA PN: GJKZ 99-0151 # 1.15.1 Respirators Respirators shall be in accordance with paragraph RESPIRATORY PROTECTION PROGRAM. ### 1.15.2 Whole Body Protection Personnel exposed to airborne concentrations of asbestos that exceed the PELs, or for all OSHA Classes of work for which a required negative exposure assessment is not produced, shall be provided with whole body protection and such protection shall be worn properly. ### 1.15.2.1 Coveralls Coveralls with a zipper front shall be provided. Sleeves shall be secured at the wrists, and foot coverings secured at the ankles. ### 1.15.2.2 Underwear Disposable underwear shall be provided. If reusable underwear is used, they shall be disposed of as asbestos contaminated waste or laundered in accordance with 29 CFR 1926, Section .1101. Asbestos abatement workers shall not remove contaminated reusable underwear worn during abatement of ACM from the site to be laundered. ### 1.15.2.3 Work Clothing An additional coverall shall be provided when the abatement and control method employed does not provide for the exit from the regulated area directly into an attached decontamination unit. Cloth work clothes for wear under the protective coverall, and foot coverings, shall be provided when work is being conducted in low temperature conditions. Cloth work clothes shall be either disposed of as asbestos contaminated waste or properly laundered in accordance with 29 CFR 1926, Section .1101. # 1.15.2.4 Gloves Gloves shall be provided to protect the hands. Where there is the potential for hand injuries (i.e., scrapes, punctures, cuts, etc.) a suitable glove shall be provided and used. ### 1.15.2.5 Foot Coverings Cloth socks shall be provided and worn next to the skin. Footwear, as required by OSHA and EM 385-1-1, that is appropriate for safety and health hazards in the area shall be worn. Rubber boots shall be used in moist or wet areas. Reusable footwear removed from the regulated area shall be thoroughly decontaminated or disposed of as ACM waste. Disposable protective foot covering shall be disposed of as ACM waste. If rubber boots are not used, disposable foot covering shall be provided. # 1.15.2.6 Head Covering Hood type head covering shall be provided. In addition, protective head gear (hard hats) shall be provided as required. Hard hats shall only be removed from the regulated area after being thoroughly decontaminated. #### 00029/1 Repair Fuel Systems Maintenance Dock - Building 1012, Fairchild AFB, WA PN: GJKZ 99-0151 # 1.15.2.7 Protective Eye Wear Eye protection provided shall be in accordance with ANSI Z87.1. ### 1.16 HYGIENE FACILITIES AND PRACTICES The Contractor shall establish a decontamination area for the decontamination of employees, material and equipment. The Contractor shall ensure that employees enter and exit the regulated area through the decontamination area. ### 1.16.1 Shower Facilities Shower facilities, when provided, shall comply with 29 CFR 1910, Section .141(d)(3). # 1.16.2 3-Stage Decontamination Area A temporary negative pressure decontamination unit that is adjacent and attached in a leak-tight manner to the regulated area shall be provided or utilization of prefabricated units shall have prior approval of the Contracting Officer. The decontamination unit shall have an equipment room and a clean room separated by a shower that complies with 29 CFR 1910, Section .141 unless the Contractor can demonstrate that such facilities are not feasible. ### 1.16.3 Load-Out Unit A temporary load-out unit that is adjacent and connected to the regulated area shall be provided. Utilization of prefabricated units shall have prior approval of the Contracting Officer. The load-out unit shall be attached in a leak-tight manner to each regulated area. Surfaces of the load-out unit and access tunnel shall be adequately wet-wiped 2 times after each shift change. Materials used for wet wiping shall be disposed of as asbestos contaminated waste. # 1.16.4 Single Stage Decontamination Area A decontamination area (equipment room/area) shall be provided for Class I work involving less than 25 feet or 10 square feet of TSI or surfacing ACM, and for Class II asbestos work operations where exposures exceed the PELs or where there is no negative exposure assessment produced before the operation. The equipment room or area shall be adjacent to the regulated area for the decontamination of employees, material, and their equipment which is contaminated with asbestos. The equipment room or area shall consist of an area covered by an impermeable drop cloth on the floor or horizontal working surface. The area must be of sufficient size to
accommodate cleaning of equipment and removing personal protective equipment without spreading contamination beyond the area. Surfaces of the equipment room shall be wet wiped 2 times after each shift. Materials used for wet wiping shall be disposed of as asbestos contaminated waste. # 1.16.5 Decontamination Requirements for Class IV Work The Contractor shall ensure that employees performing Class IV work within a regulated area comply with the hygiene practice required of employees performing work which has a higher classification within that regulated Repair Fuel Systems Maintenance Dock - Building 1012, Fairchild AFB, WA PN: GJKZ 99-0151 area, or the Contractor shall provide alternate decontamination area facilities for employees cleaning up debris and material which is TSI or surfacing ACM. ### 1.16.6 Lunch Areas The Contractor shall provide lunch areas in which the airborne concentrations of asbestos are below 0.01 f/cc. ### 1.16.7 Smoking Smoking, if allowed by the Contractor, shall only be permitted in designated areas approved by the Contracting Officer. ### 1.17 REGULATED AREAS All Class I and II asbestos work shall be conducted within regulated areas. The regulated area shall be demarcated to minimize the number of persons within the area and to protect persons outside the area from exposure to airborne asbestos. Where critical barriers or negative pressure enclosures are used, they shall demarcate the regulated area. Access to regulated areas shall be limited to authorized persons. The Contractor shall control access to regulated areas, ensure that only authorized personnel enter, and verify that Contractor required medical surveillance, training and respiratory protection program requirements are met prior to allowing entrance. #### 1.18 WARNING SIGNS AND TAPE Warning signs and tape printed in English shall be provided at the regulated boundaries and entrances to regulated areas. The Contractor shall ensure that all personnel working in areas contiguous to regulated areas comprehend the warning signs. Signs shall be located to allow personnel to read the signs and take the necessary protective steps required before entering the area. Warning signs, as shown, shall be in vertical format conforming to 29 CFR 1910 and 29 CFR 1926, Section .1101, a minimum of 20 by 14 inches, and displaying the following legend in the lower panel: DANGER ASBESTOS CANCER AND LUNG DISEASE HAZARD AUTHORIZED PERSONNEL ONLY Spacing between lines shall be at least equal to the height of the upper of any two lines. ### 1.19 WARNING LABELS Warning labels shall be affixed to all asbestos disposal containers used to contain asbestos materials, scrap, waste debris, and other products contaminated with asbestos. Containers with preprinted warning labels conforming to requirements are acceptable. Warning labels shall shall conform to 29 CFR 1926, Section .1101 and shall be of sufficient size to be clearly legible displaying the following legend: Repair Fuel Systems Maintenance Dock - Building 1012, Fairchild AFB, WA PN: GJKZ 99-0151 DANGER CONTAINS ASBESTOS FIBERS AVOID CREATING DUST CANCER AND LUNG DISEASE HAZARD ### 1.20 LOCAL EXHAUST VENTILATION Local exhaust ventilation units shall conform to ANSI Z9.2 and 29 CFR 1926, Section .1101. Filters on local exhaust system equipment shall conform to ANSI Z9.2 and UL 586. Filter shall be UL labeled. #### 1.21 TOOLS Vacuums shall be leak proof to the filter, equipped with HEPA filters, of sufficient capacity and necessary capture velocity at the nozzle or nozzle attachment to efficiently collect, transport and retain the ACM waste material. Power tools shall not be used to remove ACM unless the tool is equipped with effective, integral HEPA filtered exhaust ventilation capture and collection system, or has otherwise been approved for use by the Contracting Officer. Residual asbestos shall be removed from reusable tools prior to storage and reuse. Reusable tools shall be thoroughly decontaminated prior to being removed from regulated areas. ### 1.22 RENTAL EQUIPMENT If rental equipment is to be used, written notification shall be provided to the rental agency, concerning the intended use of the equipment, the possibility of asbestos contamination of the equipment and the steps that will be taken to decontaminate such equipment. A written acceptance of the terms of the Contractor's notification shall be obtained from the rental agency. ### 1.23 AIR MONITORING EQUIPMENT The Contractor's Designated CIH shall approve air monitoring equipment to be used to collect samples. ### 1.24 EXPENDABLE SUPPLIES ### 1.24.1 Glovebag Glovebags shall be provided as described in 29 CFR 1926, Section .1101. The glovebag assembly shall be 6 mil thick plastic, prefabricated and seamless at the bottom with preprinted OSHA warning label. ### 1.24.2 Duct Tape Industrial grade duct tape of appropriate widths suitable for bonding sheet plastic and disposal container shall be provided. ### 1.24.3 Disposal Containers Leak-tight (defined as solids, liquids, or dust that cannot escape or spill out) disposal containers shall be provided for ACM wastes as required by 29 CFR 1926 Section .1101. Repair Fuel Systems Maintenance Dock - Building 1012, Fairchild AFB, WA PN: GJKZ 99-0151 ### 1.24.4 Sheet Plastic Sheet plastic shall be polyethylene of 6 mil minimum thickness and shall be provided in the largest sheet size necessary to minimize seams, as indicated on the project drawings. Film shall be [clear] [frosted] [or] [black] and conform to ASTM D 4397, except as specified below: #### 1.24.4.1 Flame Resistant Where a potential for fire exists, flame-resistant sheets shall be provided and shall conform to the requirements of NFPA 701. #### 1.24.4.2 Reinforced Reinforced sheets shall be provided where high skin strength is required, such as where it constitutes the only barrier between the regulated area and the outdoor environment. The sheet stock shall consist of translucent, nylon-reinforced or woven-polyethylene thread laminated between 2 layers of polyethylene film. Film shall meet flame resistant standards of NFPA 701. ### 1.24.5 Amended Water Amended water shall meet the requirements of ASTM D 1331. ### 1.24.6 Mastic Removing Solvent Mastic removing solvent shall be nonflammable and shall not contain methylene chloride, glycol ether, or halogenated hydrocarbons. Solvents used onsite shall have a flash point greater than 140 degrees F. ### 1.24.7 Leak-tight Wrapping Two layers of 6 mil minimum thick polyethylene sheet stock shall be used for the containment of removed asbestos-containing components or materials such as reactor vessels, large tanks, boilers, insulated pipe segments and other materials too large to be placed in disposal bags. Upon placement of the ACM component or material, each layer shall be individually leak-tight sealed with duct tape. ### 1.24.8 Viewing Inspection Window Where feasible, a minimum of 1 clear, 1/8 inch thick, acrylic sheet, 18 by 24 inches, shall be installed as a viewing inspection window at eye level on a wall in each containment enclosure. The windows shall be sealed leaktight with industrial grade duct tape. ### 1.24.9 Wetting Agents Removal encapsulant (a penetrating encapsulant) shall be provided when conducting removal abatement activities that require a longer removal time or are subject to rapid evaporation of amended water. The removal encapsulant shall be capable of wetting the ACM and retarding fiber release during disturbance of the ACM greater than or equal to that provided by amended water. Performance requirements for penetrating encapsulants are specified in paragraph ENCAPSULANTS. #### 00029/1 Repair Fuel Systems Maintenance Dock - Building 1012, Fairchild AFB, WA PN: GJKZ 99-0151 ### MISCELLANEOUS ITEMS A sufficient quantity of other items, such as, but not limited to: scrapers, brushes, brooms, staple guns, tarpaulins, shovels, rubber squeegees, dust pans, other tools, scaffolding, staging, enclosed chutes, wooden ladders, lumber necessary for the construction of containments, UL approved temporary electrical equipment, material and cords, ground fault circuit interrupters, water hoses of sufficient length, fire extinguishers, first aid kits, portable toilets, logbooks, log forms, markers with indelible ink, spray paint in bright color to mark areas, project boundary fencing, etc., shall be provided. #### PART 2 PRODUCTS #### 2.1 ENCAPSULANTS Encapsulants shall conform to USEPA requirements, shall contain no toxic or hazardous substances and no solvent and shall meet the following requirements: ### ALL ENCAPSULANTS Univ. of Pittsburgh Protocol Requirement Test Standard Flame Spread - 25, ASTM E 84 Smoke Emission - 50 Combustion Toxicity Zero Mortality Life Expectancy, 20 yrs Accelerated Aging Test Permeability, Minimum ASTM E 96 0.4 perms Additional Requirements for Penetrating Encapsulant ASTM C 732 Requirement Test Standard Cohesion/Adhesion Test, ASTM E 736 50 pounds of force/foot Fire Resistance, Negligible ASTM E 119 affect on fire resistance rating over 3 hour test(Classified by UL for use over fibrous and cementitious sprayed fireproofing) Impact Resistance, Minimum ASTM D 2794 43 in-lb (Gardner Impact Test) Flexibility, no rupture or ASTM D 522 cracking (Mandrel Bend Test) Additional Requirements for Lockdown Encapsulant Requirement Test Standard Repair Fuel Systems Maintenance Dock - Building 1012, Fairchild AFB, WA PN: GJKZ 99-0151 Fire Resistance, Negligible ASTM E 119 affect on fire resistance rating over 3 hour test(Tested with fireproofing over encapsulant applied directly to steel member) Bond Strength, 100 pounds of ASTM E 736 force/foot (Tests compatibility with cementitious and fibrous fireproofing) #### PART 3 EXECUTION ### 3.1 GENERAL REQUIREMENTS Asbestos abatement work tasks shall be performed as shown on the drawings, as summarized in paragraph DESCRIPTION OF WORK and including Table 1 and the Contractor's Accident Prevention Plan, Asbestos
Hazard Abatement Plan, and the Activity Hazard Analyses. The Contractor shall use the engineering controls and work practices required in 29 CFR 1926, Section .1101(g) in all operations regardless of the levels of exposure. Personnel shall wear and utilize protective clothing and equipment as specified. The Contractor shall not permit eating, smoking, drinking, chewing or applying cosmetics in the regulated area. All hot work (burning, cutting, welding, etc.) shall be conducted under controlled conditions in conformance with 29 CFR 1926, Section .352, Fire Prevention. Personnel of other trades, not engaged in asbestos abatement activities, shall not be exposed at any time to airborne concentrations of asbestos unless all the administrative and personal protective provisions of the Contractor's Accident Prevention Plan are complied with. Power to the regulated area shall be locked-out and tagged in accordance with 29 CFR 1910, and temporary electrical service with ground fault circuit interrupters shall be provided as needed. Temporary electrical service shall be disconnected when necessary for wet removal. The Contractor shall stop abatement work in the regulated area immediately when the airborne total fiber concentration: (1) equals or exceeds 0.01 f/cc, or the pre-abatement concentration, whichever is greater, outside the regulated area; or (2) equals or exceeds 1.0 f/cc inside the regulated area. The Contractor shall correct the condition to the satisfaction of the Contracting Officer, including visual inspection and air sampling. Work shall resume only upon notification by the Contracting Officer. Corrective actions shall be documented. ### 3.2 PROTECTION OF ADJACENT WORK OR AREAS TO REMAIN Asbestos abatement shall be performed without damage to or contamination of adjacent work or area. Where such work or area is damaged or contaminated, as verified by the Contracting Officer using visual inspection or sample analysis, it shall be restored to its original condition or decontaminated by the Contractor at no expense to the Government, as deemed appropriate by the Contracting Officer. ### 3.3 OBJECTS ### 3.3.1 Removal of Mobile Objects - Not Used. Repair Fuel Systems Maintenance Dock - Building 1012, Fairchild AFB, WA PN: GJKZ 99-0151 ### 3.3.2 Stationary Objects Stationary objects and furnishings shall be covered with 2 layers of polyethylene and edges sealed with duct tape. ### 3.3.3 Reinstallation of Mobile Objects - Not Used #### 3.4 BUILDING VENTILATION SYSTEM AND CRITICAL BARRIERS Building ventilating systems supplying air into or returning air out of a regulated area shall be isolated by airtight seals to prevent the spread of contamination throughout the system. #### 3.5 PRECLEANING - NOT USED ### 3.6 METHODS OF COMPLIANCE ### 3.6.1 Mandated Practices The Contractor shall employ proper handling procedures in accordance with 29 CFR 1926 and 40 CFR 61, Subpart M, and the specified requirements. The specific abatement techniques and items identified shall be detailed in the Contractor's Asbestos Hazard Abatement Plan including, but not limited to, details of construction materials, equipment, and handling procedures. The Contractor shall use the following engineering controls and work practices in all operations, regardless of the levels of exposure: - a. Vacuum cleaners equipped with HEPA filters to collect debris and dust containing ACM. - b. Wet methods or wetting agents to control employee exposures during asbestos handling, mixing, removal, cutting, application, and cleanup; except where it can be demonstrated that the use of wet methods is unfeasible due to, for example, the creation of electrical hazards, equipment malfunction, and in roofing. - c. Prompt clean-up and disposal in leak-tight containers of wastes and debris contaminated with asbestos. - d. Inspection and repair of polyethylene in work and high traffic areas. - e. Cleaning of equipment and surfaces of containers filled with ACM prior to removing them from the equipment room or area. #### 3.6.2 Control Methods The Contractor shall use the following control methods to comply with the PELs: - a. Local exhaust ventilation equipped with HEPA filter dust collection systems; - b. Enclosure or isolation of processes producing asbestos dust; #### 00029/11 # Repair Fuel Systems Maintenance Dock - Building 1012, Fairchild AFB, WA PN: GJKZ 99-0151 - c. Ventilation of the regulated area to move contaminated air away from the breathing zone of employees and toward a filtration or collection device equipped with a HEPA filter; - d. Use of other work practices and engineering controls; - e. Where the feasible engineering and work practice controls described above are not sufficient to reduce employee exposure to or below the PELs, the Contractor shall use them to reduce employee exposure to the lowest levels attainable by these controls and shall supplement them by the use of respiratory protection that complies with paragraph, RESPIRATORY PROTECTION PROGRAM. ### 3.6.3 Unacceptable Practices The following work practices and engineering controls shall not be used for work related to asbestos or for work which disturbs ACM, regardless of measured levels of asbestos exposure or the results of initial exposure assessments: - a. High-speed abrasive disc saws that are not equipped with point of cut ventilator or enclosures with HEPA filtered exhaust air. - b. Compressed air used to remove asbestos, or materials containing asbestos, unless the compressed air is used in conjunction with an enclosed ventilation system designed to capture the dust cloud created by the compressed air. - c. Dry sweeping, shoveling, or other dry clean-up of dust and debris containing ACM. - d. Employee rotation as a means of reducing employee exposure to asbestos. #### 3.6.4 Class I Work Procedures In addition to requirements of paragraphs Mandated Practices and Control Methods, the following engineering controls and work practices shall be used: - a. A Competent Person shall supervise the installation and operation of the control system. - b. For jobs involving the removal of more than 25 feet or 10 square feet of TSI or surfacing material, the Contractor shall place critical barriers over all openings to the regulated area. - c. HVAC systems shall be isolated in the regulated area by sealing with a double layer of plastic or air-tight rigid covers. - d. Impermeable dropcloths (6 mil or greater thickness) shall be placed on surfaces beneath all removal activity. - e. Objects within the regulated area shall be handled as specified in paragraph OBJECTS. Repair Fuel Systems Maintenance Dock - Building 1012, Fairchild AFB, WA PN: GJKZ 99-0151 f. Where a negative exposure assessment has not been provided or where exposure monitoring shows the PEL was exceeded, the regulated area shall be ventilated to move contaminated air away from the employee's breathing zone toward a HEPA unit or collection device. ### 3.6.5 Specific Control Methods for Class I Work In addition to requirements of paragraph Class I Work Procedures, Class I asbestos work shall be performed using the control methods identified in the subparagraphs below. ### 3.6.5.1 Negative Pressure Enclosure (NPE) System The system shall provide at least 4 air changes per hour inside the containment. The local exhaust unit equipment shall be operated 24 hours per day until the containment is removed, and shall be leak-proof to the filter and equipped with HEPA filters. Air movement shall be directed away from the employees and toward a HEPA filtration device. The NPE shall be smoke tested for leaks at the beginning of each shift. Local exhaust equipment shall be sufficient to maintain a minimum pressure differential of minus 0.02 inch of water column relative to adjacent, unsealed areas. Pressure differential shall be monitored continuously, 24 hours per day, with an automatic manometric recording instrument. Pressure differential recordings shall be provided daily on the same day collected. Readings shall be reviewed by the Contractor's Designated Competent Person and CIH prior to submittal. The Contracting Officer shall be notified immediately if the pressure differential falls below the prescribed minimum. The building ventilation system shall not be used as the local exhaust system for the regulated area. The local exhaust system shall terminate outdoors unless an alternate arrangement is allowed by the Contract Officer. All filters used shall be new at the beginning of the project and shall be periodically changed as necessary and disposed of as ACM waste. ### 3.6.5.2 Glovebag Systems The glovebag system shall be used to remove ACM from straight runs of piping and elbows and other connections. Glovebags shall be used without modification and shall be smoke-tested for leaks and any leaks sealed prior to use. ### 3.6.5.3 Mini-Enclosures Single bulkhead containment or mini-containment (small walk-in enclosure) to accommodate no more than 2 persons, may be used if the disturbance or removal can be completely contained by the enclosure with the following specifications and work practices. The mini-enclosure shall be inspected for leaks and smoke tested before each use. Air movement shall be directed away from the employee's breathing zone within the mini-enclosure. ### 3.6.5.4 Wrap and Cut Operation Prior to cutting pipe, the asbestos-containing insulation shall be wrapped with polyethylene and securely sealed with duct tape to prevent asbestos becoming airborne as a result of the cutting process. ### 3.6.6 Class II Work In addition to the requirements of paragraphs Mandated Practices and Control Methods, the following engineering controls and work practices shall be used: - a. A Competent Person shall supervise the work. - b. For indoor work, critical barriers shall be placed over all openings to the regulated area. - c. Impermeable dropcloths shall be placed on surfaces beneath all removal activity. ### 3.6.7 Specific
Control Methods for Class II Work In addition to requirements of paragraph Class II Work, Class II work shall be performed using the following methods: ### 3.6.7.1 Cementitious Siding and Shingles or Transite Panels Intentionally cutting, abrading or breaking siding, shingles, or transite panels is prohibited. Each panel or shingle shall be sprayed with amended water prior to removal. Nails shall be cut with flat, sharp instruments. Unwrapped or unbagged panels or shingles shall be immediately lowered to the ground via covered dust-tight chute, crane or hoist, or placed in an impervious waste bag or wrapped in plastic sheeting and lowered to the ground no later than the end of the work shift. ### 3.6.7.2 Gaskets Gaskets shall be thoroughly wetted with amended water prior to removal and immediately placed in a disposal container. If a gasket is visibly deteriorated and unlikely to be removed intact, removal shall be undertaken within a glovebag. Any scraping to remove residue shall be performed wet. ### 3.6.8 Specific Control Methods for Class III Work Class III asbestos work shall be conducted using engineering and work practice controls which minimize the exposure to employees performing the asbestos work and to bystander employees. The work shall be performed using wet methods and, to the extent feasible, using local exhaust ventilation. The Contractor shall use impermeable dropcloths and shall isolate the operation, using mini-enclosures or glovebag systems, where the disturbance involves drilling, cutting, abrading, sanding, chipping, breaking, or sawing of TSI or surfacing material. ### 3.6.9 Specific Control Methods for Class IV Work Class IV jobs shall be conducted using wet methods, HEPA vacuums, and prompt clean-up of debris containing ACM. Employees cleaning up debris and waste in a regulated area where respirators are required shall wear the selected respirators. ### 3.6.10 Cleaning After Asbestos Removal Repair Fuel Systems Maintenance Dock - Building 1012, Fairchild AFB, WA PN: GJKZ 99-0151 After completion of all asbestos removal work, surfaces from which ACM has been removed shall be wet wiped or sponged clean, or cleaned by some equivalent method to remove all visible residue. Run-off water shall be collected and filtered through a dual filtration system. A first filter shall be provided to remove fibers 20 micrometers and larger, and a final filter provided that removes fibers 5 micrometers and larger. After the gross amounts of asbestos have been removed from every surface, remaining visible accumulations of asbestos on floors shall be collected using plastic shovels, rubber squeegees, rubber dustpans, and HEPA vacuum cleaners as appropriate to maintain the integrity of the regulated area. When TSI and surfacing material has been removed, workmen shall use HEPA vacuum cleaners to vacuum every surface. Surfaces or locations which could harbor accumulations or residual asbestos dust shall be checked after vacuuming to verify that no asbestos-containing material remains; and shall be revacuumed as necessary to remove the ACM. ### 3.6.16 Encapsulation of ACM Prior to applying any encapsulant, the entire surface area shall be inspected for loose, or damaged asbestos material: Penetrating Encapsulation: Before penetrating encapsulation is applied, asbestos removal work in the area shall be complete and the surfaces to be encapsulated shall be free of loose or damaged material. Substrate shall be evaluated before application to ensure that the encapsulant will not cause the substrate to fail in any way. Acoustical wall and ceiling plaster surfaces shall be encapsulated in accordance with manufacturer's recommendations. Plug samples shall be taken to determine if full penetration has been achieved. If full penetration has not been achieved, surfaces shall be recoated while the matrix is still wet, until full penetration is achieved. ### 3.7 FINAL CLEANING AND VISUAL INSPECTION Upon completion of abatement, the regulated area shall be cleaned by collecting, packing, and storing all gross contamination. A final cleaning shall be performed using HEPA vacuum and wet cleaning of all exposed surfaces and objects in the regulated area. Upon completion of the cleaning, the Contractor shall conduct a visual pre-inspection of the cleaned area in preparation for a final inspection before final air clearance monitoring and recleaning, as necessary. Upon completion of the final cleaning, the Contractor and the Contracting Officer shall conduct a final visual inspection of the cleaned regulated area in accordance with ASTM E 1368 and document the results on the Final Cleaning and Visual Inspection as specified on the attached form (Visual Inspection). If the Contracting Officer rejects the clean regulated area as not meeting final cleaning requirements, the Contractor shall reclean as necessary and have a follow-on inspection conducted with the Contracting Officer. Recleaning and follow-up reinspection shall be at the Contractor's expense. ### 3.8 LOCKDOWN Prior to removal of plastic barriers and after clean-up of gross contamination and final visual inspection, a post removal (lockdown) encapsulant shall be spray applied to ceiling, walls, floors, and other surfaces in the regulated area. Repair Fuel Systems Maintenance Dock - Building 1012, Fairchild AFB, WA PN: GJKZ 99-0151 3.9 EXPOSURE ASSESSMENT AND AIR MONITORING ### 3.9.1 General Requirements For Exposure Exposure assessment, air monitoring and analysis of airborne concentration of asbestos fibers shall be performed in accordance with 29 CFR 1926, Section .1101, the Contractor's air monitoring plan, and as specified. Personal exposure air monitoring (collected at the breathing zone) that is representative of the exposure of each employee who is assigned to work within a regulated area shall be performed by the Contractor's Designated CIH. Breathing zone samples shall be taken for at least 25 percent of the workers in each shift, or a minimum of 2, whichever is greater. Air monitoring results at the 95 percent confidence level shall be calculated by the Contractor's CIH. Preabatement and abatement environmental air monitoring shall be performed by the Contractor's Designated CIH. Final clearance environmental air monitoring, shall be performed by the Contractor's Designated CIH. Results of breathing zone samples shall be posted at the job site and made available to the Contracting Officer. The Contractor shall maintain a fiber concentration inside a regulated area less than or equal to 0.1 f/cc expressed as an 8 hour, time-weighted average (TWA) during the conduct of the asbestos abatement. If fiber concentration rises above 0.1 f/cc, work procedures shall be investigated with the Contracting Officer to determine the cause. At the discretion of the Contracting Officer, fiber concentration may exceed 0.1 f/cc but shall not exceed 1.0 f/cc expressed as an 8-hour TWA. The Contractor's workers shall not be exposed to an airborne fiber concentration in excess of 1.0 f/cc, as averaged over a sampling period of 30 minutes. Should either an environmental concentration of 1.0 f/cc expressed as an 8-hour TWA or a personal excursion concentration of 1.0 f/cc expressed as a 30-minute sample occur inside a regulated work area, the Contractor shall stop work immediately, notify the Contracting Officer, and implement additional engineering controls and work practice controls to reduce airborne fiber levels below prescribed limits in the work area. Work shall not restart until authorized by the Contracting Officer. ### 3.9.2 Initial Exposure Assessment The Contractor's Designated CIH shall conduct an exposure assessment immediately before or at the initiation of an asbestos abatement operation to ascertain expected exposures during that operation. The assessment shall be completed in time to comply with the requirements which are triggered by exposure data or the lack of a negative exposure assessment, and to provide information necessary to assure that all control systems planned are appropriate for that operation. The assessment shall take into consideration both the monitoring results and all observations, information or calculations which indicate employee exposure to asbestos, including any previous monitoring conducted in the workplace, or of the operations of the Contractor which indicate the levels of airborne asbestos likely to be encountered on the job. For Class I asbestos work, until the employer conducts exposure monitoring and documents that employees on that job will not be exposed in excess of PELs, or otherwise makes a negative exposure assessment, the Contractor shall presume that employees are exposed in excess of the PEL-TWA and PEL-Excursion Limit. Repair Fuel Systems Maintenance Dock - Building 1012, Fairchild AFB, WA PN: GJKZ 99-0151 ### 3.9.3 Negative Exposure Assessment The Contractor shall provide a negative exposure assessment for the specific asbestos job which will be performed. The negative exposure assessment shall be provided within 10 days of the initiation of the project and conform to the following criteria: - a. Objective Data: Objective data demonstrating that the product or material containing asbestos minerals or the activity involving such product or material cannot release airborne fibers in concentrations exceeding the PEL-TWA and PEL-Excursion Limit under those work conditions having the greatest potential for releasing asbestos. - b. Prior Asbestos Jobs: Where the Contractor has monitored prior asbestos jobs for the PEL and the PEL-Excursion Limit within 12 months of the current job, the monitoring and analysis were performed in compliance with asbestos standard in effect; the data were obtained during work operations conducted under workplace conditions closely resembling the processes, type of material, control methods, work practices, and environmental conditions used and prevailing in the Contractor's current operations; the
operations were conducted by employees whose training and experience are no more extensive than that of employees performing the current job; and these data show that under the conditions prevailing and which will prevail in the current workplace, there is a high degree of certainty that the monitoring covered exposure from employee exposures will not exceed the PEL-TWA and PEL-Excursion Limit. - c. Initial Exposure Monitoring: The results of initial exposure monitoring of the current job, made from breathing zone air samples that are representative of the 8-hour PEL-TWA and 30-minute short-term exposures of each employee. The monitoring covered exposure from operations which are most likely during the performance of the entire asbestos job to result in exposures over the PELs. ### 3.9.4 Preabatement Environmental Air Monitoring Preabatement environmental air monitoring shall be established 1 day prior to the masking and sealing operations for each regulated area to determine background concentrations before abatement work begins. As a minimum, preabatement air samples shall be collected using NIOSH Pub No. 84-100 Method 7400, PCM at these locations: outside the building; inside the building, but outside the regulated area perimeter; and inside each regulated work area. One sample shall be collected for every 2000 square feet of floor space. At least 2 samples shall be collected outside the building: at the exhaust of the HEPA unit; and downwind from the abatement site. The PCM samples shall be analyzed within 24 hours; and if any result in fiber concentration greater than 0.01 f/cc, asbestos fiber concentration shall be confirmed using NIOSH Pub No. 84-100 Method 7402 (TEM). ### 3.9.5 Environmental Air Monitoring During Abatement Until an exposure assessment is provided to the Contracting Officer, environmental air monitoring shall be conducted at locations and frequencies that will accurately characterize any evolving airborne asbestos fiber Repair Fuel Systems Maintenance Dock - Building 1012, Fairchild AFB, WA PN: GJKZ 99-0151 concentrations. The assessment shall demonstrate that the product or material containing asbestos minerals, or the abatement involving such product or material, cannot release airborne asbestos fibers in concentrations exceeding $0.01~\mathrm{f/cc}$ as a TWA under those work conditions having the greatest potential for releasing asbestos. The monitoring shall be at least once per shift at locations including, but not limited to, close to the work inside a regulated area; preabatement sampling locations; outside entrances to a regulated area; close to glovebag operations; representative locations outside of the perimeter of a regulated area; inside clean room; and at the exhaust discharge point of local exhaust system ducted to the outside of a containment (if used). If the sampling outside regulated area shows airborne fiber levels have exceeded background or 0.01 f/cc, whichever is greater, work shall be stopped immediately, and the Contracting Officer notified. The condition causing the increase shall be corrected. Work shall not restart until authorized by the Contracting Officer. ### 3.9.6 Final Clearance Air Monitoring Prior to conducting final clearance air monitoring, the Contractor and the Contracting Officer shall conduct a final visual inspection of the regulated area where asbestos abatement has been completed. Final clearance air monitoring shall not begin until acceptance of the Contractor's final cleaning by the Contracting Officer. The Contractor's Designated CIH shall conduct final clearance air monitoring using aggressive air sampling techniques as defined in EPA 560/5-85-024 or as otherwise required by federal or state requirements. The sampling and analytical method used will be NIOSH Pub No. 84-100 Method 7400 (PCM). ### 3.9.6.3 Air Clearance Failure If clearance sampling results fail to meet the final clearance requirements, the Contractor shall pay all costs associated with the required recleaning, resampling, and analysis, until final clearance requirements are met. ### 3.9.7 Air-Monitoring Results and Documentation Air sample fiber counting shall be completed and results provided within 24 hours (breathing zone samples), and 48 hours (environmental/clearance monitoring) after completion of a sampling period. The Contracting Officer shall be notified immediately of any airborne levels of asbestos fibers in excess of established requirements. Written sampling results shall be provided within 5 working days of the date of collection. The written results shall be signed by testing laboratory analyst and the Contractor's Designated CIH. The air sampling results shall be documented on a Contractor's daily air monitoring log. The daily air monitoring log shall contain the following information for each sample: - a. Sampling and analytical method used; - b. Date sample collected; - c. Sample number; - d. Sample type: BZ = Breathing Zone (Personal), P = Preabatement, E = Environmental, C = Abatement Clearance; Repair Fuel Systems Maintenance Dock - Building 1012, Fairchild AFB, WA PN: GJKZ 99-0151 - e. Location/activity/name where sample collected; - f. Sampling pump manufacturer, model and serial number, beginning flow rate, end flow rate, average flow rate (L/min); - g. Calibration date, time, method, location, name of calibrator, signature; - h. Sample period (start time, stop time, elapsed time (minutes); - i. Total air volume sampled (liters); - j. Sample results (f/cc and S/mm square) if EPA methods are required for final clearance; - k. Laboratory name, location, analytical method, confidence level. In addition, the printed name and a signature and date block for the Industrial Hygienist who conducted the sampling and for the Industrial Hygienist who reviewed the daily air monitoring log verifying the accuracy of the information. ### 3.10 CLEARANCE CERTIFICATION When asbestos abatement is complete, ACM waste is removed from the regulated areas, and final clean-up is completed, the Contracting Officer will certify the areas as safe before allowing the warning signs and boundary warning tape to be removed. The Contractor and the Contracting Officer shall visually inspect all surfaces within the containment for residual material or accumulated debris. The Contractor shall reclean all areas showing dust or residual materials. The Contracting Officer will certify in writing that the area is safe before unrestricted entry is permitted. The Government will have the option to perform monitoring to certify the areas are safe before entry is permitted. ### 3.11 CLEANUP AND DISPOSAL ### 3.11.1 Title to ACM Materials ACM material resulting from abatement work, except as specified otherwise, shall become the property of the Contractor and shall be disposed of as specified and in accordance with applicable federal, state and local regulations. ### 3.11.2 Collection and Disposal of Asbestos All ACM waste including contaminated wastewater filters, scrap, debris, bags, containers, equipment, and asbestos contaminated clothing, shall be collected and placed in leak-tight containers such as double plastic bags; sealed double wrapped polyethylene sheet; sealed fiberboard boxes; or other approved containers. Waste within the containers shall be wetted in case the container is breeched. Asbestos-containing waste shall be disposed of at an EPA, or state approved asbestos landfill. For temporary storage, sealed impermeable containers shall be stored in an asbestos waste load-out unit or in a storage/transportation conveyance (i.e., dumpster, roll-off waste boxes, etc.) in a manner acceptable to and in an area assigned by the Contracting Officer. Procedure for hauling and disposal shall comply with 40 CFR 61, Subpart M, state, regional, and local standards. Repair Fuel Systems Maintenance Dock - Building 1012, Fairchild AFB, WA PN: GJKZ 99-0151 3.11.3 Scale Weight Measurement Scales used for measurement shall be public scales. Weighing shall be at a point nearest the work at which a public scale is available 3.11.4 Weigh Bill and Delivery Tickets Copies of weigh bills and delivery tickets shall be submitted to the Contracting Officer. 3.11.5 Asbestos Waste Shipment Record The Contractor shall complete and provide the Contracting Officer final completed copies of the Waste Shipment Record for all shipments of waste material as specified in 40 CFR 61, Subpart M and other required state waste manifest shipment records, within 3 days of delivery to the landfill. Each Waste Shipment Record shall be signed and dated by the Contractor the waste transporter and disposal facility operator. Repair Fuel Systems Maintenance Dock - Building 1012, Fairchild AFB, WA PN: GJKZ 99-0151 ## Table 1 - INDIVIDUAL WORK TASK DATA ELEMENTS | Work Task
Number | 1 | 2 | 3 | 4 | 5 | |--------------------------------|---------------------------------|-----------------|-------------|-------------|----------------------------------| | Location of material | Hangar | Hangar | Building | Building | Hangar | | Type of material | Pipe Insulation | Pipe
Fitting | Gaskets | Fire Doors | Cement Asbestos Board (Transite) | | Type of
Asbestos
Content | Chrysotile
Amosite | Amosite | Assumed | Assumed | Assumed | | Percent
Asbestos
content | Chrysotile - 15
Amosite - 15 | 70 | NA | NA | NA | | Friable/Non -friable | Friable | Friable | Non-friable | Non-friable | Non-
friable | | Material
Condition | Good | Good | Good | Good | Good | | Quantity | 1,250 lineal ft | 80 each | 4 each | 12 each | 230 sq ft | Repair Fuel Systems Maintenance Dock - Building 1012, Fairchild AFB, WA PN: GJKZ 99-0151 ### CERTIFICATE OF WORKER'S ACKNOWLEDGMENT | PROJECT NAME | CONTRACT NO | | | | | |---
---|---|--|--|--| | PROJECT ADDRESS | | | | | | | CONTRACTOR FIRM | NAME | | | | | | EMPLOYEE'S NAME | | | | | | | (Print) | (Last) (First) | (MI) | | | | | Social Security | / Number:, | | | | | | BEEN LINKED W
INHALE ASBEST | H ASBESTOS CAN BE DANGEROUS. INHALING ASBEST WITH TYPES OF LUNG DISEASE AND CANCER. IF YOU STOS FIBERS, THE CHANCE THAT YOU WILL DEVELOP THAN THAT OF THE NONSMOKING PUBLIC. | OU SMOKE AND | | | | | and you complete will perform and personal protect its use; and the capacity to perform the conditions expect equipment. These certification, yobligations to yocheck the block (| s contract for the above project requires that the formal asbestos training specific to the training project specific training; that you be supportive equipment including a respirator, that hat you receive a medical examination to evaluate form your assigned work tasks, under the envected, while wearing the required personal prese things are to be done at no cost to you. You are acknowledging that your employer has you. The Contractor's Designated Industrial as (s) for the type of formal training you have the clean of the signing this certification. | ype of work you plied with proper you be trained in uate your physical ironmental otective By signing this met these Hygienist will completed. | | | | | Model Accreditat | G:
Competent Persons and Supervisors: I have conting the contraction Program (MAP) training course, "Contraction State's requirements. | | | | | | (1) F course (2) F than o tile, that m (3) F type o of 29 CFR 1926, practices and er hands-on training | 3 | ments. abatement of more g, siding, floor course, "Worker" batement of one ss on the elements he specific work .1101(g) and | | | | | that meets this (4) F course consister agency maintenar the elements of | (b) I have completed EPA's MAP training counts State's requirements. For OSHA Class III work: I have completed a cent with EPA requirements for training of locance and custodial staff at 40 CFR 763, Section 29 CFR 1926, Section .1101(k)(9)(viii), in practices and engineering controls at 29 CFR ds-on training. | t least a 16-hour
al education
on .92(a)(2) and
addition to the | | | | Repair Fuel Systems Maintenance Dock - Building 1012, Fairchild AFB, WA PN: GJKZ 99-0151 | (5) For OSHA Class IV work: I have compourse consistent with EPA requirements for training agency maintenance and custodial staff at 40 CFR 76 elements of 29 CFR 1926, Section .1101(k)(9)(viii) specific work practices and engineering controls at .1101(g) and hands-on training. | ng of local education
63, (a)(1), and the
, in addition to the | | |---|--|--| | c. Workers, Supervisors and the Designated of completed annual refresher training as required by State's requirements. | | | | PROJECT SPECIFIC TRAINING: I have been provided and have completed the required by this Contract. My employer's Designate Designated Competent Person conducted the training | ed Industrial Hygienist and | | | RESPIRATORY PROTECTION: I have been trained in accordance with the contractor's Respiratory Protection program. I have dangers of handling and breathing asbestos dust and procedures and use and limitations of the respirate been trained in and will abide by the facial hair a of my employer. | ve been trained in the
d in the proper work
or(s) I will wear. I have | | | RESPIRATOR FIT-TEST TRAINING: I have been trained in the proper selection cleaning, maintenance, and storage of the respirator have been fit-tested in accordance with the criter: Respiratory Program and have received a satisfactor assigned my individual respirator. I have been tax perform positive and negative pressure fit-check up pressure respirators each time. | r(s) that I will wear. I ia in the Contractor's ry fit. I have been ught how to properly | | | MEDICAL EXAMINATION: I have had a medical examination within the last twelve months which was paid for by my employer. The examination included: health history, pulmonary function tests, and may have included an evaluation of a chest x-ray. A physician made a determination regarding my physical capacity to perform work tasks on the project while wearing personal protective equipment including a respirator. I was personally provided a copy and informed of the results of that examination. My employer's Industrial Hygienist evaluated the medical certification provided by the physician and checked the appropriate blank below. The physician determined that there: | | | | were no limitations to performing the requirement were identified physical limitations to performing the requirement tasks. | | | | Date of the medical examination | | | | Employee Signature Contractor's Industrial | date | | | Hygienist Signature | date | | Repair Fuel Systems Maintenance Dock - Building 1012, Fairchild AFB, WA PN: GJKZ 99-0151 ### Certification of Final Cleaning and Visual Inspection In accordance with the cleaning and decontamination procedures specified in the Contractor's asbestos hazard abatement plan and this contract, the Contractor hereby certifies that he/she has thoroughly visually inspected the decontaminated regulated work area (all surfaces, including pipes, beams, ledges, walls, ceiling, floor, decontamination unit, etc.) in accordance with ASTM E1368, Standard Practice for Visual Inspection of Asbestos Abatement Projects, and has found no dust, debris, or asbestos-containing material residue. | BY: (Contractor's Signature) | Date | | | |---|----------------|--|--| | Print name and title: | | | | | (Contractor's Onsite Supervisor signature) | Date | | | | Print name and title | | | | | (Contractor's Industrial Hygienist signature) | Date | | | | (Print name and title) | | | | | Contracting Officer Acceptance or Rejection | ı | | | | The Contracting Officer hereby determines that the Contractor has performed final cleaning and visual inspection of the decontaminated regulated work area (all surfaces including pipes, beams, ledges, walls, ceiling, floor, decontamination unit, etc.) and by quality assurance inspection, finds the Contractor's final cleaning to be: | | | | | Acceptable | | | | | Unacceptable, Contractor instructed to reclean the area. | regulated work | | | | BY: Contracting Officer's Representative | | | | | Signature: Date | | | | | Print name and title: | | | | END OF SECTION SECTION 13850 ### FIRE DETECTION AND ALARM SYSTEM, DIRECT CURRENT LOOP ### PART 1 GENERAL ### 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. ### AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI) ANSI S3.41 (1990) Audible Emergency Evacuation Signals CODE OF FEDERAL REGULATIONS (CFR) 47 CFR 15 Radio Frequency Devices FACTORY MUTUAL ENGINEERING AND RESEARCH (FM) FM P7825a (1996) Approval Guide Fire Protection INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE) IEEE C62.41 (1991) Surge Voltages in Low-Voltage AC Power Circuits ### NATIONAL FIRE PROTECTION ASSOCIATION (NFPA) NFPA 70 (1999) National Electrical Code NFPA 72 (1996) National Fire Alarm Code NFPA 90A (1996) Installation of Air Conditioning and Ventilating Systems NFPA 1221 (1994) Installation, Maintenance and Use of Public Fire Service Communication Systems ### UNDERWRITERS LABORATORIES (UL) UL 6 (1997) Rigid Metal Conduit UL 268 (1996) Smoke Detectors for Fire Protective Signaling Systems UL 268A (1993; Rev thru May 1997) Smoke Detectors for Duct Applications DACA67-00-R-0222 SECTION 13850 Page 1 | UL 464 | (1996) Audible Signal Appliances | |--------------------|---| | UL 521 | (1993; Rev Oct 1994) Heat Detectors for Fire Protective Signaling Systems | | UL 632/ANSI C33.41 | (1994; Rev Sep 1994) Electrically-Actuated Transmitters | | UL 797 | (1993; Rev thru Mar 1997) Electrical Metallic
Tubing | | UL 864 | (1991; Rev thru May 1994) Control Units for Fire-Protective Signaling Systems | | UL 1242 | (1996) Intermediate Metal Conduit | | UL 1971 | (1995; Rev thru May 1997) Signaling Devices for the Hearing Impaired | ### 1.2 GENERAL REQUIREMENTS #### 1.2.1
Standard Products Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least 2 years prior to bid opening. Equipment shall be supported by a service organization that can provide service within 24 hours of notification. ### 1.2.2 Nameplates Major components of equipment shall have the manufacturer's name, address, type or style, voltage and current rating, and catalog number on a noncorrosive and nonheat-sensitive plate which is securely attached to the equipment. ### 1.2.3 Keys and Locks Locks shall be keyed alike. Four keys for the system shall be provided. They shall be either Corbin B or a C-415 key to match Fairchild AFB Fire Alarm System Master Plan. Copies of these keys will be made available by the Fire Prevention Section to meet this requirement upon request by the Contractor. ### 1.2.4 Tags Tags with stamped identification number shall be furnished for keys and locks. ### 1.2.5 Verification of Dimensions After becoming familiar with details of the work, the Contractor shall verify dimensions in the field and shall advise the Contracting Officer of any discrepancy before performing the work. ### 1.2.6 Compliance The fire detection and alarm system and the central reporting system shall be configured in accordance with NFPA 72. The equipment furnished shall be compatible and be UL listed, FM approved, or approved or listed by a nationally recognized testing laboratory in accordance with the applicable NFPA standards. All equipment provided shall be Year 2000 Compliant. ### 1.2.7 Qualifications ### 1.2.7.2 Installer The installing Contractor shall provide the following: Fire Alarm Technicians to perform the installation of the system. A Fire Alarm Technician with a minimum of 4 years of experience shall perform/supervise the installation of the fire alarm system. Fire Alarm technicians with a minimum of 2 years of experience shall be utilized to assist in the installation and terminate fire alarm devices, cabinets and panels. An electrician shall be allowed to install wire or cable and to install conduit for the fire alarm system. The Fire Alarm technicians installing the equipment shall be factory trained in the installation, adjustment, testing, and operation of the equipment specified herein and on the drawings. ### 1.3 SYSTEM DESIGN ### 1.3.1 Operation The fire alarm and detection system shall be a complete, supervised fire alarm system. The system shall be activated into the alarm mode by actuation of any alarm initiating device. The system shall remain in the alarm mode until the initiating device is reset and the fire alarm control panel is reset and restored to normal. Alarm initiating devices shall be connected to initiating device circuits (IDC), Style D, in accordance with NFPA 72. Alarm notification appliances shall be connected to notification appliance circuits (NAC), Style Z in accordance with NFPA 72. A looped conduit system shall be provided so that if the conduit and all conductors within are severed at any point, all IDC, or NAC will remain functional. The conduit loop requirement is not applicable to the signal transmission link from the local panels (at the protected premises) to the Supervising Station. Textual, audible, and visual appliances and systems shall comply with NFPA 72. Fire alarm system components requiring power, except for the control panel power supply, shall operate on 24 Volts dc. ### 1.3.2 Operational Features The system shall have the following operating features: - a. Monitor electrical supervision of alarm IDC and NAC. - b. Monitor electrical supervision of the primary power (ac) supply, battery voltage, placement of alarm zone module (card, PC board) within the control panel, and transmitter tripping circuit integrity. - c. A trouble buzzer and trouble light emitting diode (LED) to activate upon a single break, open, or ground fault condition which prevents the required normal operation of the system. The trouble signal shall also operate upon loss of primary power (ac) supply, low battery voltage, removal of alarm zone module (card, PC board), and disconnection of the circuit used for transmitting alarm signals off-premises. A trouble alarm silence switch shall be provided which will silence the trouble buzzer, but will not extinguish the trouble indicator LED. Subsequent trouble and supervisory alarms shall sound the trouble signal until silenced. After the system returns to normal operating conditions, the trouble buzzer shall again sound until the silencing switch returns to normal position, unless automatic trouble reset is provided. - d. A one person test mode. Activating an initiating device in this mode will activate an alarm for a short period of time, then automatically reset the alarm, without activating the transmitter during the entire process. - e. A transmitter disconnect switch to allow testing and maintenance of the system without activating the transmitter but providing a trouble signal when disconnected and a restoration signal when reconnected. - f. Electrical supervision for circuits used for supervisory signal services (i.e., sprinkler systems, valves, etc.). Supervision shall detect any open, short, or ground. - g. The fire alarm control panel shall provide supervised relays for HVAC shutdown. An override at the HVAC panel shall not be provided. - h. Provide one person test mode Activating an initiating device in this mode will activate an alarm for a short period of time, then automatically reset the alarm, without activating the transmitter during the entire process. - i. The fire alarm control panel shall provide the required modules to monitor and control the fire sprinkler system, or other fire protection extinguishing system. - j. Zones for alarm IDC and NAC shall be arranged as indicated on the contract drawings. - k. The fire alarm control panel shall be readily capable of future expansion and modification. Examples of required changes are: adding or deleting devices or zones; changing system responses to particular input signals; programming certain input signals to activate auxiliary devices. ### 1.3.3 Alarm Functions An alarm condition on a circuit shall automatically initiate the following functions: a. Transmission of a signal over the station radio fire reporting system. The signals shall be different for each zone. - b. Visual indications of the alarmed zones on the fire alarm control panel and on the remote annunciator. - c. Continuous sounding or operation of alarm notification appliances throughout the building as required by ANSI S3.41. - d. Deactivation of the air handling units in the alarmed zone. ### 1.3.4 Primary Power Operating power shall be provided as required by paragraph 3.1.1 Power Supply for the System. Transfer from normal to emergency power or restoration from emergency to normal power shall be fully automatic and not cause transmission of a false alarm. Loss of ac power shall not prevent transmission of a signal via the fire reporting system upon operation of any initiating circuit. ### 1.3.5 Battery Backup Power Battery backup power shall be through use of rechargeable, lead acid sealedtype storage batteries and battery charger. ### 1.3.7 Interface With Other Equipment Interfacing components shall be furnished as required to connect to subsystems or devices which interact with the fire alarm system, such as supervisory or alarm contacts in suppression systems, operating interfaces, etc. ### 1.5 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-01 Data Storage Batteries; GA. Substantiating battery calculations for supervisory and alarm power requirements. Ampere-hour requirements for each system component and each panel component, and the battery recharging period shall be included. Voltage Drop; GA. Voltage drop calculations for notification appliance circuits to indicate that sufficient voltage is available for proper appliance operation. Spare Parts; GA. Spare parts data for each different item of material and equipment specified, not later than 30 days prior to the date of beneficial occupancy. 00029/11 REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 Data shall include a complete list of parts and supplies with the current unit prices and source of supply and a list of the parts recommended by the manufacturer to be replaced after 1 year of service. SD-04 Drawings Fire Alarm Reporting System; GA. Detail drawings, prepared and signed by a Registered Professional Engineer, consisting of a complete list of equipment and material, including manufacturer's descriptive and technical literature, catalog cuts, and installation instructions. Note that the contract drawings show layouts based on typical detectors. The Contractor shall check the layout based on the actual detectors to be installed and make any necessary revisions in the detail drawings. The detail drawings shall also contain complete wiring and schematic diagrams for the equipment furnished, equipment layout, and any other details required to demonstrate that the system has been coordinated and will properly function as a unit. Detailed point-to-point wiring diagram shall be prepared and signed by a Registered Professional Engineer showing points of connection. Diagram shall include connections between system devices, appliances, control panels, and supervised devices. SD-06 Instructions Training; GA. Lesson plans, operating instructions, maintenance procedures, and training data, furnished in manual format, for the training courses. The operations training shall familiarize designated government personnel with proper operation of the fire alarm system. The maintenance training course shall provide the designated government personnel
adequate knowledge required to diagnose, repair, maintain, and expand functions inherent to the system. SD-08 Statements Testing; GA. Detailed test procedures, prepared and signed by a Registered Professional Engineer Technician, for the fire detection and alarm system 30 days prior to performing system tests. SD-09 Reports Testing; GA. Test reports, in booklet form, showing field tests performed to prove compliance with the specified performance criteria, upon completion and testing of the installed system. Each test report shall document readings, test results and indicate the final position of controls. The Contractor shall include the NFPA 72 Certificate of Completion and NFPA 72 Inspection and Testing Form, with the appropriate test reports. SD-13 Certificates Equipment; GA. Certified copies of current approvals or listings issued by an independent test lab if not listed by UL, FM or other nationally recognized testing laboratory, showing compliance with specified NFPA standards. Qualifications; GA. Proof of qualifications for required personnel. The installer shall submit proof of experience for the Professional Engineer, fire alarm technician, and the installing company. SD-19 Operation and Maintenance Manuals Six copies of operating instructions outlining step-by-step procedures required for system startup, operation, and shutdown. The instructions shall include the manufacturer's name, model number, service manual, parts list, and complete description of equipment and their basic operating features. Six copies of maintenance instructions listing routine maintenance procedures, possible breakdowns and repairs, and troubleshooting guide. The instructions shall include conduit layout, equipment layout and simplified wiring, and control diagrams of the system as installed. #### 1.6 DELIVERY AND STORAGE Equipment delivered and placed in storage shall be stored with protection from the weather, humidity and temperature variation, dirt, dust, and any other contaminants. ### 1.7 SPECIFICATION SHEETS Manufacturer's specification sheets for all panels, devices, cable and other equipment shall be provided for approval by the Engineer. ### PART 2 PRODUCTS Fire Alarm system components and wiring shall meet specifications, performance and capabilities of initiating devices and signalling line circuits of Style D and style 6 respectively. #### 2.1 CONTROL PANEL The Fire Alarm Control Panel (FACP) shall be compatible with the existing base fire alarm system. The panel shall be provided with expansion cards to allow for all zones as shown on the plans plus two spare zones. The FACP shall comply with the applicable requirements of UL 864. Panel shall be modular, installed in a surface mounted steel cabinet with hinged door and cylinder lock. Control panel shall be a clean, uncluttered, and orderly assembled panel containing components and equipment required to provide the specified operating and supervisory functions of the system. The panel shall have prominent rigid plastic, phenolic or metal identification plates for LEDs, zones, controls, meters, fuses, and switches. Cabinets shall be painted red. The Transceiver shall be capable of transmitting a Zone Identification (ZID) to the Monaco D-500 Plus VHF Radio Alarm system located in the fire station (FM Frequency 138.925) The TVSS to be provided for the control panel shall meet the requirements of Section 16415, ELECTRICAL WORK, INTERIOR. ### 2.1.2 Circuit Connections Circuit conductors entering or leaving the panel shall be connected to screw-type terminals with each conductor and terminal marked for identification. ### 2.1.3 System Expansion and Modification Capabilities Any equipment needed by qualified technicians to implement future changes to the fire alarm system shall be provided as part of this contract. ### 2.2 STORAGE BATTERIES Storage batteries shall be provided and shall be 24 Vdc sealed, lead-calcium type requiring no additional water. The batteries shall have ample capacity, with primary power disconnected, to operate the fire alarm system for a period of 72 hours. Following this period of battery operation, the batteries shall have ample capacity to operate all components of the system, including all alarm signaling devices in the total alarm mode for a minimum period of 15 minutes. Batteries shall be located in a separate battery cabinet. Batteries shall be provided with overcurrent protection in accordance with NFPA 72. Separate battery cabinets shall have a lockable, hinged cover similar to the fire alarm panel. The lock shall be keyed the same as the fire alarm control panel. Cabinets shall be painted red to match the fire alarm control panel. ### 2.3 BATTERY CHARGER Battery charger shall be completely automatic, 24 Vdc with high/low charging rate, capable of restoring the batteries from full discharge (18 Volts dc) to full charge within 48 hours. A pilot light indicating when batteries are manually placed on a high rate of charge shall be provided as part of the unit assembly, if a high rate switch is provided. Charger shall be located in control panel cabinet or in a separate battery cabinet. ### 2.4 MANUAL FIRE ALARM STATIONS Manual fire alarm stations shall conform to the applicable requirements of UL 38. Manual stations shall be connected into signal line circuits. Stations shall be installed on surface mounted outlet boxes. Manual stations shall be mounted at 48 inches. Stations shall be single action type. Stations shall be finished in red, with raised letter operating instructions of contrasting color. Stations requiring the breaking of glass or plastic panels for operation are not acceptable. Stations employing glass rods are not acceptable. The use of a key or wrench shall be required to reset the station. Gravity or mercury switches are not acceptable. Switches and contacts shall be rated for the voltage and current upon which they operate. Stations shall have a separate screw terminal for each conductor. Surface mounted boxes shall match and be painted the same color as the fire alarm manual stations. ### 2.5 FIRE DETECTING DEVICES Fire detecting devices shall comply with the applicable requirements of NFPA 72, NFPA 90A, UL 268, UL 268A, and UL 521. The detectors shall be provided as indicated. Detector base shall have screw terminals for making connections. No solder connections will be allowed. Detectors located in concealed locations (above ceiling, raised floors, etc.) shall have a remote visible indicator LED/LCD. Installed devices shall conform to the NFPA 70 hazard classification of the area where devices are to be installed. All devices shall be compatible with the Monaco Model M-1 FACP. ### 2.5.1 Heat Detectors Heat detectors shall be designed for detection of fire by rate-compensating principle. Heat detector spacing shall be rated in accordance with UL 521. Detectors located in areas subject to moisture, exterior atmospheric conditions, or hazardous locations as defined by NFPA 70 and as shown on drawings, shall be types approved for such locations. Heat detectors located in attic spaces or similar concealed spaces below the roof shall be intermediate temperature rated. ### 2.5.1.1 Rate Compensating Detectors Detectors shall be surface mounted vertical or horizontal type, with outlet box supported independently of wiring connections. Detectors shall be hermetically sealed and automatically resetting. Rate Compensated detectors shall be rated for 50 by 50 ft. ### 2.5.2.4 Duct Detectors Duct-mounted photoelectric smoke detectors shall be furnished and installed where indicated and in accordance with NFPA 90A. Units shall consist of a smoke detector as specified in paragraph Photoelectric Detectors, mounted in a special housing fitted with duct sampling tubes. Detector circuitry shall be mounted in a metallic enclosure exterior to the duct. Detectors shall have a manual reset. Detectors shall be rated for air velocities that include air flows between 500 and 4000 fpm. Detectors shall be powered from the fire alarm panel. Sampling tubes shall run the full width of the duct. The duct detector package shall conform to the requirements of NFPA 90A, UL 268A, and shall be UL listed for use in air-handling systems. Detectors mounted that cannot be easily accessed while standing on the floor, shall be provided with a remote detector indicator panel. Detectors shall have auxiliary contacts to provide control, interlock, and shutdown functions specified in Section 15950 HEATING, VENTILATING AND AIR CONDITIONING (HVAC) CONTROL SYSTEMS. The detectors shall be supplied by the fire alarm system manufacturer to ensure complete system compatibility. Installation of duct detectors is provided in Section 15951. ### 2.6 NOTIFICATION APPLIANCES Audible appliances shall conform to the applicable requirements of UL 464. Devices shall be connected into notification appliance circuits. Devices shall have a separate screw terminal for each conductor. Audible appliances shall generate a unique audible sound from other devices provided in the building and surrounding area. Surface mounted audible appliance colors shall match the color of the wall on which the device is mounted. ### 2.6.1 Alarm Horns Horns shall be surface mounted, with the matching mounting back box surface mounted grille and vibrating type suitable for use in an electrically supervised circuit. Horns shall produce a sound rating of at least 96 dBA at 10 feet. Horns used in exterior locations shall be specifically listed or approved for outdoor use and be provided with metal housing and protective grilles. ### 2.6.2 Visual Notification Appliances Visual notification appliances shall conform to the applicable requirements of UL 1971. Appliances shall have clear high intensity optic lens, xenon flash tubes, and output white light. Strobe flash rate shall be between 1 to 3 flashes per second and a minimum of 75 candela. Strobe shall be surface mounted. Lens shall read 'FIRE'. ### 2.6.3
Combination Audible/Visual Notification Appliances Combination audible/visual notification appliances shall provide the same requirements as individual units, except that they shall mount as a unit in standard backboxes. Units shall be factory assembled. Any other audible notification appliance employed in the fire alarm systems shall be approved by the Contracting Officer. ### 2.7 REMOTE ANNUNCIATION EQUIPMENT #### 2.7.1 Remote Annunciator The remote annunciator shall be compatible with the Monaco Model M-1 FACP. Annunciator shall be weatherproof and shall have indicator lamps which are visible in daylight at a distance of 50 feet. The lamp for the proper zone shall light upon any alarm. A supervisory lamp shall be provided to indicate a supervisory malfunction. A system trouble lamp shall be provided to indicate a system failure. Annunciator lamps shall be extinguished only by operating the alarm reset switch on the control panel. Annunciator shall contain a lamp test switch, and an audible trouble signal. Switches shall be located within a locked panel and easily visible through a glass or plastic viewing plate. Panel door shall have a keyed lock identical to the lock on the control panel. Zone identification shall be by silk-screened or engraved labels and shall consist of word description of the zone. Annunciator shall be surface mounted as shown on the plans. Coordinate exact location with 92d Civil Engineer Squadron Contract Development (CECC). ### 2.8 FIRE DETECTION AND ALARM SYSTEM PERIPHERAL EQUIPMENT ### 2.8.2 Conduit Conduit and fittings shall comply with UL 6, UL 1242 and UL 797. Conduit shall comply with Section 16415 ELECTRCAL WORK, INTERIOR. ### 2.8.3 Wiring Wiring for 120 Vac power shall be No. 12 AWG minimum. Wiring for Fire Alarm circuits shall be No. 16 AWG minimum. Voltages shall not be mixed in any junction box, housing, or device, except those containing power supplies and control relays. Wiring shall conform to NFPA 70. System field wiring shall be solid copper and installed in metallic conduit or electrical metallic tubing, except rigid plastic conduit may be used under slab-on-grade. Conductors shall be color coded. Conductors used for the same functions shall be similarly color coded. Wiring code color shall remain uniform throughout the circuit. Pigtail or T-tap connections to initiating device circuits, supervisory alarm circuits, and notification appliance circuits are prohibited. ### 2.8.4 Special Tools and Spare Parts Software, connecting cables and proprietary equipment, necessary for the maintenance, testing, and reprogramming of the equipment shall be furnished to the Contracting Officer. Two spare fuses of each type and size required shall be furnished. Two percent of the total number of each different type of detector, but no less than two each, shall be furnished. Spare fuses shall be mounted in the fire alarm panel. ### 2.8.5 Antenna The Contractor shall provide a halfwave dipole antenna for radio alarm transmitters with a driving point impedance to match transmitter output. The antenna and antenna mounts shall be corrosion resistant and designed to withstand wind velocities of 100 mph. Antennas shall not be mounted to any portion of the building roofing system. Antenna shall be installed within 100' of the transceiver. Installation shall use coaxial cable as recommended by the Manufacturer. Mount antenna to maximize radio signal strength. Coordinate exact location with the Fairchild Fire Department. ### PART 3 EXECUTION #### 3.1 INSTALLATION All work shall be installed as shown and in accordance with the manufacturer's diagrams and recommendations, unless otherwise specified. Smoke detectors shall not be installed until construction is essentially complete and the building has been thoroughly cleaned. ### 3.1.1 Power Supply for the System A single dedicated circuit connection for supplying power from a branch circuit to each building fire alarm system shall be provided. The power shall be supplied as shown on the drawings. The power supply shall be equipped with a locking mechanism and marked in red with the words "FIRE ALARM CIRCUIT CONTROL". ### 3.1.2 Wiring Conduit size for wiring shall be in accordance with NFPA 70. Wiring for the fire alarm system shall not be installed in conduits, junction boxes, or outlet boxes with conductors of lighting and power systems. Not more than two conductors shall be installed under any device screw terminal. The wires under the screw terminal shall be straight when placed under the terminal then clamped in place under the screw terminal. The wires shall be broken and not twisted around the terminal. Circuit conductors entering or leaving any mounting box, outlet box enclosure, or cabinet shall be connected to screw terminals with each terminal and conductor marked in accordance with the wiring diagram. Connections and splices shall be made using screw terminal blocks. The use of wire nut type connectors in the system is prohibited. Wiring within any control equipment shall be readily accessible without removing any component parts. The fire alarm equipment manufacturer's representative shall be present for the connection of wiring to the control panel. ### 3.1.3 Control Panel The control panel and its assorted components shall be mounted so that no part of the enclosing cabinet is less than 12 inches nor more than 78 inches above the finished floor. Manually operable controls shall be between 36 and 42 inches above the finished floor. Panel shall be installed to comply with the requirements of UL 864. #### 3.1.4 Detectors Detectors shall be located and installed in accordance with NFPA 72. Detectors shall be connected into signal line circuits or initiating device circuits as indicated on the drawings. Detectors shall be at least 12 inches from any part of any lighting fixture. Detectors shall be located at least 3 feet from diffusers of air handling systems. Each detector shall be provided with appropriate mounting hardware as required by its mounting location. Detectors installed in concealed locations shall have a remote visible indicator LED/LCD visible location. ### 3.1.5 Notification Appliances Notification appliances shall be mounted 6 inches below the ceiling unless otherwise noted on the plans. ### 3.1.6 Annunciator Equipment Annunciator equipment shall be mounted where indicated on the drawings. ### 3.1.7 Supervisory and Alarm Contacts Contacts in suppression systems and other fire protection subsystems shall be connected to the fire alarm system to perform supervisory and alarm functions as identified in NFPA 72 and as indicated on the drawings. Contacts shall be provided in accordance with other sections of the specifications and specific instructions on corresponding drawings. See Section 13945 PREACTION AND DELUGE SPRINKLER SYSTEMS, FIRE PROTECTION. #### 3.2 OVERVOLTAGE AND SURGE PROTECTION ### 3.2.1 Power Line Surge Protection All equipment connected to alternating current circuits shall be protected from surges per IEEE C62.41 B3 combination waveform and NFPA 70. Fuses shall not be used for surge protection. The surge protector shall be rated for a maximum let thru voltage of 350 Volts ac (line-to-neutral) and 350 Volt ac (neutral-to-ground). ### 3.2.2 Low Voltage DC Circuits Surge Protection All IDC, NAC, and communication cables/conductors, except fiber optics, shall have surge protection installed at each point where it exits or enters a building. Equipment shall be protected from surges per IEEE C62.41B3 combination waveform and NFPA 70. The surge protector shall be rated to protect the 24 Volt dc equipment. The maximum dc clamping voltages shall be 36 V (line-to-ground) and 72 Volt dc (line-to-line). ### 3.3 GROUNDING Grounding shall be provided by connecting to building ground system. #### 3.4 SUPERVISING STATION PROVISIONS The supervising equipment is existing and consists of the following brands and models: Monaco D-500 Plus. ### 3.5 TESTING The Contractor shall notify the Contracting Officer at least 10 days before the preliminary and acceptance tests are to be conducted. The tests shall be performed in accordance with the approved test procedures in the presence of the Contracting Officer. The control panel manufacturer's representative shall be present to supervise tests. The Contractor shall furnish instruments and personnel required for the tests. ### 3.5.1 Preliminary Tests Upon completion of the installation, the system shall be subjected to functional and operational performance tests including tests of each installed initiating and notification appliance, when required. Tests shall include the meggering of system conductors to determine that the system is free from grounded, shorted, or open circuits. The megger test shall be conducted prior to the installation of fire alarm equipment. If deficiencies are found, corrections shall be made and the system shall be retested to assure that it is functional. After completing the preliminary testing the Contractor shall complete and submit the NFPA 72, Certificate of Completion. ### 3.5.2 Acceptance Test Acceptance testing shall not be performed until the Contractor has completed and submitted the Certificate of Completion. Testing shall be in accordance with NFPA 72. The recommended tests in NFPA 72 shall be considered mandatory and shall verify that previous deficiencies have been corrected. The Contractor shall complete and submit the NFPA 72, Inspection and Testing Form. The test shall include all requirements of NFPA 72 and the following: - a. Test of each function of the control panel. - b. Test of each circuit in both trouble and normal modes. - c. Tests of each alarm initiating devices in both normal and trouble conditions. - d. Tests of each control circuit and device. - e. Tests of each alarm notification appliance. - f. Tests of the battery charger and batteries. - g. Complete operational tests under emergency power supply. - h. Visual inspection
of wiring connections. - i. Opening the circuit at each alarm initiating device and notification appliance to test the wiring supervisory feature. - j. Ground fault. - k. Short circuit faults. - 1. Stray voltage. - m. Loop resistance. #### 3.6 TRAINING Training course shall be provided for the operations and maintenance staff. The course shall be conducted in the building where the system is installed or as designated by the Contracting Officer. The training period for systems operation shall consist of 1 training day (8 hours per day) and shall start after the system is functionally completed but prior to final acceptance tests. The training period for systems maintenance shall consist of 2 training days (8 hours per day) and shall start after the system is functionally completed but prior to final acceptance tests. The instructions shall cover items contained in the operating and maintenance instructions. In addition, training shall be provided on performance of expansions or modifications to the fire detection and alarm system. END OF SECTION ### SECTION 13920 ### FIRE PUMPS ## PART 1 GENERAL ### 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. ## AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | ASTM A 53 | (1996) Pipe, Steel, Black and Hot-Dipped,
Zinc-Coated, Welded and Seamless | |---|---| | ASTM A 193/A 193M | (1996) Alloy-Steel and Stainless Steel
Bolting Materials for High-Temperature
Service | | ASTM A 194/A 194M | (1996) Carbon and Alloy Steel Nuts for Bolts
for High-Pressure and High-Temperature
Service | | ASTM A 795 | (1996) Black and Hot-Dipped Zinc-Coated (Galvanized) Welded and Seamless Steel Pipe for Fire Protection Use | | ASTM B 42 | (1996) Seamless Copper Pipe, Standard Sizes | | ASTM B 88 | (1996) Seamless Copper Water Tube | | ASTM B 135 | (1996) Seamless Brass Tube | | ASTM C 533 | (1995) Calcium Silicate Block and Pipe
Thermal Insulation | | ASTM D 3308 | (1991a) PTFE Resin Skived Tape | | ASTM F 436 | (1993) Hardened Steel Washers | | AMERICAN SOCIETY OF MECHANICAL ENGINEERS (ASME) | | | ASME B16.3 | (1992) Malleable Iron Threaded Fittings | | ASME B16.5 | (1996) Pipe Flanges and Flanged Fittings NPS 1/2 thru NPS 24 | | ASME B16.9 | (1993) Factory-Made Wrought Steel Buttwelding Fittings | REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PNGJKZ 99-0151 ASME B16.11 (1991) Forged Fittings, Socket-Welding and Threaded (1992) Nonmetallic Flat Gaskets for Pipe ASME B16.21 Flanges ASME B16.26 (1988) Cast Copper Alloy Fittings for Flared Copper Tubes ASME B16.39 (1986; R 1994) Malleable Iron Threaded Pipe Unions Classes 150, 250, and 300 AMERICAN WATER WORKS ASSOCIATION (AWWA) AWWA-01 (1995) Standard Methods for the Examination of Water and Wastewater AWWA B300 (1992) Hypochlorites AWWA B301 (1992) Liquid Chlorine AWWA ANSI/AWWA C110/A21.10 (1993) Ductile-Iron and Gray-Iron Fittings, 3 In. Through 48 In. (75 mm through 1200 mm), for Water and Other Liquids (1995) Rubber-Gasket Joints for Ductile-Iron AWWA ANSI/AWWA C111/A21.11 Pressure Pipe and Fittings AWWA ANSI/AWWA C151/A21.51 (1996) Ductile-Iron Pipe, Centrifugally Cast, for Water or Other Liquids AWWA C500 (1993; C500) Metal-Sealed Gates Valves for Water Supply Service (1973) Manual: Water Chlorination Principles AWWA M20 and Practices FACTORY MUTUAL ENGINEERING AND RESEARCH (FM) FM P7825a (1998) Approval Guide Fire Protection FM P7825b (1998) Approval Guide Electrical Equipment MANUFACTURERS STANDARDIZATION SOCIETY OF THE VALVE AND FITTINGS INDUSTRY (MSS) MSS SP-80 (1997) Bronze Gate, Globe, Angle and Check Valves NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA) NEMA MG 1 (1993; Rev 1; Rev 2; Rev 3) Motors and Generators ### NATIONAL FIRE PROTECTION ASSOCIATION (NFPA) | NFPA 20 | (1996; Errata; TIA 96-1) Installation of Centrifugal Fire Pumps | | |--------------------------------|--|--| | NFPA 24 | (1995) Installation of Private Fire Service
Mains and Their Appurtenances | | | NFPA 37 | (1997) Installation and Use of Stationary
Combustion Engines and Gas Turbines | | | NFPA 70
NFPA 1963 | (1996; Errata 96-4) National Electrical Code (1993) Fire Hose Connections | | | UNDERWRITERS LABORATORIES (UL) | | | | UL 80 | (1996) Steel Inside Tanks for Oil-Burner Fuel | | | UL 142 | (1993; Rev Apr 1995) Steel Aboveground Tanks for Flammable and Combustible Liquids | | | UL 262 | (1994; Rev thru Apr 1997) Gate Valves for Fire-Protection Service | | | UL 448 | (1994; Rev Jun 1995) Pumps For Fire-
Protection Service | | | UL 789 | (1993; Rev Feb 1994) Indicator Posts for Fire-Protection Service | | | UL 1247 | (1995; Rev thru May 1997) Diesel Engines For
Driving Centrifugal Fire Pumps | | # UL Fire Prot Dir (1997) Fire Protection Equipment Directory ### 1.2 GENERAL REQUIREMENTS ### 1.2.1 Standard Product Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of such products and shall essentially duplicate equipment that has been in satisfactory operation at least 2 years prior to bid opening. Equipment shall be supported by a service organization that is, in the opinion of the Contracting Officer, reasonably convenient to the jobsite. #### 1.2.2 Description New (FP No. 2 & 3) fire pump, piping and associated equipment shall be provided complete and ready for operation. The fire pump shall be horizontal centrifugal fire pump. The fire pump shall be electric motor driven. Fire pump, appurtenances and installation shall conform to NFPA 20, unless more stringent requirements are specified herein or are indicated on the drawings. In NFPA 20, the advisory provisions including those listed in the appendix shall be considered mandatory; reference to the authority having jurisdiction shall be interpreted to mean the Contracting Officer. Devices and equipment for fire protection service shall be UL listed UL Fire Prot Dir or FM approved FM P7825a and FM P7825b. ### 1.2.3 Sequence of Operation #### 1.2.3.1 Existing Pressure Maintenance Pump Existing pressure maintenance pump operates when the system pressure drops to 115 psi. Pump automatically stops when the system pressure reaches 125 psi and after the pump has operated for the minimum pump run time specified herein. ### 1.2.3.2 Primary Fire Pump (FP No. 1) Primary fire pump (FP No. 1) shall automatically operate when the pressure drops to 105 psi. The primary fire pump shall require manual shut down. #### 1.2.3.3 Fire Pumps No. 2 & FP No. 3 Fire pump No. 2 operates at a 10 psi increment, set below the primary fire pump (FP No. 1) starting pressure. The fire pump No. 2 shall automatically start when the pressure drops to 95 psi and automatically stop running at 105 psi and after the fire pump has operated for a period of 15 minutes. Fire pump No. 3 shall be set to automatically start at 90 psi and to automatically stop at 100 psi and after the fire pump has operated for a period of 15 minutes. Fire pumps shall be prevented from starting simultaneously and shall start sequentially at intervals of 10 seconds. ## 1.2.4 Safety Requirements Coupling, rotating parts, gears, projecting equipment, etc. shall be fully enclosed or properly guarded so as to prevent possible injury to persons that come in close proximity of the equipment. The Contractor shall conduct testing of the fire pumps in a safe manner and ensure that all equipment is safely secured. Hoses and nozzles used to conduct flow tests shall be in excellent condition and shall be safely anchored and secured to prevent any misdirection of the hose streams. #### 1.2.5 Verification of Dimensions The Contractor shall become familiar with all details of the work and verify all dimensions in the field. The Contractor shall notify the Contracting Officer of any discrepancy before performing the work. The Contractor is responsible for adjusting dimensions shown to accommodate the actual equipment to be installed. #### 1.2.6 Electrical Work Electric motor and controls shall be in accordance with NFPA 20 and NFPA 70, unless more stringent requirements are specified herein or are indicated on the drawings. Electrical wiring and associated equipment shall be provided in accordance with NFPA 20 and Section 16415 ELECTRICAL WORK, INTERIOR. #### 1.2.7 Factory Tests Fire pump shall be tested by the manufacturer before shipment to provide detailed performance data and to demonstrate its compliance with the specifications. A certified performance curve shall be submitted. #### 1.3 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. Unless otherwise indicated, 6 copies of each item shall be submitted. Submittals, except Fire Protection Engineer's Qualifications shall be submitted concurrently as a complete package. Each submittal shall be certified in writing by the Fire Protection Engineer. The Fire Protection Engineer shall certify that the submittal is complete, that the equipment and equipment arrangement meets contract requirements, and that the proposed system is coordinated and compatible with all other equipment connected to the system, the physical space, and the power sources. The Fire Protection Engineer shall sign and date all shop drawing submittal sheets and revisions. The submittal will be reviewed by the U.S. Army Engineer District Fire Protection Engineer. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES. SD-01 Data Equipment; GA. Manufacturer's catalog data for each separate piece of equipment proposed for use in the system. Catalog data shall indicate
the name of the manufacturer of each item of equipment, with data annotated to indicate model to be provided. In addition, a complete equipment list which includes equipment description, model number and quantity shall be provided (Appendix E.1). Catalog data for material and equipment shall include, but not be limited to, the following: - a. Fire pumps, drivers and controllers including manufacturer's certified shop test characteristic curve for each pump. Shop test curve may be submitted after approval of catalog data but shall be submitted prior to the final tests. - b. Piping and fittings. - c. Valves, including gate, check, globe and relief valves. - d. Gauges. - e. Hose valve manifold test header and hose valves. - f. Flow meter. - g. Restrictive orifice union. - h. Associated devices and equipment. Final Test, FIO. A written request for scheduling of the final test at least 15 days prior to the date that the final acceptance test is to take place and after successful completion of the preliminary tests. SD-04 Drawings Pump Room, Equipment and Piping; GA. Detailed drawings consisting of a detailed plan view, detailed elevations and sections of the pump room, equipment and piping, drawn to a scale of not less than 1/2 inch = 1 foot. Drawings shall indicate equipment, piping, and associated pump equipment to scale. All clearances, such as those between piping and equipment; between equipment and walls, ceiling and floors; and for electrical working distance clearance around all electrical equipment shall be indicated. Drawings shall include a legend identifying all symbols, nomenclatures, and abbreviations. Drawings shall indicate a complete piping and equipment layout including elevations and/or section views of the following: - a. Fire pumps, starters, controllers, piping, valves, and associated equipment. - b. Pipe hangers and sway bracing. A one-line schematic diagram indicating layout and sizes of all piping, devices, valves and fittings. A complete point-to-point connection drawing of the pump power, control and alarm systems, as well as interior wiring schematics of each controller. As-Built Drawings; FIO. Detailed drawings updated to reflect as-built conditions after all associated work is completed, on reproducible full-size mylar film, no later than 10 working days after completion of the Final Tests. Each as-built drawing shall have a title block similar to the contract drawings. SD-06 Instructions Framed Instructions; FIO. Condensed operating instructions explaining preventive maintenance procedures, methods of checking the system for safe operation, sequence of operation, and procedures for safely starting and stopping the system, REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PNGJKZ 99-0151 prepared in typed form, framed under glass or in laminated plastic. Instructions shall be posted where directed by the Contracting Officer. Wiring and control diagrams showing the complete layout of the entire system shall be framed under glass or in approved laminated plastic and posted near each controller as directed by the Contracting Officer. Proposed instructions, diagrams and other sheets shall be submitted for approval prior to posting. Framed instructions shall be posted before acceptance testing of the system. SD-09 Reports Field Tests; GA. Test reports in booklet form showing all field tests and measurements taken during the preliminary and final testing, and documentation that proves compliance with the specified performance criteria, upon completion of the installation and final testing of the installed system. Each test report shall indicate the final position of the controls and pressure switches. The test reports shall include the description of the hydrostatic test conducted on the piping and flushing of the suction and discharge piping. A copy of the manufacturer's certified pump curve for each fire pump shall be included in the report. SD-13 Certificates Engineer's Qualifications; FIO. Prior to all other submittals, certification that the Fire Protection Engineer is a registered Fire Protection Engineer or a Registered Engineer who has had at least 4 years experience in fire protection and fire pump installation design. Preliminary Test; GA. A signed and dated certificate that preliminary tests have been conducted, and that the fire pumps installation (FP No. 2 & 3) are complete and ready to be placed in operation, prior to submitting a formal request for a final inspection and test. The certificate shall include the names, companies, phone numbers, and titles of persons conducting and witnessing the test, including the required manufacturer's representatives. Complete test procedures, as well as results and readings taken during the preliminary tests shall be included. Piping; GA. A signed statement from the piping manufacturer certifying that the piping meets requirements specified. The statement shall be signed and dated after the award of this contract, shall include the name of the project, and shall list the specific requirements which are being certified. SD-18 Records Test Procedures; GA. Detailed test procedures for testing the fire pump system, 60 days prior to performing the pump tests. SD-19 Operation and Maintenance Manuals Fire Pumps; GA. Operating instructions outlining step-by-step procedures required for fire pump startup, operation and shutdown shall be provided. The instructions shall include the manufacturer's name, model number, catalog cuts, diagrams, drawings, parts list, and descriptive data covering the proper operation and testing. Six complete copies of maintenance instructions listing routine maintenance procedures and frequencies, possible breakdowns and repairs, troubleshooting guides, a complete list of parts and current sources, and recommended spare parts to be kept on hand. The instructions shall include simplified diagrams for the system as installed. #### 1.4 MANUFACTURER'S SERVICES The Contractor shall obtain the services of the fire pump manufacturer and the fire pump controller manufacturer or their representative. The persons providing this service shall be factory-trained, shall be experienced in the installation, adjustment, and operation of the equipment and shall supervise the installation, the adjustments, and the testing of equipment. The persons providing the manufacturer service shall be present during the preliminary and final tests and shall assist in the testing of the equipment. ### 1.5 DELIVERY AND STORAGE Equipment delivered to the site or placed in storage shall be protected from weather, humidity and temperature variations, dirt, dust, and other contaminants. ### PART 2 PRODUCTS #### 2.1 FIRE PUMPS Fire pumps shall be electric motor driven. Each pump capacity shall be rated at 2,500 gpm with a rated net pressure of 105 psi. Fire pump shall furnish not less than 150 percent of rated flow capacity at not less than 65 percent of rated net pressure. Pump shall be centrifugal horizontal split case fire pump. Horizontal pump shall be equipped with automatic air release and circulation relief devices. The maximum rated pump speed shall be $\frac{2100}{1700}$ rpm when driving the pump at rated capacity. Pump shall conform to the requirements of UL 448. Fire pump discharge and suction gauges shall be oil-filled type. ### 2.2 ELECTRIC MOTOR DRIVER, STARTER, AND CONTROLLER Motor shall comply to NEMA MG 1 and be marked as complying with NEMA Design B standards. Motor horsepower shall be of sufficient size so that the nameplate horsepower rating (not including the rating with the "service factor" applied) will not be exceeded throughout the entire published pump characteristic curve. The motor, starter, and fire pump controller shall be fully compatible. The motor disconnect switch, starter, and controller shall be service entrance rated in accordance with UL requirements. See Paragraph 2.5 for controller specifications. #### 2.3 DIESEL ENGINE DRIVER Not Applicable. ### 2.3.2.1 Steel Pipe and Fittings ASTM A 53, Schedule 40, black steel, welding end connections. ASME B16.9 or ASME B16.11 welding fittings shall be of the same material and weight as the piping. #### 2.4 NAMEPLATES AND MARKINGS Pump and motor shall have standard nameplates securely affixed in a conspicuous place and easy to read. Fire pump shall have nameplates and markings in accordance with UL 448. Electric motor nameplates shall provide the minimum information required by NFPA 70, Section 430-7. #### 2.5 FIRE PUMP CONTROLLER Controller shall be the automatic type and UL listed UL Fire Prot Dir or FM approved FM P7825a and FM P7825b for fire pump service. Pump shall be arranged for automatic start and manual push-button stop. Controllers shall be completely terminally wired, ready for field connections, and mounted in a NEMA Type 2 drip-proof enclosure arranged so that controller current carrying parts will not be less than 12 inches above the floor. Controller shall be provided with voltage surge arresters installed per NFPA 20. Controller shall be equipped with a bourdon tube pressure switch or a solid state pressure switch with independent high and low adjustments, automatic starting relay actuated from normally closed contacts, visual alarm lamps and supervisory power light. Controller shall be equipped with a thermostat switch with adjustable setting to monitor the reservoir tank temperature and to provide an alarm when temperatures falls below 37 degrees F. Sensing device shall be located in the same sensing point as is used for control of the tank heating system. See Note 6 on plans. Controller shall be equipped with a sequential start timer/relay feature to start multiple fire pumps in sequence. ## 2.5.1 Controller/Starter for Electric Motor Driven Fire Pump Controller/starter shall be service entrance rated. Controller shall monitor pump running, loss of a phase or line power, phase reversal, low reservoir and pump room temperature. Alarms shall
be individually displayed in front of panel by lighting of visual lamps. Each lamp shall be labeled with rigid etched plastic labels. Controller shall be equipped with terminals for remote monitoring of pump running, pump power supply trouble (loss of power or phase and phase reversal), and pump room trouble (pump room temperature and low reservoir level), and for remote start. Limited service fire pump controllers are not permitted. Controller shall be equipped with a 7-day electric pressure recorder with 24-hour spring wound back-up. The pressure recorder shall provide a readout of the system pressure from 0 to 300 psi, time, and date. Controller shall require the pumps to run for 15 minutes, prior to automatic shutdown. The controller shall be equipped with an externally operable isolating switch which manually operates the motor circuit. Means shall be provided in the controller for measuring current for all motor circuit conductors. Controller/starter shall be reduced voltage solid state starting type. Controller/starter shall be designed for 200 HP at 480 volts with maximum in-rush current to be submitted. #### 2.6 BATTERIES Not Applicable. #### 2.7 PRESSURE SENSING LINE A completely separate pressure sensing line shall be provided for the new fire pump. The sensing line shall be arranged in accordance with Figure A-7-5.2.1. of NFPA 20. The sensing line shall be 1/2 inch H58 brass tubing complying with ASTM B 135. The sensing line shall be equipped with two restrictive orifice unions each. Restricted orifice unions shall be ground-face unions with brass restricted diaphragms drilled for a 3/32 inch orifice. Restricted orifice unions shall be mounted in the horizontal position, not less than 5 feet apart on the sensing line. Two test connections shall be provided for each sensing line. Test connections shall consist of two brass 1/2 inch globe valves and 1/4 inch gauge connection tee arranged per NFPA 20. One of the test connections shall be equipped with a 0 to 200 psi water oil-filled gauge. Sensing line shall be connected to the pump discharge piping between the discharge piping control valve and the check valve. ### 2.8 PRESSURE MAINTENANCE (JOCKEY) PUMP Not applicable. ## 2.9 DIESEL FUEL SYSTEM EXTERNAL TO ENGINE Not Applicable. ### 2.10 PUMP BASE PLATE AND PAD A common base plate shall be provided for each horizontal-shaft fire pump for mounting pump and driver unit. The base plate shall be constructed of cast iron with raised lip tapped for drainage or welded steel shapes with suitable drainage. Each base plate for the horizontal fire pumps shall be provided with a 1 inch galvanized steel drain line piped to the nearest floor drain. Pump units and bases shall be mounted on a raised 6 inch REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PNGJKZ 99-0151 reinforced concrete pad that is an integral part of the reinforced concrete floor. #### 2.11 ABOVEGROUND WATER PIPING ### 2.11.1 Pipe Sizes 2.5 Inches and Larger #### 2.11.1.1 Pipe Piping shall be ASTM A 795, Weight Class STD (Standard), Schedule 40 (except for Schedule 30 for pipe sizes 8 inches and greater in diameter), Type E or Type S, Grade A; black steel pipe. Steel pipe shall be joined by means of flanges welded to the pipe or mechanical grooved joints only. Piping shall not be jointed by welding or weld fittings. Suction piping shall be galvanized on the inside per NFPA 20. ## 2.11.1.2 Flanges Flanges shall be ASME B16.5, Class 150 flanges. Flanges shall be provided at valves, connections to equipment, and where indicated. #### 2.11.1.3 Gaskets Gaskets shall be AWWA ANSI/AWWA C111/A21.11, cloth inserted red rubber gaskets. ### 2.11.1.4 Bolts Bolts shall be ASTM A 193/A 193M, Grade B8. Bolts shall extend no less than three full threads beyond the nut with bolts tightened to the required torque. Torque wrench tightening values for respective bolts must match the manufacturer's recommendations, as submitted. ## 2.11.1.5 Nuts Nuts shall be ASTM A 194/A 194M, Grade 8. #### 2.11.1.6 Washers Washers shall meet the requirements of ASTM F 436. Flat circular washers shall be provided under all bolt heads and nuts. ### 2.11.2 Piping Sizes 2 Inches and Smaller ### 2.11.2.1 Steel Pipe Steel piping shall be ASTM A 795, Weight Class STD (Standard), Schedule 40, Type E or Type S, Grade A, zinc-coated steel pipe with threaded end connections. Fittings shall be ASME B16.39, Class 150, zinc-coated threaded fittings. Unions shall be ASME B16.39, Class 150, zinc-coated unions. ### 2.11.2.2 Copper Tubing Copper tubing shall be ASTM B 88, Type L or K, soft annealed. Fittings shall be ASME B16.26, flared joint fittings. Pipe nipples shall be ASTM B 42 copper pipe with threaded end connections. ### 2.11.3 Pipe Hangers and Supports Pipe hangers and support shall be UL listed UL Fire Prot Dir or FM approved FM P7825a and FM P7825b and shall be the adjustable type. Finish of rods, nuts, washers, hangers, and supports shall be zinc-plated after fabrication. Hanger rings for support of copper pipe shall be copper plated. #### 2.11.4 Valves Valves shall be UL listed UL Fire Prot Dir or FM approved FM P7825a and FM P7825b for fire protection service. Valves shall have flange or threaded end connections. #### 2.11.4.1 Gate Valves and Control Valves Gate valves and control valves shall be outside screw and yoke (0.S.&Y.) type which open by counterclockwise rotation. Butterfly-type control valves are not permitted. #### 2.11.4.2 Tamper Switch The suction control valves, the discharge control valves, and the test header control valves shall be equipped with valve tamper switches for monitoring by the fire alarm system. ### 2.11.4.3 Check Valve Check valve shall be clear open, swing type check valve with flange or threaded inspection plate. #### 2.11.4.4 Relief Valve Not applicable. ### 2.11.4.5 Circulating Relief Valve An adjustable circulating relief valve shall be provided for each fire pump in accordance with NFPA 20. ### 2.11.4.6 Suction Pressure Regulating Valve Not applicable. ## 2.12 HOSE VALVE MANIFOLD TEST HEADER Discharge test header shall be connected by ASME B16.5, Class 150 flange inlet connection. It shall include a 4" playpipe outlet for measurement of rated and maximum flow rates. The downstream end of the playpipe shall be grooved to accommodate additional outlet sizes as may be desired. It shall be positioned inside the tank as shown and be readily visible and accessible from the adjacent roof hatch manhole. #### 2.13 FLOW METER Meter shall be UL listed UL Fire Prot Dir or FM approved FM P7825a and FM P7825bas flow meters for fire pump installation with direct flow readout device. Flow meter shall be capable of metering any waterflow quantities between 50 percent and 150 percent of the rated flow of the pumps. The flow meter shall be arranged in accordance with Figure A-2-14.2.1 of NFPA 20. The meter throttle valve and the meter control valves shall be O.S.&Y. valves. The flow meter is to be located in the test header, which discharges into the reservoir. #### 2.14 PIPE SLEEVE A pipe sleeve shall be provided at each location where piping passes through walls, ceilings, roofs, and floors, including pipe entering buildings from the exterior. Sleeves shall be grouted in position during construction. Sleeve shall be of sufficient length to pass through the entire thickness of the wall, ceilings, roofs and floors. Not less than 1 inch clearance shall be provided between pipe exterior surface and the interior of the sleeve, and between the tie rods and the interior of the sleeve. The space shall be firmly packed with mineral wool insulation and caulk at both ends with plastic waterproof cement which will dry to a firm but pliable mass, or with a segmented elastomeric seal. Where pipes pass through fire walls or fire floors, a fire seal shall be provided between the pipe and the sleeve in accordance with Section 07270 FIRESTOPPING. Sleeves in masonry and concrete walls, ceiling, roofs and floors shall be hot-dip galvanized steel, ductile-iron, or cast-iron. Other sleeves shall be galvanized steel sheet pipe not less than 0.90 psf. ## 2.15 ESCUTCHEON (WALL) PLATES Escutcheon plates shall be one-piece or split-hinge type metal plates and shall be provided for piping passing through floors, walls, and ceiling in exposed areas. In finished areas, plates shall be polished stainless steel or chromium-plated finish on copper alloy. In unfinished areas, plates shall have painted finish. Plates shall be secured in position. ## 2.16 UNDERGROUND PIPING: SEE SECTION 13930 ### 2.17 SURGE TANK Surge tank shall be provided as shown and sized on the drawings. The tank shall be bladder dry nitrogen precharged type surge tanks especially designed to control hydraulic surges and prevent piping system damage. Bladder precharge shall be 70% of system pressure or as recommended by the manufacturer of the tanks. Vesssel shall be of the vertical type constructed of carbon steel SA-515 Gr. 70 material conforming to ASME code, Section VII, Division I, Table REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PNGJKZ 99-0151 USC-23, latest edition and designed for a working pressure of 275 psig. at 120 degree F. Vessel shall bear the ASME Stamp. The unit shall be UL and FM listed for used in fire protection systems. Bladder material and all necessary elastomer shall be Buna-N and two bladders shall be furnished for each tank. Units shall have flanged inlet and outlet connections, 150 psig. ANSI flange, and a stainless steel perforated screen with holes sized to prevent both extrusion of the bladder and absorb kinet5ic energy as flow enters or leaves the surge suppressor. #### PART 3 EXECUTION #### 3.1 INSTALLATION Installation, workmanship, fabrication, assembly, erection, examination, inspection and testing shall be in accordance NFPA 20, except as modified herein. In addition, the fire pump and motor shall be installed in accordance with the written
instructions of the manufacturer. #### 3.2 PIPE AND FITTINGS Piping shall be inspected, tested and approved before burying, covering, or concealing. Fittings shall be provided for changes in direction of piping and for all connections. Changes in piping sizes shall be made using tapered reducing pipe fittings. Bushings shall not be used. ### 3.2.1 Cleaning of Piping Interior and ends of piping shall be clean and free of any water or foreign material. Piping shall be kept clean during installation by means of plugs or other approved methods. When work is not in progress, open ends of the piping shall be securely closed so that no water or foreign matter will enter the pipes or fittings. Piping shall be inspected before placing in position. #### 3.2.2 Threaded Connections Jointing compound for pipe threads shall be polytetrafluoroethylene (PTFE) pipe thread tape conforming to ASTM D 3308 and shall be applied to male threads only. Exposed ferrous pipe threads shall be provided with one coat of zinc molybdate primer applied to a minimum of dry film thickness of 1 mil. ## 3.2.3 Pipe Hangers and Supports Additional hangers and supports shall be provided for concentrated loads in aboveground piping, such as for valves and risers. ## 3.2.3.1 Vertical Piping Piping shall be supported at each floor, at not more than 10 foot intervals. REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PNGJKZ 99-0151 ### 3.2.3.2 Horizontal Piping Horizontal piping supports shall be spaced as follows: MAXIMUM SPACING (FEET) Steel pipe at 75% the maximum allowed by NFPA-13. Copper tube at 67% the maximum allowed by NFPA-13. ### 3.2.4 Underground Piping Not applicable. #### 3.3 ELECTRICAL WORK Except as modified herein, interior wiring methods shall be in accordance with Section 16415 ELECTRICAL WORK, INTERIOR; exterior wiring methods shall be in accordance with Section 16375 ELECTRICAL DISTRIBUTION SYSTEMS, UNDERGROUND or Section 16370 ELECTRICAL DISTRIBUTION SYSTEMS, AERIAL as appropriate. All control wiring and raceways for all devices shall be provided under this Section. Power shall be connected to dedicated circuits in the electrical panels. #### 3.4 FIELD PAINTING AND FINISHING Field painting and finishing shall conform to the requirements specified in Section 09900 PAINTING, GENERAL. Piping shall be provided with plastic labels of standard manufacture to identify piping as FIRE PUMP DISCHARGE, FIRE PUMP SUCTION, FIRE PUMP BYPASS, FIRE PUMP TEST HEADER, TO SYSTEM, and RELIEF VALVE DISCHARGE. Labels shall have red letters 1 inch high, 1/4 inch brush stroke, on white background. ### 3.5 INSTRUCTING OPERATING PERSONNEL Upon completion of the work and at a time designated by the Contracting Officer, the Contractor shall provide, for a period of not less than one 8-hour working day, the services of experienced technicians regularly employed by the manufacturer of the fire pump, the fire pump controller, and the pump drivers to instruct Government operating personnel in the proper operation, inspection, testing, and maintenance of the equipment. Manufacturer's representatives who were present during the final tests shall be present and shall conduct or assist in the instruction. ### 3.6 FLUSHING The fire pump suction and discharge piping shall be flushed at 120 percent of rated capacity of each pump. Where the pump installation consists of more than one pump, the flushing shall be the total quantity of water flowing when all pumps are discharging at 120 percent of their rated capacities. The new pumps may be used to attain the required flushing volume. Flushing operations shall continue until water is clear, but not less than 10 minutes. The Contractor shall submit a signed and dated flushing certificate before requesting field testing. #### 3.7 FIELD TESTS ### 3.7.1 Hydrostatic Test Piping shall be hydrostatically tested at 225 psig for a period of 2-hours, or at least 50 psi in excess of the maximum pressure, when the maximum pressure in the system is in excess of 175 psi. ### 3.7.2 Preliminary Test The fire pump manufacturer, the fire pump controller manufacturer, and the diesel engine manufacturer (when supplied) or their representative shall witness the complete operational testing of the fire pump and drivers. Fire pumps, drivers and equipment shall be thoroughly inspected and tested to insure that the system is correct, complete, and ready for operation. Tests shall ensure that pumps are operating at rated capacity, pressure and speed. Tests shall include manual starting and running to ensure proper operation and to detect leakage or other abnormal conditions, flow testing, automatic start testing, testing of automatic settings, sequence of operation check, test of required accessories; test of pump alarms devices and supervisory signals, test of pump cooling, operational test of relief valves, and test of automatic power transfer, if provided. Pumps shall run without abnormal noise, vibration or heating. If any component or system was found to be defective, inoperative, or not in compliance with the contract requirements during the tests and inspection, the corrections shall be made and the entire preliminary test shall be repeated. All test results and readings shall be recorded during the tests and signed by the witnessing manufacturer's representative. ### 3.7.3 Final Test The Engineer District Fire Protection Engineer will witness the final tests. The Contractor shall take all readings and measurements. An experienced technician regularly employed by the pump installer shall be present during the test. The pump manufacturer, the fire pump controller manufacturer, or their representative shall be present for the final tests. The Contractor shall be responsible for repairing any damage caused by hose streams or other aspects of the test. The final acceptance test shall include the following: ### 3.7.3.1 Inspection Thorough inspection of the fire pump installation, including visual observation of the pump while running shall be conducted. There shall be no excessive vibration, leaks (oil or water), unusual noises, overheating, or other potential problems. Inspection shall include piping and equipment clearance, access, supports, and guards. ## 3.7.3.2 Flow Tests Flow tests using the test header, hoses and playpipe nozzles shall be conducted. Flow tests shall be performed at churn (no flow), 75, 100, 125 and 150 percent capacity for each pump and at full capacity of the pump installation. Flow readings shall be taken from each nozzle by means of a calibrated pitot tube with gauge or other approved measuring equipment. Rpm, suction pressure and discharge pressure reading shall be taken as part of each flow test. Voltage and ampere readings shall taken on each phase as part of each flow test for electric-motor driven pumps. ### 3.7.3.3 Starting Tests Pumps shall be tested for automatic starting and sequential starting. Setting of the pressure switches shall be tested when pumps are operated by pressure drop. Tests may be performed by operating the test connection on the pressure sensing lines. As a minimum, each pump shall be started automatically 10 times and manually 10 times, in accordance with NFPA 20. Tests of engine-driven pumps shall be divided equally between both set of batteries. The fire pumps shall be operated for a period of a least 10 minutes for each of the starts; except that electric motors over 200 horsepower shall be operated for at least 15 minutes and shall not be started more than 2 times in 10 hours. ### 3.7.3.4 Battery Changeover Not Applicable. #### 3.7.3.5 Alarms All pump alarms, both local and remote, shall be tested. ### 3.7.3.6 Miscellaneous Valve tamper switches shall be tested. Pressure recorder operation relief valve settings, valve operations, operation and accuracy of meters and gauges, and other accessory devices shall be verified. ### 3.7.3.7 Alternate Power Source Not applicable. #### 3.7.4 Correction of Deficiencies If equipment was found to be defective or non-compliant with contract requirements, the Contractor shall performed corrective actions and repeat the tests. Tests shall be conducted and repeated if necessary until the system has been demonstrated to comply with all contract requirements. ## 3.7.5 Test Equipment The Contractor shall provide all equipment and instruments necessary to conduct a complete final test, including 2.5 inch diameter hoses, playpipe nozzles, pitot tube gauges, portable digital tachometer, voltage and ampere meters, and calibrated oil-filled water pressure gauges. The Contractor shall provide all necessary supports to safely secure hoses and nozzles during the test. The Government will furnish water for the tests. The Contractor will be required to provide a temporary test header for grade level flow testing of the pumps at the request of the Government. #### 3.7.6 Test Documentation Contractor shall supply a copy of the manufacturer's certified curve for each fire pump at the time of the test. The Contractor shall record all test results and plot curve of each pump performance during the test. The Contractor shall provide complete pump acceptance test data of each fire pump. The pump acceptance test data shall be on forms that give the detail pump information such as that which is indicated in Figure A-11-2.6.3(f) of NFPA 20. The Contractor shall provide pump test data sheet in a properly labeled three ring binder. #### 3.8 DISINFECTION Begin disinfection only after installation of the pumps piping and other associated work, including hydrostatic test, is complete. Thoroughly flush the pumps and all piping to be disinfected with potable water until there is no visible sign of dirt or other residue. Water chlorination, using either hypochlorites or liquid chlorine as the chlorinating material, shall be in accordance with AWWA M20. At a constant rate of 50 parts per million (ppm) into the piping, feed the hypochlorites (using a
hypochlorinator) or liquid chlorine (through a solution-fed chlorinator and booster pump). Feed the chlorinating material until the entire system is filled. Leave the solution in the pumps and piping a minimum of 24 hours. Open and close each valve in the system several times during this 24 hour period. If, after 24 hours, the residual solution contains less than 25 ppm chlorine, flush the piping again with domestic water, then repeat the above procedure until 25 ppm chlorine is present after the 24 hour holding period. When the residual chlorine is adequate, take samples of water in disinfected containers from several locations selected by the Contracting Officer. Test samples for total coliform organisms (coliform bacteria, fecal coliform, streptococcal, and other bacteria) in accordance with AWWA-01. Use either the multipletube fermentation technique or the membrane-filter technique as the testing method. Repeat the disinfection until tests indicate the absence of coliform organisms (zero mean coliform density per 100 milliliters) in the samples for at least 2 full days. The disinfection is complete when satisfactory bacteriological results are obtained. END OF SECTION ## SECTION 13935 ## DRY PIPE SPRINKLER SYSTEM, FIRE PROTECTION ## 1 GENERAL ### 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. ### AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | ASTM A 47 | (1990; R 1995) Ferritic Malleable Iron
Castings | |------------|---| | ASTM A 53 | (1997) Pipe, Steel, Black and Hot-Dipped,
Zinc-Coated, Welded and Seamless | | ASTM A 135 | (1997) Electric-Resistance-Welded Steel Pipe | | ASTM A 183 | (1983; R 1990) Carbon Steel Track Bolts and Nuts | | ASTM A 536 | (1984; R 1993) Ductile Iron Castings | | ASTM A 795 | (1996) Black and Hot-Dipped Zinc-Coated (Galvanized) Welded and Seamless Steel Pipe for Fire Protection Use | ## AMERICAN SOCIETY OF MECHANICAL ENGINEERS (ASME) | ASME B16.1 | (1989) Cast Iron Pipe Flanges and Flanged
Fittings | |--------------|--| | ASME B16.3 | (1992) Malleable Iron Threaded Fittings | | ASME B16.4 | (1992) Cast Iron Threaded Fittings | | ASME B16.9 | (1993) Factory-Made Wrought Steel Buttwelding Fittings | | ASME B16.11 | (1996) Forged Fittings, Socket-Welding and Threaded | | ASME B16.21 | (1992) Nonmetallic Flat Gaskets for Pipe
Flanges | | ASME B18.2.1 | (1996) Square and Hex Bolts and Screws Inch
Series | | ASME B18.2.2 | (1987; R 1993) Square and Hex Nuts (Inch
Series) | REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 AMERICAN SOCIETY OF SANITARY ENGINEERING (ASSE) ASSE 1015 (1993) Double Check Backflow Prevention Assembly AMERICAN WATER WORKS ASSOCIATION (AWWA) AWWA-01 (1995) Standard Methods for the Examination of Water and Wastewater AWWA B300 (1992) Hypochlorites AWWA B301 (1992) Liquid Chlorine AWWA ANSI/AWWA C104/A21.4 (1995) Cement-Mortar Lining for Ductile-Iron Pipe and Fittings for Water AWWA ANSI/AWWA C110/A21.10 (1993) Ductile-Iron and Gray-Iron Fittings, 3 In. Through 48 In. (75 mm through 1200 mm), for Water and Other Liquids AWWA ANSI/AWWA C111/A21.11 (1995) Rubber-Gasket Joints for Ductile-Iron Pressure Pipe and Fittings AWWA ANSI/AWWA C151/A21.51 (1996) Ductile-Iron Pipe, Centrifugally Cast, for Water or Other Liquids AWWA C203 (1991) Coal-Tar Protective Coatings and Linings for Steel Water Pipelines - Enamel and Tape - Hot-Applied AWWA M20 (1973) Manual: Water Chlorination Principles and Practices FACTORY MUTUAL ENGINEERING AND RESEARCH (FM) FM P7825a (1998) Approval Guide Fire Protection FM P7825b (1998) Approval Guide Electrical Equipment MANUFACTURERS STANDARDIZATION SOCIETY OF THE VALVE AND FITTINGS INDUSTRY (MSS) MSS SP-71 (1997) Cast Iron Swing Check Valves, Flanges and Threaded Ends NATIONAL FIRE PROTECTION ASSOCIATION (NFPA) NFPA 13 (1996; Errata 13-96-1) Installation of Sprinkler Systems NFPA 24 (1995) Installation of Private Fire Service Mains and Their Appurtenances NFPA 1963 (1993) Fire Hose Connections REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 NATIONAL INSTITUTE FOR CERTIFICATION IN ENGINEERING TECHNOLOGIES (NICET) NICET 1014 (1995) Program Detail Manual for Certification in the Field of Fire Protection Engineering Technology (Field Code 003) Subfield of Automatic Sprinkler System Layout UNDERWRITERS LABORATORIES (UL) UL Bld Mat Dir (1998) Building Materials Directory UL Fire Prot Dir (1998) Fire Protection Equipment Directory #### 1.2 GENERAL REQUIREMENTS Dry pipe sprinkler system shall be provided in areas indicated on the drawings. The sprinkler system shall provide fire sprinkler protection for the entire area as shown. Except as modified herein, the system shall meet the requirements of NFPA 13. Pipe sizes which are not indicated on the drawings shall match similar areas where sizes are shown. ### 1.2.1 Hydraulic Design The system shall be hydraulically designed to discharge a minimum density of 0.20 gpm per square foot over the hydraulically most demanding 3,000 square feet of floor area. ### 1.2.1.1 Hose Demand An allowance for exterior hose streams of 500 gpm shall be added to the sprinkler system demand at the base of riser. #### 1.2.1.2 Basis for Calculations The design of the system shall be based upon a water supply provided by the project pumping system, which recognizes a single fire pump rated at 2,500 gpm at 105 psi. Hydraulic calculations shall be based upon the Hazen-Williams formula with a "C" value of 120 for galvanized steel piping, 140 for new cement-lined ductile-iron piping, and 100 for black steel piping. ## 1.2.2 Sprinkler Spacing Sprinklers shall be uniformly spaced on branch lines. Maximum spacing per sprinkler shall not exceed 130 square feet. ### 1.2.3 System Volume Limitations System volume is less than 400 gallons, but a quick-opening device shall be provided. ### 1.3 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. Submittals related to system configuration, hydraulic calculations, and equipment REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 selection, including manufacturer's catalog data, working drawings, connection drawings, control diagrams and certificates shall be submitted concurrently as a complete package. The package will be reviewed by the U.S. Army Engineer District Fire Protection Engineer. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-01 Data Load Calculations for Sizing Sway Bracing; FIO For systems that are required to be protected against damage from earthquakes, load calculations for sizing of sway bracing. General Equipment Requirements; GA. Manufacturer's Catalog Data for each separate piece of equipment proposed for use in the system. Data shall indicate the name of the manufacturer of each item of equipment, with data highlighted to indicate model, size, options, etc. proposed for installation. In addition, a complete equipment list which includes equipment description, model number and quantity shall be provided (Appendix E.1). Hydraulic Calculations; FIO. Hydraulic calculations shall be submitted and must satisfy NFPA-13 requirements. Spare Parts; FIO. Spare parts data for each different item of material and equipment specified. The data shall include a complete list of parts and supplies, with current unit prices and source of supply, and a list of parts recommended by the manufacturer to be replaced after 1 year and 3 years of service. A list of special tools and test equipment required for maintenance and testing of the products supplied by the Contractor shall be included. SD-04 Drawings Sprinkler System Shop Drawings; GA. Detailed drawings conforming to the requirements established for working plans as prescribed in NFPA 13. Drawings shall include plan and elevation views which establish that the equipment will fit the allotted spaces with clearance for installation and maintenance. Each set of drawings shall include the following: - a. Descriptive index of drawings in the submittal with drawings listed in sequence by drawing number. A legend identifying device symbols, nomenclature, and conventions used. - b. Floor plans drawn to a scale not less than 1/8"= 1'-0" which clearly show locations of sprinklers, risers, pipe hangers, seismic separation assemblies, sway bracing, inspector's test connections, drains, and other applicable details necessary to clearly describe the proposed arrangement. Each type of fitting used and the REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 locations of bushings, reducing couplings, and welded joints shall be indicated. - c. Actual center-to-center dimensions between sprinklers on branch lines and between branch lines; from end sprinklers to adjacent walls; from walls to branch lines; from sprinkler feed mains, cross-mains and branch lines to finished floor and roof or ceiling. A detail shall show the dimension from the sprinkler and sprinkler deflector to the ceiling in finished areas. - d. Longitudinal and transverse building sections showing typical branch line and cross-main pipe routing as well as elevation of each typical sprinkler above finished floor. - e. Details of each type of riser assembly; air supply system and piping; pipe hanger; sway bracing for earthquake protection; restraint of underground water main at point-of-entry into the building; and electrical devices and interconnecting wiring. As-Built Drawings; FIO. As-built drawings, no later than 30 working days after completion of the Final Tests. The sprinkler system shop
drawings shall be updated to reflect as-built conditions after work is completed and shall be submitted on reproducible full-size mylar film. Electronic versions shall also be provided as specified elsewhere in these contract documents. SD-06 Instructions Test Procedures; GA. Proposed test procedures for piping hydrostatic test, trip-tests of dry pipe valve and alarm test, at least 14 days prior to the start of related testing. SD-07 Schedules Preliminary Tests; GA. A schedule of preliminary tests, at least 14 days prior to the proposed start of tests. Final Test; GA. Upon successful completion of tests specified in paragraph PRELIMINARY TESTS, written notification shall be given to the Contracting Officer of the date for the final acceptance test. Notification shall be provided at least 7 days prior to the proposed start of the final test. Notification shall include a copy of the Contractor's Material & Test Certificates. SD-08 Statements Installer Qualifications; GA. Qualifications of the sprinkler installer. REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 Submittal Preparer's Qualifications; GA. The name and documentation of certification of the individual who will prepare the submittals, prior to the submittal of the drawings and hydraulic calculations. SD-13 Certificates Contractor's Material & Test Certificates; GA. Certificates, as specified in NFPA 13, completed and signed by the Contractor's Representative performing required tests for both underground and aboveground piping. SD-19 Operation and Maintenance Manuals Sprinkler System; GA. Manuals in loose-leaf binder format and grouped by technical sections consisting of manufacturer's standard brochures, schematics, printed instructions, general operating procedures, and safety precautions. The manuals shall list routine maintenance procedures, possible breakdowns, and repairs, and troubleshooting guide. This shall include procedures and instructions pertaining to frequency of preventive maintenance, inspection, testing; adjustment, lubrication and cleaning of the entire system as necessary to minimize corrective maintenance and repair. This manual may be included with other fire systems for this building. ### 1.4 HYDRAULIC CALCULATIONS Hydraulic calculations shall be as outlined in NFPA 13 except that calculations shall be performed by computer using software specifically designed for fire protection system design. Software which uses k-factors for typical branch lines is not acceptable. Calculations shall be taken back to the water supply source or to the point where flow test data was measured. Calculations shall substantiate that the design area indicated is the hydraulically most demanding. Water supply curves and system requirements shall be plotted on semi-logarithmic graph paper so as to present a summary of the complete hydraulic calculations. A summary sheet listing sprinklers in the design area and their respective hydraulic reference points, elevations, actual discharge pressures and actual flows shall be provided. Elevations of hydraulic reference points (nodes) shall be indicated. Documentation shall identify each pipe individually and the nodes connected thereto. The diameter, length, flow, velocity, friction loss, number and type fittings, total friction loss in the pipe, equivalent pipe length and Hazen-Williams coefficient shall be indicated for each pipe. A drawing showing hydraulic reference points (nodes) and pipe designations used in the calculations shall be included and shall be independent of shop drawings. Calculations determining the volume capacity of the dry pipe system shall be provided. Calculations of the as-built conditions are to be submitted. ## 1.5 SUBMITTAL PREPARER'S QUALIFICATIONS The sprinkler system submittals, including as-built drawings, shall be prepared by an individual who is a registered professional engineer. ### 1.6 INSTALLER QUALIFICATIONS The installer shall be experienced and regularly engaged in the installation of the type and complexity of system included in this project. A statement prior to submittal of any other data or drawings, that the proposed sprinkler system installer is regularly engaged in the installation of the type and complexity of system included in this project shall be provided. In addition, data identifying the location of at least 3 systems recently installed by the proposed installer which are comparable to the system specified shall be submitted. Contractor shall certify that each system has performed satisfactorily, in the manner intended, for a period of not less than 6 months. ### 1.7 REGULATORY REQUIREMENTS Compliance with referenced NFPA standards is mandatory. This includes advisory provisions listed in the appendices of such standards, as though the word "shall" had been substituted for the word "should" wherever it appears. Applicable material and installation standards referenced in Appendix A of NFPA 13 and NFPA 24 shall be considered mandatory the same as if such referenced standards were specifically listed in this specification. In the event of a conflict between specific provisions of this specification and applicable NFPA standards, this specification shall govern. All requirements that exceed the minimum requirements of NFPA 13 shall be incorporated into the design. Reference to "authority having jurisdiction" shall be interpreted to mean the Contracting Officer. #### 1.8 DELIVERY AND STORAGE Equipment placed in storage shall be stored with protection from the weather, humidity and temperature variations, dirt and dust or other contaminants. ## 2 PRODUCTS ### 2.1 GENERAL EQUIPMENT REQUIREMENTS #### 2.1.1 Standard Products Material and equipment shall be standard products of a manufacturer regularly engaged in the manufacture of such products and shall essentially duplicate items that have been in satisfactory use for at least 2 years prior to bid opening. #### 2.1.2 Requirements for Fire Protection Service Unless otherwise specified, equipment and materials shall have been tested by Underwriters Laboratories, Inc. and listed in UL Fire Protection Directory or approved by Factory Mutual and listed in FM P7825a and FM P7825b. Where the terms "listed" or "approved" appear in this specification, such shall mean listed in UL Fire Protection Directory or FM P7825a and FM P7825b. REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 #### 2.1.3 Nameplates Major components of equipment shall have the manufacturer's name, address, type or style, model or serial number, voltage and current rating and catalog number on a metal plate permanently affixed to the equipment. #### 2.2 UNDERGROUND PIPING SYSTEMS This work is not included in this section. #### 2.3 ABOVEGROUND PIPING SYSTEMS ## 2.3.1 Piping Systems Sprinkler piping shall be steel galvanized piping. The inside wall and the exterior of the pipe shall be galvanized. Steel piping shall be Schedule 40 or Schedule 10 for sizes less than 8 inches in diameter. Piping shall conform to applicable provisions of ASTM A 795, ASTM A 53, or ASTM A 135. Pipe in which threads or grooves are cut shall be Schedule 40 or shall be listed by Underwriters Laboratories to have a corrosion resistance ratio (CRR) of 1.0 or greater after threads or grooves are cut. Pipe shall be marked with the name of the manufacturer, kind of pipe, and ASTM designation. #### 2.3.2 Fittings For Non-Grooved Piping Fittings shall be cast iron conforming to ASME B16.4, galvanized steel conforming to ASME B16.9 or ASME B16.11, or malleable iron conforming to ASME B16.3. Fittings into which sprinklers, drop nipples or riser nipples (sprigs) are screwed shall be threaded type. Plain-end fittings with mechanical couplings, fittings which use steel gripping devices to bite into the pipe and segmented welded fittings shall not be used. ## 2.3.3 Grooved Mechanical Joints and Fittings Joints and fittings shall be designed for not less than 175 psi service and shall be the product of the same manufacturer. Fitting and coupling houses shall be malleable iron conforming to ASTM A 47, Grade 32510; ductile iron conforming to ASTM A 536, Grade 65-45-12. Gaskets shall be of silicon compound and approved for dry fire protection systems. Gasket shall be the flush type that fills the entire cavity between the fitting and the pipe. Nuts and bolts shall be heat-treated steel conforming to ASTM A 183 and shall be cadmium plated or zinc electroplated. Torque wrench tightening values for respective bolts must match the manufacturer's recommendations, as submitted. #### 2.3.4 Flanges Flanges shall conform to NFPA 13 and ASME B16.1. Gaskets shall be non-asbestos compressed material in accordance with ASME B16.21, 1/16 inch thick, and full face or self-centering flat ring type. Bolts shall be square-head conforming to ASME B18.2.1 and nuts shall be hexagon type conforming to ASME B18.2.2. Torque wrench tightening values for respective bolts must match the manufacturer's recommendations, as submitted. REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 #### 2.3.5 Pipe Hangers Hangers shall be listed in UL Fire Prot Dir or FM P7825a and FM P7825b and be of the type suitable for the application, construction, and size pipe involved. #### 2.3.6 Valves #### 2.3.6.1 Control Valve and Gate Valve Manually operated sprinkler control valve and gate valve shall be outside stem and yoke (OS&Y) gate valves and shall be listed in UL Fire Prot Dir or FM P7825a and FM P7825b. #### 2.3.6.2 Check Valve Check valve 2 inches and larger shall be listed in UL Fire Prot Dir or FM P7825a and FM P7825b. Check valve 4 inches and larger shall be of the swing type with flanged cast iron body and flanged inspection plate, shall have a clear waterway and shall meet the requirements of MSS SP-71, for Type 3 or 4. ### 2.4 DRY PIPE VALVE ASSEMBLY The dry pipe valve shall be a latching differential type listed
in UL Fire Prot Dir or FM P7825a and FM P7825b and shall be complete with trim piping, valves, fittings, pressure gauges, priming water fill cup, velocity drip check, drip cup, and other ancillary components as required for proper operation. The assembly shall include a quick-opening device by the same manufacturer as the dry pipe valve. #### 2.5 AIR SUPPLY SYSTEM Air supply system shall be in accordance with NFPA 13. The connection pipe from the air compressor shall not be less than 1/2 inch in diameter and shall enter the system above the priming water level of the dry pipe valve. A check valve shall be installed in the air line piping and a shutoff valve of the renewable disc type shall be installed on the supply side of this check valve. The air supply system shall be sized to pressurize the sprinkler system to 40 psi within 20 minutes. ### 2.5.1 Air Compressor Compressor shall be single stage oilless type, air cooled, electric-motor driven, equipped with a check valve, shutoff valve and pressure switch for automatic starting and stopping. Pressure switch shall be factory set to start the compressor at 30 psi and stop it at 40 psi. A safety relief valve, set to operate at 65 psi, shall be provided. The compressor shall be tank mounted on an ASME tank set to maintain a pressure of 100 psig. It shall have a water capacity of 20 gallons. ### 2.5.2 Air Pressure Maintenance Device Device shall be a pressure regulator which automatically reduces supply air pressure to pressure required to be maintained in the piping system. The device shall have a cast bronze body and valve housing complete with diaphragm assembly, spring, filter, ball check to prevent backflow, 1/16 REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 inch restriction to prevent rapid pressurization of the system, and adjustment screw. The device shall be capable of reducing an inlet pressure of up to 100 psig to a fixed outlet pressure adjustable to 10 psig. #### 2.5.3 Air Supply Piping System System shall be configured so that each dry pipe system is equipped with a separate pressure maintenance device, air compressor, shutoff valve, bypass valve and pressure gauge. Piping shall be galvanized steel in accordance with ASTM A 795 or ASTM A 53. #### 2.5.4 Low Air Pressure Alarm Device Each dry pipe valve trim shall be provided with a local alarm device consisting of a metal enclosure containing an alarm horn or bell, silence switch, green power-on light, red low-air alarm light and amber trouble light. The alarm device shall be activated by the low air pressure switch. Upon reduction of sprinkler system pressure to approximately 10 psig above the dry valve trip point pressure, the low air pressure switch shall actuate the audible alarm device and a red low-air alarm light. Restoration of system pressure shall cause the low-air alarm light to be extinguished and the audible alarm to be silenced. An alarm silence switch shall be provided to silence the audible alarm. An amber trouble light shall be provided which will illuminate upon operation of the silence switch and shall be extinguished upon return to its normal position. ### 2.6 WATER MOTOR ALARM ASSEMBLY Assembly shall include a body housing, impeller wheel, drive shaft, striker assembly, gong, wall plate and related components necessary for complete operation. Minimum 3/4 inch galvanized piping shall be provided between the housing and the alarm check valve. Drain piping from the body housing shall be minimum 1 inch galvanized steel and shall be arranged to drain to the outside of the building. Piping shall be galvanized both on the inside and on the outside surfaces. ## 2.7 FIRE DEPARTMENT CONNECTION Connection shall be projecting type with cast brass body, a polished brass finish, and matching wall escutcheon lettered "Auto Spkr". The connection shall have two inlets with individual self-closing clappers, caps with drip drains, and chains. Female inlets shall have 2-1/2 inch diameter American National Fire Hose Connection Screw Threads (NH) per NFPA 1963. #### 2.8 SPRINKLERS Sprinklers shall be used in accordance with their listed spacing limitations. Areas where sprinklers are connected to or are a part of the dry pipe system shall be considered unheated and subject to freezing. Temperature classification shall be intermediate, 175°F, quick response. Sprinklers in high heat areas including attic spaces or in close proximity to unit heaters shall have temperature classification in accordance with NFPA 13. Sprinklers with internal O-rings shall not be used. REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 ### 2.8.1 Upright Sprinkler Upright sprinkler shall be brass. Sprinkler shall have an orifice of 1/2 inch in diameter. ### 2.8.2 Pendent Sprinkler Pendent sprinkler heads in heated areas on the first floor shall be the dry pendent type. Pendent sprinkler shall be semi-recessed type with nominal 1/2 inch orifice. Pendent sprinklers shall be of the glass bulb type and shall have a polished chrome finish. Assembly shall include an integral escutcheon. Maximum length shall not exceed the maximum length indicated in UL Fire Prot Dir. #### 2.8.3 Corrosion Resistant Sprinkler Corrosion resistant sprinklers are not required. #### 2.9 DISINFECTING MATERIALS ### 2.9.1 Liquid Chlorine Liquid chlorine shall conform to AWWA B301. ## 2.9.2 Hypochlorites Calcium hypochlorite and sodium hypochlorite shall conform to AWWA B300. #### 2.10 ACCESSORIES ## 2.10.1 Sprinkler Cabinet Spare sprinklers shall be provided in accordance with NFPA 13 and shall be packed in a suitable metal or plastic cabinet. Spare sprinklers shall be representative of, and in proportion to, the number of each type and temperature rating of the sprinklers installed. At least one wrench of each type required, shall be provided. The cabinet shall serve both preaction and dry system sprinklers and have a 12 head capacity. ## 2.10.2 Pendent Sprinkler Escutcheon Escutcheon shall be one-piece metallic type with a depth of less than 3/4 inch and suitable for installation on pendent sprinklers. The escutcheon shall have a factory finish of polished chrome. ### 2.10.3 Pipe Escutcheon Escutcheon shall be polished chromium-plated zinc alloy, or polished chromium-plated copper alloy. Escutcheons shall be either one-piece or split-pattern, held in place by internal spring tension or set-screw. ## 2.10.4 Sprinkler Guard Guard shall be a steel wire cage designed to encase the sprinkler and protect it from mechanical damage. Guards shall be provided on sprinklers located within 7'-6" of the floor or in a location where they are subject to mechanical damage. ## 2.10.5 Identification Sign Valve identification sign shall be minimum 6 inches wide by 2 inches high with enamel baked finish on minimum 18 gauge steel or 0.024 inch aluminum with red letters on a white background or white letters on red background. Wording of sign shall include, but not be limited to "main drain," "auxiliary drain," "inspector's test," "alarm test," "alarm line," and similar wording as required to identify operational components. #### 2.11 ALARM INITIATING AND SUPERVISORY DEVICES Each valve supervisory and pressure alarm switch shall be equipped with a single pole valve cover supervisory switch. #### 2.11.1 Sprinkler Pressure Alarm Switch (Waterflow Alarm) Pressure switch shall include a metal housing with a neoprene diaphragm, SPDT snap action switches and a 1/2 inch NPT male pipe thread. The switch shall have a maximum service pressure rating of 175 psi. There shall be two SPDT (Form C) contacts factory adjusted to operate at 4 to 8 psi. The switch shall be capable of being mounted in any position in the alarm line trim piping of the dry pipe valve. This switch must be mounted upstream of any alarm shutoff valve or the valve must be electronically supervised by the fire alarm system. ### 2.11.2 Low Air Pressure Supervisory Switch The pressure switch shall supervise the air pressure in system and shall be set to activate at 10 psi psi above the dry pipe valve trip point pressure. The switch shall have an adjustable range between 5 psi and 80 psi. The switch shall have screw terminal connection and shall be capable of being wired for normally open or normally closed circuit. ## 2.11.3 Valve Supervisory (Tamper) Switch Switch shall be suitable for mounting to the type of control valve to be supervised open. The switch shall be tamper resistant and contain one set of SPDT (Form C) contacts arranged to transfer upon removal of the housing cover or closure of the valve of more than two rotations of the valve stem. #### 2.12 DOUBLE-CHECK VALVE BACKFLOW PREVENTION ASSEMBLY Backflow prevention is provided within the pump house as part of the fire pump system. #### 3 EXECUTION ### 3.1 INSTALLATION REQUIREMENTS The installation shall be in accordance with the applicable provisions of NFPA 13 and publications referenced therein. ### 3.2 ABOVEGROUND PIPING INSTALLATION Piping shall be run straight and bear evenly on hangers and supports. Dry piping must be sloped in accordance with NFPA-13 or steeper, back towards REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 the dry valve or the low point drain. Mains must slope $\frac{1}{4}$ " per 10 ft. and lines $\frac{1}{2}$ " per 10 ft., minimum. ### 3.2.1 Protection of Piping Against Earthquake Damage The system piping shall be protected against damage from earthquakes. Seismic protection of the piping system shall be provided in accordance with NFPA 13 and Appendix A, with the exception that the "Earthquake Zones" map of Appendix A shall not apply to this project. Seismic protection shall include flexible couplings, sway bracing, seismic separation assemblies where piping crosses building seismic separation joints, and other features as required in NFPA 13 for protection of piping against damage from earthquakes. Branch lines shall
be equipped with sway braces at the end sprinkler head and at intervals not exceeding 30 ft. ## 3.2.2 Piping in Exposed Areas Exposed piping shall be installed so as to not diminish exit access widths, corridors or equipment access. Exposed horizontal piping, including drain piping, shall be installed to provide maximum headroom. ### 3.2.3 Piping in Finished Areas In areas with suspended or dropped ceilings or with concealed spaces above the ceiling, piping shall be concealed above ceilings. Piping shall be inspected, tested and approved before being concealed. Risers and similar vertical runs of piping in finished areas shall be concealed. ### 3.2.4 Pendent Sprinklers ### 3.2.4.1 General Locations Sprinklers installed in the pendent position shall be of the listed dry pendent type. Hangers shall be provided on arm-overs exceeding 12 inches in length. Pendent sprinkler assemblies shall be such that sprinkler ceiling plates or escutcheons are of the uniform depth throughout the finished space. On pendent sprinklers installed below suspended or dropped ceilings, the distance from the sprinkler deflector to the underside of the ceiling shall not exceed 4 inches. Recessed pendent sprinklers shall be installed such that the distance from the sprinkler deflector to the underside of the ceiling shall not exceed the manufacturer's listed range and shall be of uniform depth throughout the finished area. ### 3.2.4.2 Suspended Ceilings Pendent sprinklers located in areas with suspended ceilings shall be positioned a minimum of 6 inches horizontally from the ceiling grid. ## 3.2.5 Upright Sprinklers Riser nipples or "sprigs" to upright sprinklers shall contain no fittings between the branch line tee and the reducing coupling at the sprinkler. Riser nipples exceeding 30 inches in length shall be individually supported. FAIRCHILD AFB, WA. PN GJKZ 99-0151 ### 3.2.6 Pipe Joints Pipe joints shall conform to NFPA 13, except as modified herein. Not more than four threads shall show after joint is made up. Welded joints will be permitted, only if welding operations are performed as required by NFPA 13 at the Contractor's fabrication shop, not at the project construction site. Flanged joints shall be provided where indicated or required by NFPA 13. Grooved pipe and fittings shall be prepared in accordance with the manufacturer's latest published specification according to pipe material, wall thickness and size. Grooved couplings and fittings shall be from the same manufacturer. Torque wrench tightening values for respective bolts must match the manufacturer's recommendations, as submitted. #### 3.2.7 Reducers Reductions in pipe sizes shall be made with one-piece tapered reducing fittings. The use of grooved end or rubber-gasket reducing couplings will not be permitted. When standard fittings of the required size are not manufactured, single bushings of the face type will be permitted. Where used, face bushings shall be installed with the outer face flush with the face of the fitting opening being reduced. Bushings shall not be used in elbow fittings, in more than one outlet of a tee, in more than two outlets of a cross, or where the reduction in size is less than 1/2 inch. #### 3.2.8 Pipe Penetrations Cutting structural members for passage of pipes or for pipe-hanger fastenings will not be permitted. Pipes that must penetrate concrete or masonry walls or concrete floors shall be core-drilled and provided with pipe sleeves. Each sleeve shall be Schedule 40 galvanized steel, ductile iron or cast iron pipe and shall extend through its respective wall or floor and be cut flush with each wall surface. Sleeves shall provide required clearance between the pipe and sleeve per NFPA 13. The space between the sleeve and the pipe shall be firmly packed with mineral wool insulation. Where pipes pass through fire walls, fire partitions, or floors, a fire seal shall be placed between the pipe and sleeve in accordance with Section 07840 FIRESTOPPING. In penetrations which are not fire-rated or not a floor penetration, the space between the sleeve and the pipe shall be sealed at both ends with plastic waterproof cement which will dry to a firm but pliable mass or with a mechanically adjustable segmented elastomer seal. ### 3.2.9 Escutcheons Escutcheons shall be provided for pipe penetrations of ceilings and walls. Escutcheons shall be securely fastened to the pipe at surfaces through which piping passes. ### 3.2.10 Inspector's Test Connection Unless otherwise indicated, test connection shall consist of 1 inch pipe connected to a nipple up off the remote branch line; a test valve with brass plug located approximately 7 feet above the floor; nipples and union for a temporary connection; a smooth bore brass outlet equivalent to the smallest orifice sprinkler used in the system; and a painted metal identification sign affixed to the valve with the words "Inspector's Test." The discharge orifice shall be located outside the building wall directed so as not to cause damage to adjacent construction during full flow discharge. #### 3.2.11 Drains Main drain piping shall be provided to discharge at a safe point outside the building at the locations indicated. Auxiliary drains shall be provided as indicated and as required by NFPA 13. When the capacity of trapped sections of pipe is less than 3 gallons, the auxiliary drain shall consist of a valve not smaller than 1/2 inch and hose thread adaptor with metal cap. When the capacity of trapped sections of piping is more than 3 gallons, the auxiliary drain shall consist of two 1 inch valves and one 2 x 12 inch condensate nipple or equivalent, located in an accessible location. Tie-in drains shall be provided for multiple adjacent trapped branch pipes and shall be a minimum of 1 inch in diameter. Tie-in drain lines shall be pitched a minimum of 1/2 inch per 10 feet. ### 3.2.12 Installation of Fire Department Connection Connection shall be mounted on the exterior wall approximately 3 feet above finished grade. The piping between the connection and the check valve shall be provided with an automatic drip in accordance with NFPA 13 arranged to drain to the outside. ### 3.2.13 Installation of Water Motor Gong Water motor gong shall be installed with retarding chambers, check valves, alarm bypass test connections, and indicating control valves in accordance with NFPA 13. ### 3.2.14 Identification Signs Signs shall be affixed to each control valve, inspector test valve, main drain, auxiliary drain, test valve, and similar valves. Hydraulic design data nameplates shall be permanently affixed to each sprinkler riser in accordance with NFPA 13. ## 3.3 UNDERGROUND PIPING INSTALLATION Not applicable this section. #### 3.4 EARTHWORK Not applicable this section. #### 3.5 ELECTRICAL WORK Except as modified herein, electric equipment and wiring shall be in accordance with Section 16415 ELECTRICAL WORK, INTERIOR. Alarm signal wiring connected to the building fire alarm control system shall be in accordance with Section 13850 FIRE DETECTION AND ALARM SYSTEM, DIRECT CURRENT LOOP. Wiring for supervisory and alarm circuits shall be #16 AWG solid copper installed in metallic tubing or conduit. #### 3.6 DISINFECTION After all system components are installed and hydrostatic test are successfully completed, each portion of the sprinkler system to be disinfected shall be thoroughly flushed with potable water until all REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 entrained dirt and other foreign materials have been removed before introducing chlorinating material. Flushing shall be conducted by removing the flushing fitting of the cross mains and of the grid branch lines, and then back-flushing through the sprinkler main drains. The chlorinating material shall be hypochlorites or liquid chlorine. Water chlorination procedure shall be in accordance with AWWA M20. The chlorinating material shall be fed into the sprinkler piping at a constant rate of 50 parts per million (ppm). A properly adjusted hypochlorite solution injected into the system with a hypochlorinator, or liquid chlorine injected into the system through a solution-fed chlorinator and booster pump shall be used. Chlorination application shall continue until the entire system if filled. The water shall remain in the system for a minimum of 24 hours. Each valve in the system shall be opened and closed several times to ensure its proper disinfection. Following the 24-hour period, no less than 25 ppm chlorine residual shall remain in the system. The system shall then be flushed with clean water until the residual chlorine is reduced to less than one part per million. Samples of water in properly disinfected containers for bacterial examination will be taken from several system locations which are approved by the Contracting Officer. Samples shall be tested for total coliform organisms (coliform bacteria, fecal coliform, streptococcal, and other bacteria) in accordance with AWWA-01. The testing method shall be either the multiple-tube fermentation technique or the membrane-filter technique. The disinfection shall be repeated until tests indicate the absence of coliform organisms (zero mean coliform density per 100 milliliters) in the samples for at least 2 full days. The system shall not be accepted until satisfactory bacteriological results have been obtained. #### 3.7 FIELD PAINTING AND FINISHING Field painting and finishing are specified in Section 09900 PAINTING, GENERAL. ### 3.8 PRELIMINARY TESTS The system and the aboveground piping and system components, shall be tested to assure that equipment and components function as intended. Upon completion of specified tests, the Contractor shall complete certificates as specified in paragraph SUBMITTALS. ### 3.8.1 Underground Piping ### 3.8.1.1 Flushing Underground piping shall be flushed in accordance with NFPA 24 and certified before connection to the aboveground piping is authorized. This
includes the requirement to flush the lead-in connection to the fire protection system at a flow rate not less that the calculated maximum water demand rate of the system. REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 3.8.1.2 Hydrostatic Testing for Underground Piping Not applicable this section. ### 3.8.2 Aboveground Piping ### 3.8.2.1 Hydrostatic Testing for Aboveground Piping Aboveground piping shall be hydrostatically tested in accordance with NFPA 13 at not less than 200 psi and shall maintain that pressure without loss for 2 hours. There shall be no drop in gauge pressure or visible leakage when the system is subjected to the hydrostatic test. The test pressure shall be read from a gauge located at the low elevation point of the system or portion being tested. The clapper of the differential dry pipe valve shall be held off its seat during testing to prevent damage to the valve. ### 3.8.2.2 Air Pressure Test As specified in NFPA 13, an air pressure leakage test at 50 psi shall be conducted for 24 hours. Any leakage that results in a loss of pressure in excess of 1.5 psi for the 24 hours shall be corrected. This air pressure test is in addition to the required hydrostatic test. ### 3.8.3 Testing of Alarm Devices Each alarm initiating device, including pressure alarm switch, low air pressure switch, valve supervisory switch, and electrically-operated switch shall be tested for proper operation. Water motor alarm shall be tested. The connecting circuit to the building fire alarm system shall be inspected and tested. ### 3.8.4 Trip Tests of Dry Pipe Valves Each dry pipe valve shall be trip-tested by reducing normal system air pressure through operation of the inspector's test connection. Systems equipped with quick opening devices shall be first tested without the operation of the quick opening device and then with it in operation. Test results will be witnessed and recorded. Test results shall include the number of seconds elapsed between the time the test valve is opened and tripping of the dry valve; trip-point air pressure of the dry pipe valve; water pressure prior to valve tripping; and number of seconds elapsed between time the inspector's test valve is opened and water reaches the orifice. ### 3.8.5 Main Drain Flow Test Following flushing of the underground piping, a main drain test shall be made to verify the adequacy of the water supply. Static and residual pressures shall be recorded on the certificate specified in paragraph SUBMITTALS. In addition, a main drain test shall be conducted each time after a main control valve is shut and opened. REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 3.9 FINAL TEST ## 3.9.1 Trip Tests A complete test of the system shall be conducted to demonstrate that the system is completely functional and meets the specified requirements. A technician employed by the installing Contractor shall be present for the final tests and shall perform or direct all tests. Tests shall include trip tests of each dry pipe valve. Each dry pipe valve shall be trip tested by reducing normal system air pressure through operation of the inspector's test connection. Systems equipped with quick opening devices shall be first tested without the operation of the quick opening device and then with it in operation. Test results shall be recorded and shall include the number of seconds elapsed between the time the test valve is opened and tripping of the dry valve; trip-point air pressure of the dry pipe valve; water pressure prior to valve tripping; number of seconds elapsed between time the inspector's test valve is opened and water reaches the orifice. #### 3.9.2 Alarm Tests In conjunction with performance of trip tests, low-air pressure alarm devices shall be tested to verify proper operation. Each system shall be completely drained after each trip test. The system air supply system shall be tested to verify that system pressure is restored in the specified time. Each alarm pressure switch and associated water-operated alarm devices shall be tested. #### 3.9.3 Main Drain Test After flow tests have been completed and dry pipe valves reset, the main drain test shall be conducted to assure that main control valves are in the open position. After the system has been tested and drained, the system shall be drained periodically for at least 2 weeks until it can be assured that water from the system has been removed. ## 3.9.4 Acceptance The technician shall have available copies of as-built drawings and certificates of tests previously conducted. The installation will not be considered accepted until identified discrepancies have been corrected, test documentation is properly completed and received, and the system has been verified to be void of water. END OF SECTION # SECTION 13945 # PREACTION AND DELUGE SPRINKLER SYSTEMS, FIRE PROTECTION # PART 1 GENERAL # 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. # AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | ASTM A 47 | (1990; R 1995) Ferritic Malleable Iron
Castings | |------------|---| | ASTM A 53 | (1997) Pipe, Steel, Black and Hot-Dipped,
Zinc-Coated, Welded and Seamless | | ASTM A 135 | (1997) Electric-Resistance-Welded Steel Pipe | | ASTM A 183 | (1983; R 1990) Carbon Steel Track Bolts and
Nuts | | ASTM A 536 | (1984; R 1993) Ductile Iron Castings | | ASTM A 795 | (1996) Black and Hot-Dipped Zinc-Coated
(Galvanized) Welded and Seamless Steel Pipe
for Fire Protection Use | # AMERICAN SOCIETY OF MECHANICAL ENGINEERS (ASME) | ASME B16.1 | (1989) Cast Iron Pipe Flanges and Flanged
Fittings | |-------------|--| | ASME B16.3 | (1992) Malleable Iron Threaded Fittings | | ASME B16.4 | (1992) Cast Iron Threaded Fittings | | ASME B16.9 | (1993) Factory-Made Wrought Steel Buttwelding Fittings | | ASME B16.11 | (1996) Forged Fittings, Socket-Welding and Threaded | | ASME B16.21 | (1992) Nonmetallic Flat Gaskets for Pipe
Flanges | ASME B18.2.1 (1996) Square and Hex Bolts and Screws Inch Series ASME B18.2.2 (1987; R 1993) Square and Hex Nuts (Inch Series) AMERICAN SOCIETY OF SANITARY ENGINEERING (ASSE) ASSE 1015 (1993) Double Check Backflow Prevention Assembly AMERICAN WATER WORKS ASSOCIATION (AWWA) AWWA-01 (1995) Standard Methods for the Examination of Water and Wastewater AWWA B300 (1992) Hypochlorites AWWA B301 (1992) Liquid Chlorine AWWA ANSI/AWWA C104/A21.4 (1995) Cement-Mortar Lining for Ductile-Iron Pipe and Fittings for Water AWWA ANSI/AWWA C110/A21.10 (1993) Ductile-Iron and Gray-Iron Fittings, 3 In. Through 48 In. (75 mm through 1200 mm), for Water and Other Liquids AWWA ANSI/AWWA C111/A21.11 (1995) Rubber-Gasket Joints for Ductile-Iron Pressure Pipe and Fittings AWWA ANSI/AWWA C151/A21.51 (1996) Ductile-Iron Pipe, Centrifugally Cast, for Water or Other Liquids AWWA C203 (1991) Coal-Tar Protective Coatings and Linings for Steel Water Pipelines - Enamel and Tape - Hot-Applied AWWA M20 (1973) Manual: Water Chlorination Principles and Practices FACTORY MUTUAL ENGINEERING AND RESEARCH (FM) FM P7825a (1998) Approval Guide Fire Protection FM P7825b (1998) Approval Guide Electrical Equipment INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE) IEEE C62.41 (1991; R 1995) Surge Voltages in Low-Voltage AC Power Circuits > MANUFACTURERS STANDARDIZATION SOCIETY OF THE VALVE AND FITTINGS INDUSTRY (MSS) MSS SP-71 (1997) Cast Iron Swing Check Valves, Flanges and Threaded Ends NATIONAL FIRE PROTECTION ASSOCIATION (NFPA) NFPA 13 (1996; Errata 13-96-1) Installation of Sprinkler Systems NFPA 24 (1995) Installation of Private Fire Service Mains and Their Appurtenances NFPA 70 (1996; Errata 96-4) National Electrical Code NFPA 72 (1996; Errata Oct 96, Dec 96, TIA 96-1; 93-2; 96-3) National Fire Alarm Code NFPA 1963 (1993) Fire Hose Connections NATIONAL INSTITUTE FOR CERTIFICATION IN ENGINEERING TECHNOLOGIES (NICET) NICET 1014 (1995) Program Detail Manual for Certification in the Field of Fire Protection Engineering Technology (Field Code 003) Subfield of Automatic Sprinkler System Layout UNDERWRITERS LABORATORIES (UL) UL Bld Mat Dir (1998) Building Materials Directory UL Fire Prot Dir (1998) Fire Protection Equipment Directory # 1.2 GENERAL REQUIREMENTS The system shall consist of an automatic preaction sprinkler system and shall be provided in the aircraft service areas indicated on the drawings. The sprinkler system shall provide fire sprinkler protection for the entire area. Except as modified herein, the system shall meet the requirements of NFPA 13 and NFPA 72. The sprinkler system shall be a single interlocked system that requires the actuation of an alarm initiating device to open the water control (deluge) valve. Pipe sizes which are not indicated on the drawings shall be determined by hydraulic calculations. # 1.2.1 Hydraulic Design The system has been hydraulically designed to discharge a minimum density of 0.2 gpm per square foot over the hydraulically most demanding 5,000 square feet of floor area. #### 1.2.1.1 Monitor Nozzle Demand The hydraulic design for the preaction system also includes the effect of all low level AFFF monitor nozzles in operation concurrently with the 5,000 square foot area. # 1.2.2 Sprinkler Spacing Sprinklers shall be uniformly spaced on branch lines. Maximum spacing per sprinkler shall not exceed 130 square feet. - 1.2.3 Control System (See Section 13955) - 1.3 SYSTEM OPERATIONAL FEATURES (SEE SECTION 13955) ## 1.4 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. Submittals related to system configuration, hydraulic calculations, and
equipment selection, including manufacturer's catalog data, working drawings, connection drawings, control diagrams and certificates shall be submitted concurrently as a complete package. The package will be reviewed by the U.S. Army Engineer District Fire Protection Engineer. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-01 Data Load Calculations for Sizing Sway Bracing; GA. For systems that are required to be protected against damage from earthquakes, load calculations for sizing of sway bracing. General Equipment Requirements; GA. Manufacturer's Catalog Data for each piece of equipment proposed for use in the system. Data shall indicate the name of the manufacturer of each item of equipment, with data highlighted to indicate model, size, options, etc. proposed for installation. In addition, a complete equipment list which includes equipment description, model number and quantity shall be provided. Storage Batteries; GA. Calculations to substantiate the total requirements for supervisory and alarm power. Ampere-hour requirements for each system component and each control panel component or module, under both normal and alarm conditions shall be included. The battery recharging period shall be provided. Spare Parts; FIO. Spare parts data for each different item of material and equipment specified. The data shall include a complete list of parts and supplies, with current unit prices and source of supply, and a list of parts recommended by the manufacturer to be replaced after 1 year and 3 years of service. A list of special tools and test equipment required for maintenance and testing of the products supplied by the Contractor shall be included. SD-04 Drawings Sprinkler System Shop Drawings; GA. Detail drawings conforming to the requirements established for working plans as prescribed in NFPA 13. Drawings shall include plan and elevation views which establish that the equipment will fit the allotted spaces with clearance for installation and maintenance. Each set of drawings shall include the following: - a. Descriptive index of drawings in the submittal with drawings listed in sequence by drawing number. A legend identifying device symbols, nomenclature, and conventions used. - b. Floor plans drawn to a scale not less than 1/8"= 1'-0" which clearly show locations of sprinklers, risers, pipe hangers, seismic separation assemblies, sway bracing, drains, and other applicable details necessary to clearly describe the proposed arrangement. Each type of fitting used and the locations of bushings, reducing couplings, and welded joints shall be indicated. - c. Actual center-to-center dimensions between sprinklers on branch lines and between branch lines; from end sprinklers to adjacent walls; from walls to branch lines; from sprinkler feed mains, cross-mains and branch lines to finished floor and roof or ceiling. A detail shall show the dimension from the sprinkler and sprinkler deflector to the ceiling in finished areas. - d. Longitudinal and transverse building sections showing typical branch line and cross-main pipe routing as well as elevation of each typical sprinkler above finished floor. - e. Details of each type of riser assembly; pipe hanger; sway bracing for earthquake protection, and restraint of underground water main at point-of-entry just outside of/and into the building. - f. Complete point-to-point wiring diagram of the detection and control system. Indicate the detailed interconnection of control panel modules to the devices, the number and size of conductors in each conduit, and size of conduit. Connection points shall be indicated and coordinated with the terminal identification marked on the devices. Complete internal wiring schematic of the control panel and each electrical device shall be provided. Detailed description of the functions of the control panel and each module shall be provided. As-Built Drawings; FIO. As-built drawings, no later than 14 days after completion of the Final Tests. The sprinkler system shop drawings shall be updated to reflect as-built conditions after all associated work is completed and shall be submitted on reproducible full-size mylar film. Electronic versions shall also be provided as specified elsewhere in these contract documents. SD-06 Instructions Test Procedures; GA. Proposed test procedures for piping hydrostatic test, detection and control system tests, and trip-tests of automatic water control valve, at least 14 days prior to the start of related testing. SD-07 Schedules Preliminary Tests; GA. A schedule of preliminary tests, at least 14 days prior to the proposed start of tests. Final Test; GA. Upon successful completion of tests specified in paragraph PRELIMINARY TESTS, written notification of the date for the final acceptance test. Notification shall be provided at least 14 days prior to the proposed start of the final test. Notification shall include a copy of the Contractor's Material & Test Certificates. SD-08 Statements Installer Qualifications; GA. Qualifications of the sprinkler installer. Submittal Preparer's Qualifications; GA. The name and documentation of certification of the individual who will prepare the submittals, prior to the submittal of the drawings and hydraulic calculations. SD-13 Certificates Contractor's Material & Test Certificates; GA. Certificates, as specified in NFPA 13, completed and signed by the Contractor's representative performing required tests for both underground and aboveground piping. SD-19 Operation and Maintenance Manuals Sprinkler System; GA. Manuals shall be in loose-leaf binder format and grouped by technical sections consisting of manufacturer's standard brochures, schematics, printed instructions, general operating procedures, and safety precautions. The manuals shall list routine maintenance procedures, possible breakdowns, and repairs, and troubleshooting guide. This shall include procedures and instructions pertaining to frequency of preventive maintenance, inspection, adjustment, lubrication and cleaning necessary to minimize corrective maintenance and repair. ## 1.5 HYDRAULIC CALCULATIONS Hydraulic calculations are not required as the system has been hydraulically designed. # 1.6 SUBMITTAL PREPARER'S QUALIFICATIONS The sprinkler system submittals, including as-built drawings, shall be prepared by an individual who is either a registered professional engineer or who is certified as a Level IV Technician by National Institute for Certification in Engineering Technologies (NICET) in the Automatic Sprinkler System Layout subfield of Fire Protection Engineering Technology in accordance with NICET 1014. # 1.7 INSTALLER QUALIFICATIONS The installer shall be experienced and regularly engaged in the installation of the type and complexity of system included in this project. A statement prior to submittal of any other data or drawings, that the proposed sprinkler system installer is regularly engaged in the installation of the type and complexity of system included in this project shall be provided. In addition, data identifying the location of at least three systems recently installed by the proposed installer which are comparable to the system specified shall be submitted. Contractor shall certify that each system has performed satisfactorily, in the manner intended, for a period of not less than 6 months. # 1.8 REGULATORY REQUIREMENTS Compliance with referenced NFPA standards is mandatory. This includes advisory provisions listed in the appendices of such standards, as though the word "shall" had been substituted for the word "should" wherever it appears. Applicable material and installation standards referenced in Appendix A of NFPA 13 and NFPA 24 shall be considered mandatory the same as if such referenced standards were specifically listed in this specification. In the event of a conflict between specific provisions of this specification and applicable NFPA standards, this specification shall govern. All requirements that exceed the minimum requirements of NFPA 13 shall be incorporated into the design. Reference to "authority having jurisdiction" shall be interpreted to mean the Contracting Officer. ## 1.9 DELIVERY AND STORAGE Equipment placed in storage shall be stored with protection from the weather, humidity and temperature variations, dirt and dust or other contaminants. #### PART 2 PRODUCTS # 2.1 GENERAL EQUIPMENT REQUIREMENTS # 2.1.1 Standard Products Material and equipment shall be standard products of a manufacturer regularly engaged in the manufacture of such products and shall essentially duplicate items that have been in satisfactory use for at least 2 years prior to bid opening. ## 2.1.2 Requirements for Fire Protection Service Unless otherwise specified, equipment and materials shall have been tested by Underwriters Laboratories, Inc. and listed in UL Fire Prot Dir or approved by Factory Mutual and listed in FM P7825a and FM P7825b. Where the terms "listed" or "approved" appear in this specification, such shall mean listed in UL Fire Prot Dir or FM P7825a and FM P7825b. ## 2.1.3 Nameplates Major components of equipment shall have the manufacturer's name, address, type or style, model or serial number, voltage and current rating and catalog number on a metal plate permanently affixed to the equipment. #### 2.2 UNDERGROUND PIPING SYSTEMS ## 2.2.1 Pipe Underground piping systems are covered in other portions of these specifications. Piping more than 5 feet outside the building walls shall comply with Section 02510 WATER DISTRIBUTION SYSTEM. #### 2.3 ABOVEGROUND PIPING SYSTEMS # 2.3.1 Piping Systems Sprinkler piping shall be galvanized steel pipe. The inside wall of the pipe shall be galvanized in addition to the exterior. Steel piping shall be Schedule 40 or Schedule 10 for sizes less than 8 inches in diameter and Schedule 30 or 40 for sizes 8 inches and larger in diameter. Piping shall conform to applicable provisions of ASTM A 795, ASTM A 53, or
ASTM A 135. Pipe in which threads or grooves are cut shall be Schedule 40 or shall be listed by Underwriters Laboratories to have a corrosion resistance ratio (CRR) of 1.0 or greater after threads or grooves are cut. Pipe shall be marked with the name of the manufacturer, kind of pipe, and ASTM designation. # 2.3.2 Fittings for Non-Grooved Piping Fittings shall be cast iron conforming to ASME B16.4, galvanized steel conforming to ASME B16.9 or ASME B16.11, or malleable iron conforming to ASME B16.3. Fittings into which sprinklers, drop nipples or riser nipples (sprigs) are screwed shall be threaded type. Plain-end fittings with mechanical couplings, fittings which use steel gripping devices to bite into the pipe and segmented welded fittings shall not be used. # 2.3.3 Grooved Mechanical Joints and Fittings Joints and fittings shall be designed for not less than 175 psi service and shall be the product of the same manufacturer. Fitting and coupling houses shall be malleable iron conforming to ASTM A 47, Grade 32510; ductile iron conforming to ASTM A 536, Grade 65-45-12. Gaskets shall be of silicon compound and approved for dry fire protection systems. Gasket shall be the flush type that fills the entire cavity between the fitting and the pipe. Nuts and bolts shall be heat-treated steel conforming to ASTM A 183 and shall be cadmium plated or zinc electroplated. # 2.3.4 Flanges Flanges shall conform to NFPA 13 and ASME B16.1. Gaskets shall be non-asbestos compressed material in accordance with ASME B16.21, 1/16 inch thick, and full face or self-centering flat ring type. Bolts shall be square-head conforming to ASME B18.2.1 and nuts shall be hexagon type conforming to ASME B18.2.2. ## 2.3.5 Pipe Hangers Hangers shall be listed in UL Fire Prot Dir or FM P7825a and FM P7825b and be of the type suitable for the application, construction, and size pipe involved. #### 2.3.6 Valves ## 2.3.6.1 Control Valve and Gate Valve Manually operated sprinkler control valve and gate valve shall be outside stem and yoke (OS&Y) gate valves and shall be listed in UL Bld Mat Dir or FM P7825a and FM P7825b. # 2.3.6.2 Check Valves Check valves 2 inches and larger shall be listed in UL Bld Mat Dir or FM P7825a and FM P7825b. Check valves 4 inches and larger shall be of the swing type with flanged cast iron body and flanged inspection plates, shall have a clear waterway and shall meet the requirements of MSS SP-71, for Type 3 or 4. ## 2.4 AUTOMATIC WATER CONTROL VALVE (DELUGE VALVE) Automatic water control valve (deluge valve) shall be electrically-actuated and rated for a working pressure of 175 psi. Valve shall be capable of being reset without opening the valve. Electrical solenoid valve used to actuate the water control valve shall be an integral component of the valve or shall be approved for use by the water control valve manufacturer. Solenoid valve shall be rated at 24 volts direct current, and shall be normally closed type which operates when energized. Solenoid valves shall be rated for a maximum pressure differential of 175 psi. Water control valve shall be equipped with a means to prevent the valve from returning to the closed position until being manually reset. Assembly shall be complete with the valve manufacturer's standard trim piping, drain and test valves, pressure gauges, and other required appurtenances. Each assembly shall include an emergency release device for manually tripping the water control valve in the event of a power or other system failure. Device shall be a standard accessory component of the valve manufacturer and shall be labeled as to its function and method of operation. Valves located in hazardous locations shall be approved for the hazard classification of the area where located. # 2.5 SUPERVISORY AIR SYSTEM (NOT APPLICABLE) # 2.6 WATER MOTOR ALARM ASSEMBLY Assembly shall include a body housing, impeller wheel, drive shaft, striker assembly, gong, wall plate and related components necessary for complete operation. Minimum 3/4 inch galvanized piping shall be provided between the housing and the automatic water control valve. Drain piping from the body housing shall be minimum 1 inch galvanized steel and shall be arranged to 00029/11 REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 drain to the outside of the building. Piping shall be galvanized both on the inside and on the outside surfaces. ## 2.7 FIRE DEPARTMENT CONNECTION Connection shall be projecting type with cast brass body, a polished brass finish, and matching wall escutcheon lettered "Auto Spkr". The connection shall have two inlets with individual self-closing clappers, caps with drip drains, and chains. Female inlets shall have 2-1/2 inch diameter American National Fire Hose Connection Screw Threads (NH) per NFPA 1963. #### 2.8 SPRINKLERS Sprinklers for preaction systems shall be automatic, fusible solder or glass bulb type, with a temperature classification rating of 175 degrees F. Closed-head sprinklers in high heat areas including attic spaces or in close proximity to unit heaters shall have temperature classification in accordance with NFPA 13. Sprinklers shall be used in accordance with their listed spacing limitations. Sprinklers with internal O-rings shall not be used. # 2.8.1 Upright Sprinkler Upright sprinkler shall be brass. Closed-head sprinklers shall be quick response type which incorporates a fast acting heat responsive heat element. Sprinkler shall have an orifice of 1/2 inch in diameter. ## 2.9 DISINFECTING MATERIALS # 2.9.1 Liquid Chlorine Liquid chlorine shall conform to AWWA B301. ## 2.9.2 Hypochlorites Calcium hypochlorite and sodium hypochlorite shall conform to AWWA B300. # 2.10 DOUBLE-CHECK VALVE BACKFLOW PREVENTION ASSEMBLY (Not Required) #### 2.11 ACCESSORIES # 2.11.1 Sprinkler Cabinet Spare sprinklers shall be provided in accordance with NFPA 13 and shall be packed in a suitable metal or plastic cabinet. Spare sprinklers shall be representative of, and in proportion to, the number of each type and temperature rating of the sprinklers installed. At least one wrench of each type required, shall be provided. ## 2.11.2 Sprinkler Guard Guard shall be a steel wire cage designed to encase the sprinkler and protect it from mechanical damage. Guards shall be provided on sprinklers located beneath the mezzanine areas on either side of the hangar nosedock. ## 2.11.3 Identification Sign Valve identification sign shall be minimum 6 inches wide x 2 inches high with enamel baked finish on minimum 18 gauge steel or 0.024 inch aluminum with red letters on a white background or white letters on red background. Wording of sign shall include, but not be limited to "main drain," "auxiliary drain," "alarm test," "alarm line," and similar wording as required to identify operational components. - 2.12 CONTROL PANEL (SEE SECTION 13955) - 2.13 ALARM INITIATING DEVICES (SEE SECTION 13955) - 2.14 NOTIFICATION APPLIANCES (SEE SECTION 13955) #### 2.15 WIRING Wiring for alternating current (AC) circuits shall be 12 AWG minimum. Wiring for low voltage direct current (DC) circuits shall be No. AWG minimum. Power wiring (over 28 volts) and control wiring shall be isolated. Wiring shall conform to NFPA 70. System field wiring shall be solid copper and installed in electrical metallic tubing or in metallic conduit, except rigid plastic conduit may be used under slab-on-grade. Conductors shall be color coded. Conductors used for the same function shall be similarly color coded. Wiring code color shall remain uniform throughout the circuit. Pigtail or T-tap connections to alarm initiating, alarm indicating, supervisory, and actuation circuits are prohibited. ## PART 3 EXECUTION ## 3.1 INSTALLATION REQUIREMENTS The installation shall be in accordance with the applicable provisions of publications referenced herein. ## 3.2 ABOVEGROUND PIPING INSTALLATION Piping shall be installed straight and bear evenly on hangers and supports. # 3.2.1 Protection of Piping Against Earthquake Damage The system piping shall be protected against damage from earthquakes. Seismic protection of the piping system shall be provided in accordance with NFPA 13 and Appendix A, with the exception that the "Earthquake Zones" map of Appendix A shall not apply to this project. Seismic protection shall include flexible couplings, sway bracing, seismic separation assemblies where piping crosses building seismic separation joints, and other features as required by NFPA 13 for protection of piping against damage from earthquakes. Branch lines shall be equipped with sway braces at the end sprinkler head and at intervals not exceeding 30 ft # 3.2.2 Piping in Exposed Areas Exposed piping shall be installed so as not to diminish exit access widths, corridors or equipment access. Exposed horizontal piping, including drain piping, shall be installed to provide maximum headroom. # 3.2.3 Piping in Finished Areas In areas with suspended or dropped ceilings and in areas with concealed spaces above in the ceiling, piping shall be concealed above ceilings. Piping shall be inspected, tested and approved before being concealed. Risers and similar vertical runs of piping in finished areas shall be concealed. ## 3.2.4 Pendent Sprinklers (Not Used) # 3.2.5 Upright Sprinklers Riser nipples or "sprigs" to upright sprinklers shall contain no fittings between the branch line tee and the reducing coupling at the sprinkler. Riser nipples exceeding 30 inches in length shall be individually supported. # 3.2.6 Pipe Joints Pipe joints shall conform to NFPA 13. Not more than four threads shall show after joint is made up. Welded joints will be permitted, only if welding operations are performed at the contractor's fabrication shop, not at the project construction site. Flanged joints shall be provided where indicated or required by NFPA 13. Grooved pipe and fittings shall be prepared in accordance with the manufacturer's latest published specification according to pipe
material, wall thickness and size. Grooved couplings and fittings shall be from the same manufacturer. ## 3.2.7 Reducers Reductions in pipe sizes shall be made with one-piece tapered reducing fittings. The use of grooved end or rubber-gasket reducing couplings will not be permitted. When standard fittings of the required size are not manufactured, single bushings of the face type will be permitted. Where used, face bushings shall be installed with the outer face flush with the face of the fitting opening being reduced. Bushings shall not be used in elbow fittings, in more than one outlet of a tee, in more than two outlets of a cross, or where the reduction in size is less than 1/2 inch. # 3.2.8 Pipe Penetrations Cutting structural members for passage of pipes or for pipe-hanger fastenings will not be permitted. Pipes that must penetrate concrete or masonry walls or concrete floors shall be core drilled and provided with pipe sleeves. Each sleeve shall be of Schedule 40 galvanized steel pipe, ductile iron or cast iron pipe and shall extend through its respective wall or floor and be cut flush with each wall surface. Sleeves shall provide the required clearance between the pipe and the sleeve per NFPA 13. The space between the sleeve and the pipe shall be firmly packed with mineral wool insulation. Where pipes pass through fire walls, fire partitions, or floors, a fire seal shall be placed between the pipe and sleeve in accordance with Section 07840 FIRESTOPPING. In penetrations which are not fire-rated or are not a floor penetration, the space between the sleeve and the pipe shall be sealed at both ends with plastic waterproof cement which will dry to a firm but pliable mass or with a mechanically adjustable segmented elastomer seal. # 3.2.9 Escutcheons (Not Used) ## 3.2.10 Drains Main drain piping shall be provided to discharge at a safe point outside the building. Auxiliary drains shall be provided as required by NFPA 13, except that drain valves shall be used where drain plugs are permitted. Velocity drip from fire department connection check valve shall drain to the outside. Where branch lines terminate at low points and form trapped sections, such branch lines shall be manifolded to a common drain line. # 3.2.11 Installation of Fire Department Connection Connection shall be mounted on the exterior wall approximately 3 feet above finished grade as shown. The piping between the connection and the check valve shall be provided with an automatic drip in accordance with NFPA 13 arranged to drain to the outside. # 3.2.12 Installation of Water Motor Gong Water motor gong shall be installed with retarding chambers, check valves, alarm bypass test connections, and indicating control valves in accordance with NFPA 13. # 3.2.13 Identification Signs Signs shall be affixed to each control valve, main drain, auxiliary drain, test valve, and similar valves. Hydraulic design data nameplates shall be permanently affixed to each sprinkler riser as specified in NFPA 13. # 3.3 UNDERGROUND PIPING INSTALLATION Underground piping is covered in other specification sections. ## 3.4 EARTHWORK Earthwork shall be performed in accordance with applicable provisions of Section 02315 EXCAVATION, FILLING AND BACKFILLING FOR BUILDINGS. ## 3.5 ELECTRICAL WORK (SEE SECTION 13955) ## 3.6 DISINFECTION After all system components are installed and hydrostatic tests are successfully completed, each portion of the sprinkler system to be disinfected shall be thoroughly flushed with potable water until all entrained dirt and other foreign materials have been removed before introducing chlorinating material. Flushing shall be conducted by removing the flushing fitting of the cross mains and of the grid branch lines, and then back-flushing through the sprinkler main drains. The chlorinating material shall be hypochlorites or liquid chlorine. Water chlorination procedure shall be in accordance with AWWA M20. The chlorinating material shall be fed into the sprinkler piping at a constant rate of 50 parts per million (ppm). A properly adjusted hypochlorite solution injected into the system with a hypochlorinator, or liquid chlorine injected into the system through a solution-fed chlorinator and booster pump shall be used. Chlorination application shall continue until the entire system if filled. The water shall remain in the system for a minimum of 24 hours. Each valve in the system shall be opened and closed several times to ensure its proper disinfection. Following the 24-hour period, no less than 25 ppm chlorine residual shall remain in the system. The system shall then be flushed with clean water until the residual chlorine is reduced to less than one part per million. Samples of water in properly disinfected containers for bacterial examination will be taken from several system locations which are approved by the Contracting Officer. Samples shall be tested for total coliform organisms (coliform bacteria, fecal coliform, streptococcal, and other bacteria) in accordance with AWWA-01. The testing method shall be either the multiple-tube fermentation technique or the membrane-filter technique. The disinfection shall be repeated until tests indicate the absence of coliform organisms (zero mean coliform density per 100 milliliters) in the samples for at least 2 full days. The system will not be accepted until satisfactory bacteriological results have been obtained. # 3.7 FIELD PAINTING AND FINISHING Field painting and finishing are specified in Section 09900 PAINTING, GENERAL. #### 3.8 PRELIMINARY TESTS The system including the underground water mains, the aboveground piping, detectors and control system and system components shall be tested to assure that equipment and components function as intended. Upon completion of specified tests, the contractor shall complete certificates as specified in paragraph SUBMITTALS. # 3.8.1 Flushing Underground water mains shall be flushed in accordance with NFPA 13 and NFPA 24. This includes the requirement to flush the lead-in connection to the fire protection system at a flow rate not less than the calculated maximum water demand rate of the system. # 3.8.2 Hydrostatic Tests The underground and aboveground interior piping systems and attached appurtenances subjected to system working pressure shall be hydrostatically tested in accordance with NFPA 13 at not less than 200 psi or 50 psi in excess of maximum system operating pressure and shall maintain that pressure without loss for 2 hours. There shall be no drop in gauge pressure or visible leakage when the system is subjected to the hydrostatic test. The test pressure shall be read from a gauge located at the low elevation point of the system or portion being tested. # 3.8.3 Detection and Control System Tests Upon completion of the installation, the detection and control system shall be subjected to functional and operational performance tests including tests of each installed initiating device, system actuation device and notification appliance. The control system tests specified in paragraph FINAL TEST shall be conducted to ensure that the system is completely functional and that wiring has been properly connected. If deficiencies are found, corrections shall be made and the system shall be retested to assure that the systems has no deficiencies. # 3.8.4 Automatic Water Control Valve Test Each water control valve shall be independently trip-tested in accordance with the manufacturer's published instructions. Each valve shall be electrically trip-tested by actuating a respective heat detector and a manual actuation station connected to the control panel and a manual actuation device which is part of the valve trim. A full-flow main drain test shall be made. For preaction systems with supervisory air, the air pressure shall be reduced to verify proper operation of the air supply system and associated supervisory alarm devices. # 3.9 FINAL TEST A complete test of the system shall be conducted to demonstrate that the system is completely functional, that required supervisory and back-up features are provided, and that the system is correctly wired. A technician employed by the installing Contractor shall be present for tests and shall provide a complete demonstration of the operation of the system. The representative shall have available copies of as-built drawings and certificates of tests previously conducted. The installation will not be accepted until all identified discrepancies have been corrected and all test documentation is properly completed and received. # 3.9.1 Control System Test Testing shall be in accordance with NFPA 72. The test shall include the following: #### 00029/11 REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 - a. Visual inspection of wiring connections. - b. Opening the circuit at each alarm initiating device, solenoid valve, and notification appliance to test the wiring and supervisory features. - c. Test of each function of the control panel. - d. Test of each circuit in the normal, open and ground fault modes. - e. Test of each initiating device in both normal and trouble conditions. - f. Test of each control circuit and device. - g. Test of each alarm notification appliance. - h. Test of the battery charger and batteries. - i. Operational tests under emergency power supply, including activation of connected alarm notification appliances for the specified time period. - 3.9.2 Trip-tests of Automatic Water Control Valves Each water control valve shall be independently trip-tested in accordance with the manufacturer's published instructions. Each valve shall be electrically trip-tested by actuating a respective heat detector, a manual actuation station connected to the system control panel and the manual release which is part of the valve trim. Each valve shall be returned to normal condition after each test. Control valves on preaction systems shall remain open until piping is filled with water.
3.9.3 Tests of Supervisory Air System (Not Applicable) End of Section # SECTION 13955 # AQUEOUS FILM-FORMING FOAM (AFFF) FIRE PROTECTION SYSTEM # PART 1 GENERAL # 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. # AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI) ANSI A13.1 (1996) Scheme for the Identification of Piping Systems # AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | ASTM A 47 | 1990; R 1995) Ferritic Malleable Iron
Castings | |-------------------|---| | ASTM A 47M | (1990; R 1996) Ferritic Malleable Iron
Castings (Metric) | | ASTM A 53 | (1998) Pipe, Steel, Black and Hot-Dipped,
Zinc-Coated, Welded and Seamless | | ASTM A 183 | (1983; R 1998) Carbon Steel Track Bolts and Nuts | | ASTM A 312/A 312M | (1995a) Seamless and Welded Austenitic
Stainless Steel Pipes | | ASTM A 351/A 351M | (1994a) Castings, Austenitic, Austenitic-
Ferritic (Duplex), for Pressure-Containing
Parts | | ASTM A 403/A 403M | (1998) Wrought Austenitic Stainless Steel
Piping Fittings | | ASTM A 536 | (1984; R 1993) Ductile Iron Castings | | ASTM A 795 | (1997) Black and Hot-Dipped Zinc-Coated (Galvanized) Welded and Seamless Steel Pipe for Fire Protection Use | ## ASME INTERNATIONAL (ASME) ASME B16.1 (1989) Cast Iron Pipe Flanges and Flanged Fittings ASME B16.3 (1992) Malleable Iron Threaded Fittings ASME B16.4 (1992) Gray Iron Threaded Fittings ASME BPV VIII Div 1 (1998) Boiler and Pressure Vessel Code; Section VIII, Pressure Vessels Division 1 - Basic Coverage AMERICAN SOCIETY OF SANITARY ENGINEERING FOR PLUMBING AND SANITARY RESEARCH (ASSE) ASSE 1013 (1993) Reduced Pressure Principle Backflow Preventers AMERICAN WATER WORKS ASSOCIATION (AWWA) AWWA C104 (1995) Cement-Mortar Lining for Ductile-Iron Pipe and Fittings for Water AWWA C110 (1993) Ductile-Iron and Gray-Iron Fittings, 3 In. Through 48 In. (75 mm through 1200 mm), for Water and Other Liquids AWWA C151 (1996) Ductile-Iron Pipe, Centrifugally Cast, for Water or Other Liquids COE TECHNICAL INSTRUCTIONS (TI) 809-04 (1998) Seismic Design for Buildings FACTORY MUTUAL ENGINEERING AND RESEARCH (FM) FM P7825a (1998) Approval Guide Fire Protection INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE) IEEE C62.41 (1991; R 1995) Surge Voltages in Low-Voltage AC Power Circuits MILITARY SPECIFICATIONS (MS) MS MIL-F-24385 (Rev F; am 1) Fire Extinguishing Agent, Aqueous Film-Forming Foam (AFFF) Liquid Concentrate, For Fresh and Sea Water ## NATIONAL FIRE PROTECTION ASSOCIATION (NFPA) | NFPA 11 | (1998) Low Expansion Foam | |-----------|--| | NFPA 13 | (1996; Errata 13-96-1) Automatic Sprinkler Systems | | NFPA 16 | (1995) Installation of Deluge Foam-Water
Sprinkler and Foam-Water Spray Systems | | NFPA 16A | (1994) Installation of Closed-Head Foam-Water Sprinkler Systems | | NFPA 20 | (1996; Errata Oct 96; TIA 96-1) Installation of Centrifugal Fire Pumps | | NFPA 24 | (1995) Installation of Private Fire Service
Mains and Their Appurtenances | | NFPA 70 | (1999) National Electrical Code | | NFPA 72 | (1996; Errata Oct 96, Dec 96; TIA 96-1, 96-2, 96-3) National Fire Alarm Code | | NFPA 1963 | (1998) Fire Hose Connections | NATIONAL INSTITUTE FOR CERTIFICATION IN ENGINEERING TECHNOLOGIES (NICET) NICET 1014-7 (1995) Program Detail Manual for Certification in the Field of Fire Protection Engineering Technology (Field Code 003) Subfield of Automatic Sprinkler System Layout UNDERWRITERS LABORATORIES (UL) UL Fire Prot Dir (1998)Fire Protection Equipment Directory ## 1.2 GENERAL REQUIREMENTS The fire protection system for the aircraft service area shall consist of an automatic preaction (water only) overhead system for which the products and installation are essentially covered in Section 13945, and a deluge foamwater nozzle fire protection system (covered herein). The systems shall be provided for the areas indicated on the drawings and in accordance with section 13945 and this specification. Except as modified herein, the system shall meet the requirements of NFPA 11, NFPA 13, and NFPA 72. ## 1.3 SYSTEM OPERATIONAL FEATURES The wet-pipe, foam-water nozzle system shall operate so that actuation of the overhead preaction detection system, preaction waterflow switch, or manual AFFF station will cause water to flow through the alarm check valve, foam concentrate to enter the affected proportioners, and foam-water solution to be discharged from all nozzles of the nozzle system. The charged piping between the alarm valve and the nozzle deluge valves shall be filled with foam-water solution. The single-interlocked preaction sprinkler system (without supervisory air) shall operate so that actuation of a single heat detector or manual release will cause the automatic water control (deluge) valve to open, converting this system to a "wet system", and will cause the foam-water system deluge valves to open and foam-water solution to be discharged from the nozzle system. #### 1.4 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES. SD-01 Data AFFF System Equipment; GA. Manufacturer's catalog data for each separate piece of equipment proposed for use in the system. Data shall indicate the name of the manufacturer of each item of equipment, with data highlighted to indicate model, size, options, etc. proposed for installation. In addition, a complete equipment list with equipment description, model number, and quantity shall be provided. Spare Parts; FIO. Spare parts data shall be included for each different item of material and equipment specified. The data shall include a complete list of parts and supplies, with current unit prices and source of supply, and a list of parts recommended by the manufacturer to be replaced after 1 year and 3 years of service. A list of special tools and test equipment required for maintenance and testing of the products supplied by the Contractor shall be included. SD-04 Drawings AFFF System; GA. Detail drawings shall conform to the requirements prescribed in NFPA 13 and shall be 30×42 inches. Drawings shall include plan and elevation views which establish that the equipment will fit the allotted spaces with clearance for installation and maintenance. The preaction sprinkler systems, nozzle system, and manifold have been designed and hydraulically calculated. The submitted drawings are required to further detail the design drawings for fabrication and coordination with existing building features and new work being performed by other divisions of this Contract. Each set of drawings shall include the following: - a. A descriptive index with drawings listed in sequence by number. A legend sheet identifying device symbols, nomenclature, and conventions used in the package. - b. Floor plans drawn to a scale not less than 1/8 inch equals 1 foot clearly showing locations of devices, equipment, risers, electrical power connections, flame detector viewing areas, areas covered by each nozzle, and other details required to clearly describe the proposed arrangement. - c. Piping plan for each individual sprinkler system and each nozzle system. Sprinklers, nozzles and associated piping shall be shown. Abbreviated presentation forms will not be accepted. Each type of fitting used and the locations of bushings, reducing couplings, and welded joints shall be identified. A separate plan shall be provided for each overhead sprinkler system and each nozzle system. - d. Piping plan and isometric drawing of the AFFF concentrate system and details of all associated, valves, fittings, and other components. Drawing shall indicate all operational features. - e. Actual center-to-center dimensions between sprinklers on branch lines and between branch lines; from end sprinklers to adjacent walls; from walls to branch lines; and from sprinkler feed mains, crossmains and branchlines to finished floor and roof or ceiling. - f. Location of control panels, detectors, manual stations, supervisory switches, solenoids, notification appliances, and other electrical devices. In addition, conduit routing and sizes, and the number of conductors contained in each shall be indicated. - g. Longitudinal and transverse building sections showing typical branch line and crossmain pipe routing and elevation of each typical sprinkler above finished floor. - h. Equipment room layout drawings drawn to a scale of not less than 1/2 inch equals 1 foot to show details of each system component, clearances between each other and from other equipment and construction in the room. - i. Details of each type of pipe hanger, sway bracing for earthquake protection, restraint of underground water main at point-of-entry into the building, proportioners, nozzles and mounting details, AFFF system control valve header and related components. - j. Connection drawings and control diagrams indicating overall electrical and mechanical operation of the AFFF system. This shall include identification and operation of each major component of the system. Diagrams shall be supplemented with a narrative description of the system. Point-to-point wiring diagrams shall indicate foam system control panel wiring and make and model of devices and equipment connected thereto. k. Detail drawings depicting actual wiring of AFFF pump controller and all interconnecting wiring to foam concentrate pumps and other components connected to the controller. Such drawing shall be specifically prepared for the project installation. Manufacturer's standard wiring diagrams will not be accepted. As-built Drawings; FIO. One set of reproducible and
six copies, within 14 calendar days after successful completion of required testing. A separate set of approved submittal drawings of the overall system, marked up to indicate as-built conditions, shall be maintained on site. These drawings shall be maintained in a current condition at all times and shall be made available for review immediately upon request during normal working hours. Variations from the approved drawings, for whatever reason, including those occasioned by modifications, change orders, optional materials, and/or required for coordination between trades shall be indicated in sufficient detail to accurately reflect the as-built conditions. SD-06 Instructions AFFF System; FIO. A copy of the proposed diagrams and instructions for the overall AFFF system, prior to posting. SD-08 Statements Contractor Qualifications; GA. Data approved, prior to submittal of any other data or drawings, to substantiate that the proposed installer is regularly engaged in the installation of the type and complexity of fire protection system included in this project. Data shall identify the location of three systems recently installed by the proposed installer which are comparable to the system specified. Contractor shall certify that each system has performed satisfactorily, in the manner intended, for a period of not less than 6 months. Final Acceptance Test Plan; GA. Details of method proposed for required tests at Final Acceptance, including step-by-step procedures; list of equipment to be used; names, titles, and affiliations and qualifications of personnel who will participate in the tests; methods for protecting the facility and equipment during testing; means for containing the AFFF solution during discharge tests; and proposed means for disposal. Blank forms the Contractor plans to use to record test results shall be included. SD-09 Reports Tests; GA. Reports for tests, as follows: - a. Reports as outlined in NFPA 13 documenting results of flushing and hydrostatic tests. - b. Trip tests of alarm check and automatic water control valves. - c. Test report of AFFF concentrate proportioning system. Report shall include all pressure readings and settings of pumps, pressure sustaining valves, relief valves and similar system components. Report shall include conductivity readings for foam samples taken from each AFFF proportioner. Report shall be signed by the factory-trained technical representative employed by the AFFF concentrate manufacturer. - d. Test report of the foam system control panel and initiating and indicating devices. Report shall include a unique identifier for each device with an indication of test results. Report shall be signed by the factory-trained technician employed by the control panel manufacturer. - e. Videotapes of tests specified to be recorded. SD-13 Certificates Contractor's Material and Test Certificates; GA. Certificates from manufacturers to substantiate that components, equipment and material proposed for installation and use meet requirements as specified, concurrent with submittal of manufacturer's catalog data of equipment proposed for installation. Certificates shall be on a form for this purpose or on official letterhead of the manufacturer with specified information stated as required. Certificate shall be signed by an officer of the corporation. Certificates shall be provided for the following: - a. AFFF concentrate. Certification that AFFF concentrate proposed for use has been tested and is in compliance with MS MIL-F-24385. - b. AFFF concentrate control valve. Certification that the valve is designed, constructed as specified and will function as intended. - c. AFFF proportioning system. Certification that the foam proportioning system complies with contract specifications and manufacturer's recommendations. d. Control panel. Certification that the control panel releasing module is electrically compatible with the electrically-actuated automatic water control valve. SD-19 Operation and Maintenance Manuals AFFF System; GA. Manuals in loose-leaf binder format and grouped by technical sections consisting of manufacturer's brochures, schematics, printed instructions, general operating procedures, and safety precautions. Manuals shall include a narrative description of the sequence or sequences of operation of the overall fire protection system and a separate description for each major subsystem. Information to be provided shall include specific start/stop settings for pumps, open/close settings for all adjustable valves (including pressure sustaining and relief valves) shall be included. The manuals shall list routine maintenance procedures, possible breakdowns, and repairs, and troubleshooting guide. The manuals shall include conduit layout, equipment layout, and simplified wiring and control diagrams for the system as installed. The manuals shall include procedures and instructions pertaining to frequency of preventive maintenance, inspection, adjustment, lubrication and cleaning necessary to minimize corrective maintenance and repair. # 1.5 SUBMITTAL PREPARER'S QUALIFICATIONS The fire protection system submittals, including as-built drawings, shall be prepared by an individual who is either a registered professional engineer with ten years experience designing AFFF systems. # 1.6 INSTALLER'S QUALIFICATIONS The installer shall be experienced and regularly engaged in the installation of the type and complexity of fire protection system included in this project. A statement prior to submittal of any other data or drawings, that the proposed installer is regularly engaged in the installation of the type and complexity of system included in this project shall be provided. In addition, data identifying the locations of at least three systems recently installed by the proposed installer which are comparable to the system specified shall be submitted. Contractor shall certify that each system has performed satisfactorily, in the manner intended, for a period of not less than 6 months. # 1.7 REGULATORY REQUIREMENTS The advisory provisions of NFPA standards and recommended practices specified shall be considered mandatory, as though the word "shall" had been substituted for "should" wherever it appears. In the event of a conflict between referenced NFPA standards and this specification, this specification shall govern. Reference to "authority having jurisdiction" shall be interpreted to mean the Contracting Officer. ## PART 2 PRODUCTS ## 2.1 STANDARD PRODUCTS Materials and equipment shall be standard products of a manufacturer regularly engaged in the manufacture of such products and shall essentially duplicate items that have been in satisfactory use for at least 2 years prior to bid opening. # 2.2 REQUIREMENTS FOR FIRE PROTECTION SERVICE All equipment and material shall have been tested by Underwriters Laboratories, and listed in UL Fire Prot Dir or approved by Factory Mutual and listed in FM P7825a. Where the terms "listed" or "approved" appear in this specification, such shall mean listed in UL Fire Prot Dir or FM P7825a. The omission of these terms under the description of any item of equipment described shall not be construed as waiving this requirement. ## 2.3 PRESSURE RATINGS Valves, fittings, couplings, proportioners, alarm switches, strainers, and similar devices shall be rated for the maximum working pressures that can be experienced in the system, but not less than 175 psi. # 2.4 NAMEPLATES Major components of equipment shall have the manufacturer's name, address, type or style, model or serial number, and catalog number on a plate permanently affixed to the item of equipment. ## 2.5 UNDERGROUND PIPING SYSTEMS See Section 02510 WATER DISTRIBUTION SYSTEM. # 2.6 ABOVEGROUND PIPING SYSTEMS HANDLING WATER OR AFFF SOLUTION # 2.6.1 Pipe Pipe shall be standard weight conforming to ASTM A 795 or ASTM A 53. Pipe 6 inch diameter and smaller shall be Schedule 40. Pipe shall be marked as to the brand or name of the manufacturer, kind of pipe and the ASTM designation in accordance with the "Product Marking" provisions of the ASTM standard. # 2.6.2 Grooved Fittings and Couplings Grooved fittings, couplings and bolts shall be provided by the same manufacturer. Fittings and couplings shall be malleable iron complying with ASTM A 47 or ductile iron complying with ASTM A 536. Couplings shall be of the rigid type except that flexible type will be provided where flexible joints are specifically required by NFPA 13. Coupling gaskets shall be Grade E (EPDM) approved for dry pipe fire protection service. Gasket shall be the flush type that fills the entire cavity between the coupling and the pipe. Nuts and bolts shall be heat-treated steel conforming to ASTM A 183 and shall be cadmium plated or zinc electroplated. # 2.6.3 Non-Grooved Fittings Non-grooved fittings shall be threaded or flanged. Threaded fittings shall be cast iron conforming to ASME B16.4 or malleable iron conforming to ASME B16.3. Flanged fittings shall be cast iron conforming to ASME B16.1. Fittings into which sprinklers, drop nipples or riser nipples (sprigs) are screwed shall be threaded type. Plain-end fittings with mechanical couplings, fittings which require drilling a hole in the pipe, and fittings which use steel gripping devices to bite into the pipe shall not be used. # 2.6.4 Flanges and Gaskets Flanges shall conform to NFPA 13 and ASME B16.1. Flanges shall be the type that are welded or threaded to the pipe. Flanges which are bolted to grooved pipe will not be permitted. Gaskets shall be full face type EPDM or other approved material. Torque wrench tightening values for respective bolts must match the manufacturer's recommendations, as submitted. # 2.6.5 Pipe Hangers Hangers shall be listed in UL Fire Prot Dir or FM P7825a and be of the type suitable for the application, construction and size pipe involved. # 2.6.6 Control Valve Unless otherwise indicated, valves shall be indicating type in accordance with NFPA 13.
Valves 2-1/2 inch and larger shall be flanged outside screw and yoke (OS&Y) type. ## 2.6.7 Check Valve Check valves 4 inches and larger shall be flanged, swing type, cast or ductile iron body and cover, cast or ductile iron clapper with replaceable EPDM rubber facing. Valves shall be suitable for either vertical or horizontal mounting and equipped with a removable handhole cover. The direction of flow shall be indicated by an arrow cast in the valve body. The valve body shall include plugged pipe thread connections for a 2 inch drain. # 2.7 ABOVEGROUND PIPING SYSTEMS HANDLING AFFF CONCENTRATE # 2.7.1 Pipe Pipe shall be standard weight stainless steel conforming to ASTM A 312/A 312M, Grade TP 304L. # 2.7.2 Fittings Seamless socket weld type or flanged type fittings shall conform to ASTM A 403/A 403M, Grade WP 304L, and shall be compatible with the pipe. Grooved type fittings and couplings shall be of Type 316 Stainless Steel conforming to ASTM A 351/A 351M. Torque wrench tightening values for respective bolts must match the manufacturer's recommendations, as submitted. # 2.7.3 Pipe Hangers Hangers shall be listed in UL Fire Prot Dir or FM P7825a and be of the type suitable for the application, construction and size pipe involved. # 2.7.4 Control Valves Valve shall be indicating type with full port ball and operating handle that indicates the on/off position of the valve. Unit shall be socket weld or flanged type. Valve body and ball shall be of 316 stainless steel complying with ASTM A 351/A 351M. The valve handle shall be provided with a suitable and substantial means for securing the valve open with a key-operated locking device. ## 2.8 ALARM CHECK VALVE ASSEMBLY Alarm check valve assembly shall be of the variable pressure type rated for working pressures of 175 psi. Assembly shall be provided with standard trimmings including pressure gauges, retarding chamber, alarm line vent, testing bypass, and necessary pipe, fittings, and accessories required for a complete installation. Valve trim piping shall be brass. Such piping shall include provision for installing an alarm pressure switch in a non-interruptible arrangement whereby shutting off of other alarm devices will not shutoff the switch in the non-interruptible location. # 2.9 AUTOMATIC WATER CONTROL VALVE ASSEMBLY (DELUGE VALVE) Water control valve shall be an electrically-actuated type rated for a maximum working pressure of 175 psi. The control valve shall be resettable without opening the valve and without the use of special tools. Electrical solenoid valve used to actuate the water control valve shall be an integral component of the valve or shall be approved for use by the water control valve manufacturer and the control panel manufacturer. Solenoid valve shall be of the normally closed, de-energized type which opens when energized upon receipt of an electrical signal from the control panel to which it is connected. Solenoid valves used with diaphragm-type valves shall be rated for a maximum pressure equal to that of the associated valve. control valve shall be equipped with a means to prevent the valve from returning to the closed position until being manually reset. Assembly shall be complete with the valve manufacturer's standard trim piping, drain and test valves, pressure gauges, and other required appurtenances. Each assembly shall include an emergency release device for manually tripping the water control valve in the event of a power or other system failure. Device shall be a standard accessory component of the valve manufacturer and shall be labeled as to its function and method of operation. Valves located in hazardous locations shall be approved for the hazard classification of the area where located. #### 2.10 MECHANICAL ALARM DEVICE Assembly shall include a body housing, impeller wheel, drive shaft, striker assembly, gong, wall plate and related components necessary for complete operation. Minimum 3/4 inch galvanized piping shall be provided between the housing and the alarm line trim. Drain piping from the body housing shall be minimum 1 inch steel and shall be arranged to drain to the outside of the building. Piping shall be galvanized both on the inside and on the outside surfaces. Two units shall be provided, each twinned with deluge, alarm, or dry pipe valves on the same manifold. #### 2.11 FIRE DEPARTMENT CONNECTION Not Applicable ## 2.12 BASKET STRAINER Unit shall have cast iron flanged body and cover flanges. The strainer basket shall be formed of perforated brass or stainless steel sheet with 1/4 inch perforations. Strainer size shall be 10 inch and shall have a maximum friction loss of 2.3 psi at a flow rate of 2,500 gpm. Assembly shall allow access to the strainer basket by removing the flange on the top of the strainer. ## 2.13 REDUCED PRESSURE BACKFLOW PREVENTION ASSEMBLY Not applicable #### 2.14 DISCHARGE DEVICES # 2.14.1 Sprinkler (See Section 13945) ## 2.14.2 Fixed Nozzle Nozzle shall be of fixed, non-adjustable flow type, cast brass construction, 1-1/2 inch male NPT, suitable for use with AFFF solution. Nozzle discharge pattern shall be field adjustable and lockable. Nozzle flow and effective reach of discharge at various nozzle pattern shall have been determined by the manufacturer's actual discharge tests with nozzles in horizontal pattern at nozzle pressures of 50, 75, and 100 psi. Such data shall be indicated in manufacturer's standard catalog information. Nozzle settings shall be factory set. Field disassembly, adjustment or assembly which could alter discharge characteristic will not be permitted. # 2.14.3 Oscillating Monitor Nozzle Assembly Not Applicable # 2.15 AFFF LIQUID CONCENTRATE AFFF concentrate shall be 3 percent conforming to MS MIL-F-24385. Concentrate shall be the product of one manufacturer. Mixing of non-identical brands of concentrate will not be permitted. ## 2.16 DIAPHRAGM TANK BALANCED PRESSURE PROPORTIONING SYSTEM Tanks shall be a steel pressure vessel constructed in accordance with ASME BPV VIII Div 1. ASME label shall be permanently affixed to the tank. Each tank shall be horizontally mounted on steel saddles and shall contain a full internal diaphragm (bladder) having a minimum capacity of 500 gallons. Diaphragm shall be nylon-reinforced Buna-N rubber or other approved material conforming to the inside shape of the tank. AFFF concentrate shall be stored inside the diaphragm and the concentrate shall not be in contact with the steel tank. The tank shall have perforated PVC tubes installed inside the diaphragm to assure full displacement of the stored concentrate. Tank shall be equipped with the manufacturer's standard fittings and trim, including AFFF fill and drain connections, water fill and drain connections, and concentrate sight gauge. ## 2.17 PUMPED BALANCED PRESSURE PROPORTIONING SYSTEM Not applicable. # 2.18 BALANCED PRESSURE PROPORTIONER (RATIO CONTROLLER) The proportioner shall be a standard balanced pressure type unit capable of proportioning AFFF liquid at 3 percent, (3 parts concentrate to 97 parts water by volume solution) at flow rates within the flow range of the proportioner. Major components of the proportioner, including the body, inlet nozzle and metering orifice shall be of brass, bronze or stainless steel. The body shall be clearly marked with a flow-direction arrow, and the type and percent of AFFF concentrate that it was designed to proportion. The proportioner size shall be 6 inch and shall have a maximum friction loss of 6.0 psi at a flow rate of 2,300 gpm. Components shall be of the make/model required by the specific UL listing or FM approval. #### 2.19 AFFF CONCENTRATE CONTROL VALVE ASSEMBLY Assembly shall be specifically designed and constructed to control AFFF concentrate to proportioners and shall be arranged to open upon application of water or AFFF solution pressure from the alarm check or automatic water control valve to which it is connected. Valve shall be a listed or approved automatic control valve specifically intended for this application or a full port ball valve. All components shall be constructed of brass, bronze or stainless steel, except that the internal portions of listed or approved fire protection valves subjected to AFFF concentrate may be provided with a coating warranted by the manufacturer to protect the valve from the deleterious effects of the concentrate. All components shall be rated for working pressure of 175 psi or maximum working pressure to which they could be subjected, whichever is greater. Valve shall be certified by the manufacturer to be operable with water inlet pressure as low as 30 psi. Valve components shall be brass, bronze or stainless steel. ## 2.20 FOAM SYSTEM CONTROL PANEL Panel shall be UL listed or FM approved for "Releasing Device Service" or shall have modules approved for this purpose. Panel shall contain components and equipment required to provide the specified operational and supervisory functions of the system. Components shall be housed in a surface mounted steel cabinet with hinged door and cylinder lock. Control panel shall be a clean, uncluttered, and orderly factory assembled and wired unit. Panel shall include integral "power on," "alarm," and "trouble" lamps with individual alarm and trouble annunciation for each initiating zone or supervisory circuit. Each initiating zone shall be wire in a "Class A" configuration such that a single break or ground fault in the wiring to that zone will not prevent an alarm signal from activating the control panel. The panel shall have prominent rigid plastic or metal identification plates for zones, indicating lights, controls, meters, and switches. Lamps and fuses mounted on circuit boards shall be identified by permanent markings on the circuit board. Nameplates for fuses shall also include ampere rating. Control panel switches shall be within the locked cabinet. A suitable means shall be provided for testing the control panel visual indicating devices (meter and
lamps). Meters and lamps shall be plainly visible when the cabinet door is closed. Signals shall be provided to indicate by zone any alarm, supervisory or trouble condition on the system. Upon restoration of power, start-up shall be automatic, and shall not require any manual operation. The loss of primary power or the sequence of applying primary or emergency power shall not affect the transmission of alarm, supervisory or trouble signals. # 2.20.1 Zone Annunciator Visual annunciators shall be provided for each active zone and spare zone. A separate alarm and trouble lamp shall be provided for each zone and shall be located on exterior of the cabinet door or be visible through the door. A minimum of two(2)spare alarm zones that are fully operational shall be provided. Each lamp shall provide specific identification of the zone by means of a permanently attached rigid plastic or metal sign with either raised, engraved or silk-screened letters. Zone identification shall consist of a unique zone number as well as a word description of the zone. # 2.20.2 System Zoning The system shall be zoned as follows: | ZONE NO. | DESCRIPTION | |----------|--| | 1
2 | Manual Activation
Flame - Aircraft Right Nose | | 3 | Flame - Aircraft Left Nose | | 4 | Flame - Aircraft Right Wing | | 5 | Flame - Aircraft Left Wing | | 6 | Heat - Right Far Side | | 7 | Heat - Right Near Side | | 8 | Heat - Left Near Side | | 9 | Heat - Left Far Side | | 10 | Spare | | 11 | Flow - Monitor Nozzles | | 12 | Flow - Nose Section | | 13 | Flow - Forward Section | | 14 | Flow - Tail Section | | 15 | Supervisory - Main Valve | | 16 | Supervisory - Monitor Valves | | 17 | Supervisory - Nose Section | | 18 | Supervisory - Forward Section | | 19 | Supervisory - Tail Section | | 20 | Spare | | 21 | Spare | # 2.20.3 Primary Power Supply Primary power and trouble alarm power to Control Panel shall be supplied from two 120 VAC circuits. Power to the control panel shall be as indicated. Panel shall be equipped with two 20-amp circuit breakers for each control panel and with key lock. Disconnect switch shall be permanently marked "FOAM AND PREACTION FIRE PROTECTION SYSTEM". ## 2.20.4 Emergency Power Supply Emergency power shall be provided for system operation in the event of failure of the primary power supply and shall consist of rechargeable storage battery system. Transfer from normal to emergency power or restoration from emergency to normal power shall be automatic and shall not cause transmission of a false alarm. # 2.20.4.1 Storage Batteries Storage Batteries shall be sealed, lead-calcium type requiring no additional water. The batteries shall have ample capacity, with primary power disconnected, to operate the system for a period of 90 hours. Following this period of operation via batteries, the batteries shall have ample capacity to activate the pre-action sprinkler valve and operate the alarm indicating devices in the alarm mode for a minimum period of fifteen (15) minutes. Battery cabinet shall be a separate cabinet mounted adjacent to and/or underneath the control panel with adequate room for servicing the batteries. The battery cabinet shall have twice the volume of the batteries. Batteries shall set on a non-corrosive and nonconductive base or pad. # 2.20.4.2 Battery Charger Battery charger shall be completely automatic, with high/low charging rate, capable of restoring the batteries from full discharge to full charge within 24 hours. A separate ammeter shall be provided for indicating rate of charge. A separate voltmeter shall be provided to indicate the state of the battery charge. A pilot light indicating when batteries are manually placed on a high rate of charge shall be provided as part of the unit assembly if a high rate switch is provided. Charger shall be located in control panel cabinet. #### 2.21 ALARM INITIATING DEVICES ## 2.21.1 Waterflow Pressure Alarm Switch Unit shall include a 1/2 inch NPT male pipe thread, two 1/2 inch conduit knockouts, and two sets of SPDT (Form C) contacts. The switches shall be factory adjusted to transfer the contacts at 4 to 8 psi on rising pressure. Unit shall include a water-tight NEMA 4 die-cast aluminum housing with a tamper resistant cover which requires a special key for removal. The cover shall be provided with a tamper switch which shall operate upon removal of the cover. Units used on wet-pipe systems shall have an adjustable, instantly recycling pneumatic retard to prevent false alarms due to water pressure variation. Retard adjustment shall be provided on alarm check valve assemblies only and shall be factory set at approximately 20-40 seconds and adjustable between 0-90 seconds. # 2.21.2 Vane-type Waterflow Switch Not applicable. # 2.21.3 Heat Detector-Spot Type Detector shall be weatherproof, of the rate-compensation type with a nominal temperature rating of 160 degrees F. Detector shall be listed or approved for spacing between detectors as shown. Detectors listed or approved as "rate anticipation" type will be accepted. Detectors utilizing the fixed-temperature, rate-of-rise, or combination fixed-temperature/rate-of-rise principles will not be accepted. Six spare detectors of each type and temperature rating shall be provided. ## 2.21.4 Continuous Linear Thermal Detector Not Applicable. # 2.21.5 Combination Ultraviolet-Infrared Flame Detector Flame detector shall operate on the dual spectrum ultraviolet/infrared (UV-IR) principle. Detector shall utilize a solar-blind UV sensor with a high signal-to-noise ratio and a narrow band IR sensor. Detector logic shall require both UV and IR signals to be present, in a predetermined ratio or signature as emitted by a hydrocarbon fire, to put the detector in an alarm condition. Detector shall not respond to non-fire sources of UV or IR radiation, including intermittent or continuous solar radiation, arc welding, lightning, radiant heat, x-ray, artificial lighting, radio transmissions and jet engine exhaust. Detector shall have an automatic through-the-lens self-testing feature. Malfunction of the detector circuitry, or degradation of the sensors' lens cleanliness to the point where the detector will not detect the design fire signature, shall cause operation of the system trouble alarm. Logic circuits necessary for operation of the detector shall be integral to the detector or located in a separate flame detector control panel mounted adjacent to the foam system control panel. Detector shall be have a 120 degrees C field-of-view, capable of operating in a temperature range of -40 to 186 degrees F, and suitable for use in Class I, Division I hazardous locations. The detector shall be listed or approved for use with the control panel to which it is connected. # 2.21.6 Nozzle System Actuation Station Unit shall be dual-action type requiring the lifting of a cover and pulling of a ring to actuate. It shall not require the breaking of glass to actuate. Unit shall be painted lime yellow and include a cast or engraved label indicating Foam Nozzle System with operating instructions clearly marked on the station cover. Alarm contacts shall have a minimum rating of 120 VAC, 60 Hz, 6 amps. Contact gap distance shall be factory set and not be field adjustable. Upon actuation of any manual station, the monitor system will be charged and the alarm indicating signals will sound/illuminate. Units shall be compatible with the control panel to which it is connected and listed or approved for use in hazardous locations. ## 2.21.6.1 Enclosure Unit shall consist of a tamper-resistant, clear polycarbonate shield and frame that fits over the manual actuation station. The unit shall be hinged on the top and suitably labeled "Lift Here" on the bottom to indicate means of gaining access to the manual actuation station it protects. It shall include a spacer as required to accommodate its use with a surface mounted manual actuation station. ## 2.21.6.2 Horn The unit shall include an 85 db at 10 ft integral horn powered by a 9 VDC alkaline battery. Upon lifting of the cover, the horn shall provide a local supervisory alarm. The enclosure shall be suitably labeled "TO ACTIVATE NOZZLES, LIFT COVER AND OPERATE STATION." # 2.22 VALVE SUPERVISORY (TAMPER) SWITCH Switch shall be designed to monitor the open condition of each water or AFFF concentrate control valve to which it is mounted. The switch shall include a cast aluminum housing, tamperproof cover, two sets of single pole, double throw (SPDT) contacts with brackets and J-bolts needed for mounting. Removal of the cover shall cause both switches to operate. #### 2.23 NOTIFICATION APPLIANCES Notification appliances shall be suitable for connection to supervised alarm indicating circuits. Appliance shall have a separate screw terminal for each conductor. ## 2.23.1 Electronic Signaling Device Device shall be surface-mounted type which can be mounted to a standard 4 inch square back box. Electronic device shall operate on nominal 24 VDC, shall be polarized for line supervision and shall have screw terminals for in-out wiring. Device shall be provided with three field-selectable sounds (horn, warble, siren) and three sound output levels to 102 DBA in an anechoic chamber at 10 feet. # 2.23.2 Explosion-Proof Strobe Light Strobe lights shall be listed for hazardous/explosion-proof atmospheres mounted adjacent to the electronic amplified speakers in a rugged corrosion resistant housing. The device shall provide a minimum of 850 candela (candlepower) with a flash strobe light with red, amber, or clear Lexan polycarbonate lenses (lense choice to be up to the Base Fire Marshall). The strobe light shall be polarized for line supervision and shall operate on nominal 24VDC independently or in parallel with the audible output ## PART 3 EXECUTION #### 3.1 INSTALLATION # 3.1.1 Aboveground Piping Piping shall be installed straight and bear evenly on hangers and supports. Preaction sprinkler
system piping shall be pitched as if it were being installed in areas subject to freezing. Piping shall be concealed in areas with suspended ceiling and shall be inspected, tested and approved before being concealed. ### 3.1.1.1 Joints Pipe joints shall conform to NFPA 13. Not more than four threads shall show after joint is made up. Joint compound shall be applied to male threads only. Joints shall be faced true, provided with gaskets and made square and tight. Flanged joints or mechanical groove couplings shall be provided where indicated or required by NFPA 13. Grooved pipe and fittings shall be prepared in accordance with the manufacturer's latest published installation instructions. All grooved couplings and fittings shall be from the same manufacturer. Torque wrench tightening values for respective bolts must match the manufacturer's recommendations, as submitted. #### 3.1.1.2 Reducers Reductions in pipe sizes shall be made with one-piece tapered reducing fittings. The use of grooved-end or rubber-gasketed reducing couplings will not be permitted. When standard fittings of the required size are not manufactured, single bushings of the face type will be permitted. Where used, face bushings shall be installed with the outer face flush with the face of the fitting opening being reduced. Bushings shall not be used in elbow fittings, in more than one outlet of a tee, in more than two outlets of a cross, or where the reduction in size is less than 1/2 inch. # 3.1.1.3 Sprinkler Riser Nipples (Sprigs) One-inch riser nipples (sprigs) between sprinkler branch lines and individual sprinklers shall not be used unless necessitated by roof or ceiling conditions. In such cases, fittings shall not be installed between the branch line tee and the reducing coupling below the sprinkler. ## 3.1.1.4 Sprinkler Deflectors Sprinkler deflectors shall be installed parallel to the roof or ceiling. Deflector distances from the underside of the roof or ceiling shall be in accordance with NFPA 13 except that in no case shall distance exceed 12 inches. Sprinkler clearances from obstructions shall be in accordance with NFPA 13. ## 3.1.1.5 Pipe Supports and Hangers Installation methods outlined in NFPA 13 are mandatory. Protection of piping against damage from earthquakes shall be provided. Longitudinal and lateral sway bracing shall be provided for piping 2-1/2 inch diameter and larger. # 3.1.1.6 Pipe Penetrations Cutting structural members for passage of pipes or for pipe-hanger fastenings will not be permitted. Pipes penetrating concrete or masonry walls or concrete floors shall be provided with pipe sleeves fitted into place at the time of construction through its respective wall or floor, and shall be cut flush with each surface. Sleeve sizes and clearance between pipe and sleeve shall be in accordance with NFPA 13. Where pipes pass through fire walls, fire partitions, or floors, a fire seal shall be placed between the pipe and sleeve in accordance with Section 07840FIRESTOPPING. #### 3.1.1.7 Piping Pitch Piping shall be pitched to the main drain or to auxiliary drains provided as required to facilitate draining. Branch lines shall be pitched at least 1/2 inch in 10 feet and crossmains and feedmains shall be pitched to at least 1/4 inch in 10 feet. #### 3.1.1.8 Escutcheons Escutcheons shall be provided at finished surfaces where exposed piping passes through floors, walls, or ceilings except in boiler, utility, or equipment rooms. Escutcheons shall be fastened securely to pipe and shall be chromium-plated iron or chromium-plated brass, either one-piece or split-pattern, held in place by internal spring tension or setscrew. ### 3.1.1.9 Drains Main drain piping shall be provided to discharge at safe points outside each building. Drains shall be of adequate size to readily receive the full flow from each drain under maximum pressure. Auxiliary drains shall be provided as required by NFPA 13 except that drain valves shall be used where drain plugs are otherwise permitted. Where branch lines terminate at low points and form trapped sections, the branch lines shall be manifolded to a common drain line. Each drain valve shall be provided with a metal sign identifying the type of drain connection or function of the valve. ## 3.1.1.10 Identification Signs Signs shall be in accordance with NFPA 13. Properly lettered and approved metal signs shall be suitably affixed to each control valve, inspector test valve, main drain, auxiliary drain, test valve, and similar valves as appropriate. ## 3.1.2 Underground Piping See Section 02315. ## 3.2 EXCAVATION, TRENCHING AND BACKFILLING See Sections 02315. #### 3.3 ELECTRICAL WORK Unless otherwise specified, power supply equipment and wiring shall be in accordance with SECTION 16415 ELECTRICAL WORK, INTERIOR. ### 3.3.1 Overcurrent and Surge Protection Equipment connected to alternating current circuits shall be protected from surges per IEEE C62.41 and NFPA 70. Cables and conductors which serve as communication links, except fiber optics, shall have surge protection circuits installed at each end. Fuses shall not be used for surge protection. ## 3.3.2 Grounding Grounding shall be provided to building ground. ## 3.3.3 Wiring System field wiring shall only have copper conductors installed in 3/4 inch minimum diameter electrical metallic tubing or metallic conduit IAW Article 760 of NFPA 70. Wiring for the foam sprinkler system fire detection and control system shall be installed in tubing or conduits dedicated for that use only and shall not be installed in conduit, outlet boxes or junction boxes which contain lighting and power wiring or equipment. Wiring shall be routed in a "Class A" configuration as indicated on the plans such that wires going to and returning from more than one detector shall not be in the same conduit. Wiring shall be continuous from one device to the next. When circuit wiring passes through an outlet box or pull box, at least one (1) loop of wire shall be provided. Circuit conductors entering or leaving any mounting box, outlet box enclosure or cabinet shall be connected to "capture" or screw type terminals with each terminal marked and labeled in accordance with the wiring diagram. Where provided, "capture" terminals shall have no more than two (2) wires under a single terminal. No more than one conductor shall be installed under any screw terminal. Spade type lugs shall be utilized for making terminal connections when stranded wire is used. Connections and splices shall only be made using "capture" or screw terminal blocks. The use of wire nut type connectors is not permitted. Wiring within any control equipment shall be readily accessible without removing any component parts. Conductors shall be color coded (color code to be submitted and approved by the engineer prior to installation) and shall be identified within each enclosure where a connection or termination is made. Conductor identification shall be by plastic coated, selfsticking, printed markers, or by heat-shrink type sleeves. Circuits shall be wired to maintain electrical supervision so that removal of any single wire from any device shall cause a "trouble" condition on the control panel. # 3.3.4 Control Panel The control panel and its assorted components shall be mounted so that no part of the enclosing cabinet is less than 24 inches nor more than 78 inches above the finished floor. ### 3.3.5 Detectors Heat Detectors shall be ceiling mounted per NFPA 72 as shown on the plans and shall be at least 12 inches from any part of any lighting fixture. Detectors shall be located at least 3 feet from diffusers of air handling systems. Each detector shall be provided with appropriate mounting hardware as required by its mounting location. Optical detectors shall be mounted approximately 10 feet AFF as shown on the drawings and aimed with the cone of vision aimed directly toward the center of the aircraft. Each detector shall be provided with appropriate mounting hardware as required by its mounting location. ### 3.3.6 Manual Actuation Stations Manual actuation stations shall be mounted readily accessible and 42 inches above the finished floor. ## 3.3.7 Notification Appliances Notification appliances shall be mounted a minimum of 8 feet above the finished floor unless limited by ceiling height. ## 3.4 PIPE PAINTING AND LABELLING # 3.4.1 Painting Black steel pipe shall be painted in accordance with the requirements specified under Section 09900 PAINTING, GENERAL. Pipe in equipment rooms shall be painted red. Pipe in other areas shall be painted to match finishes in those areas. Stainless steel pipe shall not be painted. # 3.4.2 Pipe Identification Aboveground pipe 2 inch diameter and larger shall be identified with legends. Legends shall include FOAM CONCENTRATE, FOAM-WATER SPRINKLER, FOAM-WATER NOZZLE, PREACTION WATER-ONLY, and FIRE PROTECTION WATER. Legends shall utilize WHITE letters on a RED color field and shall include arrows to indicate the direction of flow. Length of color field, letter size and locations on piping shall be as recommended in ANSI A13.1. ## 3.5 PRELIMINARY TESTS Tests shall be performed to make adjustments in the fire protection system operation and to verify that the system will function as intended and that it is ready for service. Such tests shall include all components and subsystems. Test results shall be clearly documented and included with the written request for Final Test. ## 3.5.1 Flushing Underground water mains shall be flushed in accordance with NFPA 13 and NFPA 24. This includes the requirement to flush the lead-in connection to the fire protection system at a flow rate not less than the maximum water demand rate of the system. Above ground piping shall not be connected to underground piping until the underground piping has been flushed and certified. # 3.5.2 Hydrostatic Tests The underground and aboveground piping systems, including AFFF concentrate, shall be hydrostatically tested in
accordance with NFPA 13 at not less than 200 psi, or 50 psi in excess of maximum system operating pressure, for 2 hours. There shall be no visible leakage from the piping when the system is subjected to the hydrostatic test. ### 3.5.3 Alarm Check and Automatic Water Control Valves Each valve shall be tested to verify operation in accordance with manufacturer's published operating instructions. This shall include tests of valves and switches connected thereto. #### 3.5.4 Nozzles Nozzles shall be discharge tested for proper operation and coverage. Oscillating nozzles shall be operated to verify that angle of elevation, angle of oscillation, and discharge range, are in accordance with requirements. ## 3.5.5 AFFF Concentrate System Tests shall be conducted under the supervision of a technical representative employed by the AFFF concentrate manufacturer. The complete AFFF concentrate system shall be adjusted and tested to assure proper operation. Test results, including all pressure settings and readings, shall be recorded on an appropriate test form signed and dated by manufacturer's representative certifying that the system is in compliance with contract requirements and the manufacturer's recommended practices. Testing shall include, but not be limited to, the following: - a. Filling the AFFF concentrate tank. - b. Adjustment of pressure sustaining valves, pump relief valves, and proportioners. - c. Collection of AFFF samples and testing with a conductivity meter to verify proportioning accuracy. - d. Testing low liquid level alarms and pump shutoff. - e. Other operational checks recommended by the AFFF proportioner manufacturer. ### 3.5.6 Control System Tests Tests shall be conducted under the supervision of a factory-trained representative of the control panel manufacturer. The electrical control system shall be tested to verify that the control panel and all wiring have been installed correctly and that all components function as intended. Tests shall be conducted using normal operating and battery power. Testing shall include, but not be limited to, each of the following: - a. Alarm initiating circuit and device, including heat detectors, manual actuation stations, waterflow and pressure switches, and similar devices connected to the control panel. - b. Supervisory circuit and device, including valve supervisory (tamper) switches, pump power circuits, pump running, low liquid level in foam concentrate tank, and similar circuits and devices. - c. Actuation circuit and device, including circuits to automatic water control valves, foam concentrate pumps, fire pumps, and similar circuits related to system activation. - d. Annunciator lamp and notification appliance, including bells, horns, electronic signaling, and similar devices. ### 3.6 FINAL TEST ## 3.6.1 Requirements The Final Test shall be a repeat of Preliminary Tests, except that flushing and hydrostatic tests shall not be repeated. In addition, the system shall be automatically actuated and allowed to discharge for a period of at least one minute prior to shutting the system off. The Contractor shall correct system failures and other deficiencies identified during testing and shall retest portions of the system affected by the required corrections. ## 3.6.1.1 Pretest Requirements The system will be considered ready for final testing only after the following have been accomplished. - a. The required test plan has been submitted and approved. - b. Preliminary tests have been made and deficiencies determined to have been corrected to the satisfaction of the equipment manufacturer's technical representatives and the Contracting Officer. - c. Test reports, including the required videotape of the preliminary tests, have been submitted and approved. - d. The control panels and detection systems shall have been in service for a break-in period of at least 14 consecutive days prior to the final test. e. The Contractor has provided written notification to the Contracting Officer, at least twenty-one (21) days prior to date of Final Test, that preliminary tests have been successfully completed. ### 3.6.1.2 Videotaping Contractor shall videotape the tests in VHS format and shall record the date and time-lapse, in seconds, from start to finish of each portion of the test as directed by the Contracting Officer. Four copies of the tape shall be submitted before the system will be considered accepted. #### 3.6.1.3 Manufacturer's Services Experienced technicians regularly employed by the Contractor in the installation of the system and manufacturer's representative referred to elsewhere in this specification shall conduct the testing. ### 3.6.1.4 Materials and Equipment Contractor shall provide AFFF concentrate, gauges, AFFF sample collection apparatus, instruments, hose, personnel, elevating platforms, scaffolding, ladders, appliances and any other equipment necessary to fulfill testing requirements specified. ## 3.6.1.5 Facility and Environmental Protection Contractor shall provide protection for the facility, including electrical and mechanical equipment exposed to possible damage during discharge tests. This shall include provision of sandbags or similar means for preventing migration of foam solution into adjacent areas. Temporary measures shall be provided to prevent AFFF solution from entering storm drains, sanitary sewers, drainage ditches, streams and other water sources. Discharged AFFF shall be contained on paved surfaces and shall not be allowed to come in contact with the earth. # 3.6.2 Control System Tests Operational features of the control system shall be tested and demonstrated. This shall include testing of control panels and each input and output circuit. Tests of circuits shall include actuation and simulated circuit fault at each initiating, notification, supervisory and actuation device or appliance. As a practical matter, these tests shall be a repeat of preliminary tests required under paragraph PRELIMINARY TESTS. ## 3.6.3 AFFF Proportioning System Tests Each AFFF proportioner (ratio controller) shall be flow tested to determine that proportioning accuracy is within specified limits. Each proportioner supplying a deluge system or a nozzle system shall be tested at the design flow rate. Collecting AFFF samples from each proportioner shall be accomplished in accordance with NFPA 16, NFPA 16A and the approved test plan. Foam solution concentrations shall be determined using the methods outlined in NFPA 16 and NFPA 16A. Proportioning for nominal 3 percent concentrate shall be between 3 percent and 4 percent. If test results indicate proportioning below or above this range, the Contractor shall make necessary adjustments and retest as directed by the Contracting Officer. ## 3.6.4 Post-discharge Test Requirements Following the successful completion of the tests, the Contractor shall remove the foam solution from the site as indicated on the approved Final Acceptance Test Plan which includes AFFF waste containment and disposal plans. Contractor shall replenish AFFF concentrate consumed during the tests. The entire fire protection system shall be returned to automatic operation and the facility restored to operational capability. Discharged solution shall be contained and disposed of in a manner acceptable to local authorities and as identified on the approved test plan. Once tests are completed, systems shall be returned to fully operational status, including filling of AFFF concentrate tanks with concentrate and filling of solution piping with premix as required. ## 3.7 POSTED INSTRUCTIONS Framed description of system operation, instructions and schematic diagrams of the overall AFFF system and each subsystem, shall be posted where directed. Condensed operating instructions explaining the system for normal operation, refilling the AFFF storage tank, and routine testing shall be included. ## 3.8 TRAINING Contractor shall provide at least two training sessions of at least 6 hours each to explain system's operation and maintenance. Training sessions shall be conducted on alternate days to afford flexibility by shift personnel and other attendees. Training sessions shall include classroom instruction and explanation of approved Operation and Maintenance Manuals. Training aids shall be provided as necessary to clearly describe the systems. In addition to classroom instruction, systems shall be operated to provide hands-on demonstrations. Contractor shall include a system actuation using water only, to demonstrate system operation and procedures for resetting the system. Training areas will be provided by the Government in the building where the systems are installed. Dates and times of the training sessions shall be coordinated with the Contracting Officer not less than 15 calendar days prior to the first session. END OF SECTION ### SECTION 15052 ## WELDING PRESSURE PIPING ## PART 1 GENERAL ### 1.1 REFERENCES ASME B31.1 The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. ### AMERICAN SOCIETY FOR NONDESTRUCTIVE TESTING (ASNT) | ASNT-01 | (1992; | Supple) | Recommended | Practice | SNT-TC-1A | |---------|--------|---------|-------------|----------|-----------| |---------|--------|---------|-------------|----------|-----------| ASNT-02 (1980) Question and Answer Book A: Radiographic Test Method; Levels I, II, III (Supplement to Recommended Practice SNT-TC-1A) ### AMERICAN SOCIETY OF MECHANICAL ENGINEERS (ASME) | ASME BPV I | (1992; Addenda Dec 1992, Dec 1993, Dec 1994) | |------------|--| | | Boiler and Pressure Vessel Code; Section I, | | | Power Boilers | (1995) Power Piping ASME BPV II Pt C (1992; Addenda Dec 1992, Dec 1993, Dec 1994) Boiler and Pressure Vessel Code; Section II, Materials, Part C Specifications for Welding Rods, Electrodes and Filler Metals ASME BPV V (1992; Addenda Dec 1992, Dec 1993,
Dec 1994) Boiler and Pressure Vessel Code; Section V, Nondestructive Examination ASME BPV IX (1992; Addenda Dec 1992, Dec 1993, Dec 1994) Boiler and Pressure Vessel Code; Section IX, Welding and Brazing Qualifications ### AMERICAN WELDING SOCIETY (AWS) | AWS A2.4 | (1993) Standard Symbols for Welding, Brazing and Nondestructive Examination | |----------|---| | AWS A3.0 | (1994) Standard Welding Terms and Definitions | | AWS A5.1 | (1991) Carbon Steel Electrodes for Shielded
Metal Arc Welding | | AWS A5.4 | (1992) Stainless Steel Electrodes for Shielded
Metal Arc Welding | |-----------|--| | AWS D10.9 | (1980) Qualification of Welding Procedures and Welders for Piping and Tubing | | AWS QC1 | (1988) Standard for AWS Certification of Welding Inspectors | | AWS Z49.1 | (1988) Safety in Welding and Cutting | #### 1.2 DEFINITIONS Definitions shall be in accordance with AWS A3.0. #### 1.3 GENERAL REQUIREMENTS This section covers the welding of pressure piping systems. Deviations from applicable codes, approved procedures, and approved detail drawings will not be permitted without prior written approval. Materials or components with welds made off the site will not be accepted if the welding does not conform to the requirements of this specification, unless otherwise specified. Procedures shall be developed by the Contractor for welding all metals included in the work. Welding shall not be started until welding procedures, welders, and welding operators have been qualified. Qualification testing shall be performed by an approved testing laboratory or by the Contractor if approved by the Contracting Officer. Costs of such testing shall be borne by the Contractor. The Contracting Officer shall be notified at least 24 hours in advance of the time and place of the tests. When practicable, the qualification tests shall be performed at or near the worksite. The Contractor shall maintain current records of the test results obtained in the welding procedure, welding operator, welder performance qualifications, and nondestructive examination (NDE) procedures readily available at the site for examination by the Contracting Officer. The procedures for making transition welds between different materials or between plates or pipes of different wall thicknesses shall be qualified. ASME B31.1, requirements for branch connections may be used in lieu of detailed designs. Unless otherwise specified, the choice of welding process shall be the responsibility of the Contractor. #### PERFORMANCE 1.4 The Contractor shall be responsible for the quality of all joint preparation, welding, and examination. All materials used in the welding operations shall be clearly identified and recorded. The inspection and testing defined in this specification are minimum requirements. Additional inspection and testing shall be the responsibility of the Contractor when he deems it necessary to achieve the quality required. #### 1.5 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. following shall be submitted in accordance with Section 01300 SUBMITTALS: SD-01 Data Qualifications; GA. Welding procedure qualification. SD-13 Certificates Qualifications; GA. Welder and welding operator performance qualification certificates. Welding inspectors and NDE personnel certificates. Qualifications of testing laboratory or the Contractor's quality assurance organization. #### 1.6 QUALIFICATIONS Welding procedures, welders, and welding operators previously qualified by test may be accepted for the work without requalification, provided that all of the following conditions are fulfilled: - a. Copies of the welding procedures, the procedure qualification test records, and the welder and welding operator performance qualification test records are submitted and approved in accordance with paragraph SUBMITTALS. - b. Testing was performed by an approved testing laboratory or technical consultant or by the Contractor's approved quality assurance organization. - c. The welding procedures, welders, and welding operators were qualified in accordance with ASME BPV IX, or AWS D10.9, AR-2 level; and base materials, filler materials, electrodes, equipment, and processes conformed to the applicable requirements of this specification. d. The requirements of paragraph "Renewal of Qualification" below are met and records showing name of employer and period of employment using the process for which qualified are submitted as evidence of conformance. ### 1.6.1 Welding Procedures Qualification The Contractor shall record in detail and shall qualify the Welding Procedure Specifications for every welding procedure that he proposes. Qualification for each welding procedure shall conform to the requirements of ASME B31.1, and to this specification. The welding procedures shall specify end preparation for butt welds including cleaning, alignment, and root openings. Preheat, interpass temperature control, and postheat treatment of welds shall be as required by approved welding procedures, unless otherwise indicated or specified. The type of backing rings or consumable inserts, if used, shall be described and if they are to be removed, the removal process shall be described. Copies of the welding procedure specifications and procedure qualification test results for each type of welding required shall be submitted in accordance with paragraph SUBMITTALS. Approval of any procedure does not relieve the Contractor of the sole responsibility for producing acceptable welds. Welding procedures shall be identified individually and shall be referenced on the detail drawings or keyed to the contract drawings. ### 1.6.2 Welder and Welding Operator Performance Each welder and welding operator assigned to work shall be qualified in accordance with ASME B31.1. #### 1.6.2.1 Certification Before assigning welders or welding operators to the work, the Contractor shall provide the Contracting Officer with their names together with certification that each individual is performancequalified as specified. The certification shall state the type of welding and positions for which each is qualified, the code and procedure under which each is qualified, date qualified, and the firm and individual certifying the qualification tests. #### 1.6.2.2 Identification Each welder or welding operator shall be assigned an identifying number, letter, or symbol that shall be used to identify all of his welds. To identify welds, written records indicating the location of welds made by each welder or welding operator shall be submitted, and each welder or welding operator shall apply his mark adjacent to his welds using a rubber stamp or felt-tipped marker with permanent, weatherproof ink or other methods approved by the Contracting Officer that do not deform the metal. For seam welds, identification marks shall be placed adjacent to the welds at 3 foot intervals. Identification by die stamps or electric etchers will not be allowed. #### 1.6.2.3 Renewal of Qualification Requalification of a welder or welding operator shall be required under any of the following conditions: - a. When a welder or welding operator has not used the specific welding process for a period of 3 months; the period may be extended to 6 months if he has been employed on some other welding process. - b. When a welder or welding operator has not welded with any process during a period of 3 months, all his qualifications shall be expired, including any extended by virtue of a. above - c. There is specific reason to question his ability to make welds that will meet the requirements of the specifications. - d. The welder or welding operator was qualified by an employer other than those firms performing work under this contract and a qualification test has not been taken within the preceding 12 months. - e. Renewal of qualification for a specific welding process under conditions a., b., and d. above need be made on only a single test joint or pipe of any thickness, position, or material to reestablish the welder's or welding operator's qualification for any thickness, position, or material for which he had previously qualified. ## 1.6.3 Inspection and NDE Personnel All inspection and NDE personnel shall be qualified in accordance with the following requirements. #### 1.6.3.1 Inspector Certification Welding inspectors shall be qualified in accordance with AWS QC1. #### 1.6.3.2 NDE Personnel NDE personnel shall be certified, and a written procedure for the control and administration of NDE personnel training, examination, and certification shall be established. The procedures shall be based on appropriate specific and general guidelines of training and experience recommended by ASNT-01 and ASNT-02. #### DELIVERY, STORAGE, AND HANDLING 1.7 All filler metals, electrodes, fluxes, and other welding materials shall be delivered to the site in manufacturers' original packages and stored in a dry space until used. Packages shall be properly labeled and designed to give maximum protection from moisture and to insure safe handling. #### 1.7.1 Material Control Materials shall be stored in a controlled access and clean, dry area that is weathertight and is maintained at a temperature recommended by the manufacturer. The materials shall not be in contact with the floor and shall be stored on wooden pallets or cribbing. #### 1.7.1.1 Damaged Containers Low-hydrogen steel electrodes shall be stored in their sealed shipping container. If the seal is damaged during shipment or storage, and the damage is not immediately detected, the covered electrodes in that container shall be rebaked in accordance with the manufacturer's instructions prior to issuance or shall be discarded. If a container is damaged in storage and the damage is
witnessed, the electrodes from that container shall be immediately placed in a storage oven. The storage oven temperature shall be as recommended by the manufacturer or the welding material specification. #### 1.7.1.2 Partial Issues When a container of covered electrodes is opened and only a portion of the content is issued, the remaining portion shall, within 1/2 hour, be placed in a storage oven. ### 1.7.2 Damaged Materials Materials which are damaged shall be discarded. Covered electrodes which are oil or water-soaked, dirty, or on which the flux has separated from the wire shall be discarded. #### 1.8 SYMBOLS Symbols shall be in accordance with AWS A2.4. #### 1.9 SAFETY Safety precautions shall conform to AWS Z49.1. #### PART 2 PRODUCTS #### 2.1 WELDING MATERIALS ## 2.1.1 Welding Electrodes Welding electrodes for carbon steel piping shall be E70XX low hydrogen type conforming to AWS A5.1 or AWS A5.4. Welding electrodes for stainless steel piping shall be E308L conforming to AWS A5.4. Welding rods and filler metal shall conform to ASME BPVII Pt C. ## PART 3 EXECUTION ### 3.1 WELDING OPERATIONS Welding shall be performed in accordance with qualified procedures using qualified welders and welding operators. Welding shall not be done when the quality of the completed weld could be impaired by the prevailing working or weather conditions. The Contracting Officer shall determine when weather or working conditions are unsuitable for welding. ## 3.1.1 Base Metal Preparation Oxy-fuel cutting shall not be used on austenitic stainless steel or nonferrous materials. ## 3.1.2 Weld Joint Fit-Up Parts that are to be joined by welding shall be fitted, aligned, and retained in position during the welding operation by the use of bars, jacks, clamps, or other mechanical fixtures. Welded temporary attachments shall not be used except when it is impractical to use mechanical fixtures. When temporary attachments are used, they shall be the same material as the base metal, and shall be completely removed by grinding or thermal cutting after the welding operation is completed. If thermal cutting is used, the attachment shall be cut to not less than 1/4 inch from the member and the balance removed by grinding. After the temporary attachment has been removed, the area shall be visually examined. ## 3.1.3 Preheat and Interpass Temperatures Preheat temperatures shall meet the requirements specified by ASME B31.1. However, in no case shall the preheat be below 50 degrees F for ferritic steel or austenitic stainless steel. The maximum interpass temperatures shall not exceed 300 degrees F) for austenitic stainless steels, nickel alloys, and copper alloys; and 500 degrees F for carbon steels. Preheat techniques shall be such as to ensure that the full thickness of the weld joint preparation and/or adjacent base material, at least 3 inches in all directions, is at the specified temperature. Preheating by induction or resistance methods is preferred. When flame heating is used, only a neutral flame shall be employed. Oxy-fuel heating shall not be used on austenitic stainless steel or nickel-alloy materials; however, air-fuel heating is acceptable if controlled to insure that the surface temperature does not exceed 150 degrees F. Interpass temperatures shall be checked on the surface of the component within 1 inch of the weld groove and at the starting location of the next weld pass, and for a distance of about 6 inches ahead of the weld, but not on the area to be welded. ### 3.1.4 Production Welding Instructions - a. Welding shall not be done when the ambient temperature is lower than 0 degree F. - b. Welding is not permitted on surfaces that are wet or covered with ice, when snow or rain is falling on the surfaces to be welded, or during periods of high winds, unless the welders and the work are properly protected. - c. Gases for purging and shielding shall be welding grade and shall have a dew point of minus 40 degrees F or lower. - d. Back purges are required for austenitic stainless steels and nonferrous alloys welded from one side and shall be set up such that the flow of gas from the inlet to the outlet orifice passes across the area to be welded. The oxygen content of the gas exiting from the purge vent shall be less than 2 percent prior to welding. - e. The purge on groove welds shall be maintained for at least three layers or 3/16 inch. - f. Removable purge dam materials shall be made of expandable or flexible plugs, such as plexiglass, plywood (which shall be dry when used), etc. Wood dams shall be kiln-dried quality. Nonremovable purge dams and purge dam adhesives shall be made of water soluble materials. Purge dams shall not be made of polyvinyl chloride. - g. Any welding process which requires the use of external gas shielding shall not be done in a draft or wind unless the weld area is protected by a shelter. This shelter shall be of material and shape appropriate to reduce wind velocity in the vicinity of the weld to a maximum of 5 mph. - h. Welding of low-alloy and hardenable high-alloy steels may be interrupted provided a minimum of at least 3/8 inch thickness of weld deposit or 25 percent of the weld groove is filled, whichever is greater, and the preheat temperature is maintained during the time that welding is interrupted. If the temperature falls below the minimum preheat temperature before all welding has been completed on a joint, or, where required, before post weld heat treatment, a liquid penetrant or magnetic particle examination shall be performed to insure sound deposited metal before reheating. Welding of other materials may be interrupted without restriction provided a visual inspection is performed before welding is resumed. - i. Tack welds to be incorporated in the final welds shall have their ends tapered by grinding or welding technique. Tack welds that are cracked or defective shall be removed and the groove shall be retacked prior to welding. Temporary tack welds shall be removed, the surface ground smooth, and visually inspected. For low-alloy and hardenable high-alloy steels, the area shall be magnetic particle examination inspected. ## 3.1.5 Postweld Heat Treatment Postweld heat treatment shall be performed in accordance with ASME B31.1. Temperatures for local postweld heat treatment shall be measured continuously by thermocouples in contact with the weldment. Postweld heat treatment of low-alloy steels, when required, shall be performed immediately upon completion of welding and prior to the temperature of the weld falling below the preheat temperature. However, postweld heat treatment may be postponed after the completion of the weld, if, immediately after the weld is completed, it is maintained at a minimum temperature of 300 degrees F or the preheat temperature, whichever is greater, for 2 hours per inch of weld thickness. For low-alloy steels, the cooling rates shall be such that temper embrittlement is avoided. #### EXAMINATIONS, INSPECTIONS, AND TESTS 3.2 Visual and NDE shall be performed by the Contractor to detect surface and internal discontinuities in completed welds. All tack welds, weld passes, and completed welds shall be visually inspected. Radiographic examination shall be required as indicated in 3.2.1. When inspection and testing indicates defects in a weld joint, the weld shall be repaired by a qualified welder in accordance with paragraph CORRECTIONS AND REPAIRS. # 3.2.1 Radiographic Testing Nondestructive examination shall be performed in accordance with the requirements of ASME B31.1, Chapter VI. Refer to Table 136.4 of ASME B31.1 for required radiography examination in accordance with Article 2 of Section V of the ASME Boiler and Pressure Vessel Code. Not less than 100 percent of all circumferential butt, fabricated branch connection, and miter grove welds on below-ground steam piping shall be examined fully by 100 percent radiography per ASME B31.1. ## 3.2.2 Visual Inspection (for ACCEPTANCE STANDARDS see 3.3) Weld joints shall be inspected visually as follows: - a. Before welding for compliance with requirements for joint preparation, placement of backing rings or consumable inserts, alignment and fit-up, and cleanliness. - b. During welding for cracks and conformance to the qualified welding procedure. c. After welding - for cracks, contour and finish, bead reinforcement, undercutting, overlap, and size of fillet welds. ## 3.2.3 Inspection and Tests by the Government The Government will perform inspection and supplemental nondestructive or destructive tests as deemed necessary. The cost of supplemental NDE will be borne by the Government. The correction and repair of defects and the reexamination of weld repairs shall be performed by the Contractor at no additional cost to the Government. Inspection and tests will be performed as required for visual inspection and NDE, except that destructive tests may be required also. When destructive tests are ordered by the Contracting Officer and performed by the Contractor and the specimens or other supplemental examinations indicate that the materials and workmanship do not conform to the contract requirements, the cost of the tests, corrections, and repairs shall be borne by the Contractor. When the specimens or other supplemental examinations of destructive tests indicate that materials or workmanship do conform to the specification requirements, the cost of the tests and repairs will be borne by the Government. When destructive tests are made, repairs shall be made by qualified welders or welding operators using welding procedures which will develop the full strength of the members cut. Welding shall be subject to inspection and tests in the mill, shop, and field. When materials or workmanship do not conform to the specification requirements, the work may be rejected at any time before final acceptance of the system containing the weldment. #### 3.3 ACCEPTANCE STANDARDS # 3.3.1 Visual The following indications are unacceptable: -
a. Cracks. - b. Undercut on surface which is greater than 1/32 inch deep. - c. Weld reinforcement greater than 3/16 inch. - d. Lack of fusion on surface. - e. Incomplete penetration (applies only when inside surface is readily accessible). - f. Convexity of fillet weld surface greater than 10 percent of longest leg plus 0.03 inch. - g. Concavity in groove welds. - h. Concavity in fillet welds greater than 1/16 inch. i. Fillet weld size less than indicated or greater than 1-1/4 times the minimum indicated fillet leg length. # 3.3.2 Radiography (NDT not required) Welds that are shown by radiography to have any of the following discontinuities are unacceptable: - a. Porosity in excess of that shown as acceptable in ASME BPV I, Appendix A-250. - b. Any type of crack or zone of incomplete fusion or penetration. - c. Any other elongated indication which has a length greater than: - (1) 1/4 inch for t up to 3/4 inch inclusive, where t is the thickness of the thinner portion of the weld. - (2) 1/3 t for t from 3/4 inch to 2-1/4 inch inclusive. - (3) 3/4 inch for t over 2-1/4 inch. - d. Any group of indications in line that have an aggregate length greater than t in a length of 12t, except where the distance between the successive indications exceeds 6L where L is the longest indication in the group. Where t pertains to the thickness of the weld being examined; if a weld joins two members having different thickness at the weld, t is the thinner of these two thicknesses. #### 3.4 CORRECTIONS AND REPAIRS Defects shall be removed and repaired as specified in ASME B31.1, unless otherwise specified. Disqualifying defects discovered between weld passes shall be repaired before additional weld material is deposited. Wherever a defect is removed, and repair by welding is not required, the affected area shall be blended into the surrounding surface eliminating sharp notches, crevices, or corners. After defect removal is complete and before rewelding, the area shall be examined by the same test method which first revealed the defect to ensure that the defect has been eliminated. After rewelding, the repaired area shall be reexamined by the same test method originally used for that area. Any indication of a defect shall be regarded as a defect unless reevaluation by NDE or by surface conditioning shows that no disqualifying defects are present. The use of any foreign material to mask, fill in, seal, or disguise welding defects will not be permitted. -- End of Section -- 00029/11 REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 SECTION 15070 ## SEISMIC PROTECTION FOR MECHANICAL EQUIPMENT ### 1 GENERAL ### 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. SHEET METAL & AIR CONDITIONING CONTRACTORS' NATIONAL ASSOCIATION (SMACNA) SMACNA Seismic Restraint Mnl (1991; Appx E, 1993) Seismic Restraint Manual Guidelines for Mechanical Systems IAW Army Tech Instr. 809-4 ### 1.2 SYSTEM DESCRIPTION ## 1.2.1 General Requirements The requirements for seismic protection measures described in this section shall be applied to the mechanical equipment and systems listed below. Structural requirements shall be in accordance with Section 13082 SEISMIC PROTECTION FOR ARCHITECTURAL, MECHANICAL AND ELECTRICAL SYSTEMS AND EQUIPMENT (ZONE 2). # 1.2.2 Mechanical Equipment Mechanical equipment to be seismically protected shall include the following items to the extent required on the drawings, in this Section, or in other sections of these specifications: Storage Tanks for Water Steam, Water, Piping Valves and Fittings for Piping Air Compressors Air Handling Units Ducts Unit Heaters Exhaust Fans Water Heaters Expansion Air Separator Tanks Paparator Tanks Perparator Tanks Refrigerant Piping Pumps with Motors Flash Tanks Accumulator Tank Natural Gas Piping #### 1.2.3 Mechanical Systems The following mechanical systems shall be installed as required on the drawings and other sections of these specifications and shall be seismically protected in accordance with this specification: FAIRCHILD AFB, WA. PN GJKZ 99-0151 All Piping Inside the Building Except as Specifically Stated Below Under "Items Not Covered By This Section". Certain size Water Supply Systems Heat Distribution Systems (Supply, Return) Outside of Buildings Water Storage Tanks # 1.2.4 Contractor Designed Bracing The Contractor shall design the bracing in accordance with Section 13082 and additional data furnished by the Contracting Officer. Resistance to lateral forces induced by earthquakes shall be accomplished without consideration of friction resulting from gravity loads. ## 1.2.5 Items Not Covered By This Section ## 1.2.5.1 Fire Protection Systems Seismic protection of piping for fire protection systems shall be installed as specified in Sections 13920 FIRE PUMPS, 13930 WET PIPE SPRINKLER SYSTEM, FIRE PROTECTION, 13935 DRY PIPE SPRINKLER SYSTEM, FIRE PROTECTION, 13945 PREACTION AND DELUGE SPRINKLER SYSTEMS, FIRE PROTECTION, and 13955 AQUEOUS FILM-FORMING FOAM (AFFF) FIRE PROTECTION SYSTEM. However, the design seismic loadings for these items shall not be less than loadings obtained using the procedures in TI 809-04. ## 1.2.5.2 Items Requiring No Seismic Restraints Seismic restraints are not required for the following items unless required by IAW 809-04: - a. Heating piping less than 2 inches inside diameter. - b. Piping in mechanical equipment rooms less than 1-1/4 inches inside diameter. - c. All other piping less than 2-1/2inches inside diameter, except gas piping. - d. Rectangular air handling ducts less than 6 square feet in cross sectional area, except required for ductwork supplying infra-red heaters. - e. Round air handling ducts less than 28 inches in diameter, or equivalent, except required for ductwork supplying infra-red heaters. - f. Piping suspended by individual hangers 12 inches or less in length from the top of pipe to the bottom of the supporting structural member where the hanger is attached, except as noted below. - g. Ducts suspended by hangers 12 inches or less in length from the top of the duct to the bottom of the supporting structural member, except as noted below. REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 In exemptions f. and g. all hangers shall meet the length requirements. If the length requirement is exceeded by one hanger in the run, the entire run shall be braced. Interior piping; infra red radiant heaters, gas piping, and air supply ducts; and ducts not listed above shall be seismically protected in accordance with the provisions of this specification. ## 1.3 EQUIPMENT REQUIREMENTS ## 1.3.1 Rigidly Mounted Equipment The following specific items of equipment: Hot Water Pumps, Infra Red Radiant Heaters, Air-Handling Units, Boilers to be furnished under this contract shall be constructed and assembled to withstand the seismic forces specified in Section 13082 For any rigid equipment which is rigidly attached on both sides of a building expansion joint, flexible joints for piping, electrical conduit, etc. that are capable of accommodating displacements equal to the full width of the joint in both orthogonal directions, shall be provided. #### 1.4 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-01 Data Coupling and Bracing; GA. Equipment Requirements; GA. Copies of the design calculations with the detail drawings. Calculations shall be stamped by a registered engineer and shall verify the capability of structural members to which bracing is attached for carrying the load from the brace. Contractor Designed Bracing; GA. Copies of the design calculations with the drawings. Calculations shall be approved, certified, stamped and signed by a registered Professional Engineer. Calculations shall verify the capability of structural members to which bracing is attached for carrying the load from the brace. SD-04 Drawings Coupling and Bracing; FIO. Flexible Couplings or Joints; FIO. Equipment Requirements; FIO. Contractor Designed Bracing; GA. Detail drawings along with catalog cuts, templates, and erection and installation details, as appropriate, for the items listed. Submittals shall be complete in detail; shall indicate thickness, type, grade, class of metal, and dimensions; and shall show construction details, reinforcement, anchorage, and installation with relation to the building construction. SD-13 Certificates Flexible Ball Joints; FIO. Flexible ball joints shall be certified to be suitable for the service intended by the manufacturer. Information verifying experience at not less than 3 locations of 2 years' satisfactory operation in a similar application shall be submitted. ## 2 PRODUCTS ### 2.1 FLEXIBLE COUPLINGS Flexible couplings shall have same pressure and temperature ratings as adjoining pipe. #### 2.2 FLEXIBLE BALL JOINTS Flexible ball joints shall have cast or wrought steel casing and ball parts capable of 360-degree rotation with not less than 15-degree angular movement. ### 2.3 FLEXIBLE MECHANICAL JOINTS - a. Mechanical couplings for steel or cast iron pipe shall be of the sleeve type and shall provide a tight flexible joint under all reasonable conditions, such as pipe movement caused by expansion, contraction, slight settling or shifting of the ground, minor variations in trench gradients, and traffic vibrations. Where permitted in other sections of these specifications, joints utilizing split-half couplings with grooved or shouldered pipe ends may be used. - b. Sleeve-type couplings shall be used for joining plain-end pipe sections. The coupling shall consist of one steel middle ring, two steel followers, two gaskets, and necessary steel bolts and nuts to
compress the gaskets. ## 2.4 MANUFACTURED BALL JOINTS Manufactured ball joints shall be as recommended by the manufacturer for the intended use, and shall be approved by the Contracting Officer before installation. ## 2.5 SWAY BRACING MATERIALS Sway bracing materials (e.g. rods, plates, rope, angles, etc.) shall be as specified in Section 13082 SEISMIC PROTECTION FOR ARCHITECTURAL, MECHANICAL, AND ELECTRICAL SYSTEMS AND EQUIPMENT (ZONE 2) #### 3 EXECUTION ### 3.1 COUPLING AND BRACING Coupling installation shall conform to the details shown on the drawings. Provisions of this paragraph apply to all piping within a $1.5\ m$ 5 foot line around outside of building unless buried in the ground. Piping grouped for support on trapeze-type hangers shall be braced at the same intervals as determined by the smallest diameter pipe of the group. Bracing rigidly attached to pipe flanges, or similar, shall not be used where it would interfere with thermal expansion of piping. ### 3.2 BUILDING DRIFT Joints capable of accommodating seismic displacements shall be provided for vertical piping between floors of the building, where pipes pass through a building seismic or expansion joint, or where rigidly supported pipes connect to equipment with vibration isolators. Horizontal piping across expansion joints shall accommodate the resultant of the drifts of each building unit in each orthogonal direction. For threaded piping, swing joints made of the same piping material shall be provided. For piping with manufactured ball joints the seismic drift shall be 0.015 meters per meter feet per foot of height above the base where the seismic separation occurs; this drift value shall be used in place of the expansion given in the manufacturer's selection table. #### 3.3 FLEXIBLE COUPLINGS OR JOINTS ## 3.3.1 Building Piping Flexible couplings or joints in building piping shall be provided at bottom of all pipe risers for pipe larger than 90 mm 3-1/2 inches in diameter. Flexible couplings or joints shall be braced laterally without interfering with the action of the flexible coupling or joint. Cast iron waste and vent piping need only comply with these provisions when caulked joints are used. Flexible bell and spigot pipe joints using rubber gaskets or no-hub fittings may be used at each branch adjacent to tees and elbows for underground waste piping inside of building to satisfy these requirements. ### 3.3.2 Underground Piping Underground piping and 100 mm (4 inch) or larger conduit, except heat distribution system, shall have flexible couplings installed where the piping enters the building. The couplings shall accommodate 25 mm of relative movement between the pipe and the building in any direction. Additional flexible couplings shall be provided where shown on the drawings. ## 3.4 PIPE SLEEVES Pipe sleeves in interior non-fire rated walls shall be sized as to provide clearances that will permit differential movement of piping without the piping striking the pipe sleeve. ### 3.5 SPREADERS Spreaders shall be provided between adjacent piping runs to prevent contact during seismic activity whenever pipe or insulated pipe surfaces are less than 100 mm (4 inches) apart. Spreaders shall be applied at same interval as sway braces at an equal distance between the sway braces. If rack type hangers are used where the pipes are restrained from contact by mounting to the rack, spreaders are not required for pipes mounted in the rack. Spreaders shall be applied to surface of bare pipe and over insulation on insulated pipes utilizing high-density inserts and pipe protection shields in accordance with the requirements of Section 15080THERMAL INSULATION FOR MECHANICAL SYSTEMS. #### 3.6 SWAY BRACES FOR PIPING & INFRA RED RADIANT HEATERS Sway braces shall be provided to prevent movement of all the piping and heaters under seismic loading. Braces shall be provided in both the longitudinal and transverse directions, relative to the axis of the pipe. The bracing shall not interfere with thermal expansion requirements for the pipes as described in other sections of these specifications. Bracing shall not protrude in the required aircraft clearance areas of operations. # 3.6.1 Transverse Sway Bracing Transverse sway bracing for steel and copper pipe shall be provided as specified in Section 13082 SEISMIC PROTECTION FOR ARCHITECTURAL MECHANICAL AND ELECTRICAL SYSTEMS AND EQUIPMENT (ZONE 2). All runs (length of pipe between end joints) shall have a minimum of two transverse braces. Transverse sway bracing for pipes of materials other than steel and copper shall be provided at intervals not to exceed the hanger spacing as specified in Section 15400 PLUMBING, GENERAL PURPOSE. Bracing shall not protrude in the required aircraft clearance areas of operations. # 3.6.2 Longitudinal Sway Bracing Longitudinal sway bracing shall be provided at 12 m (40 foot) intervals unless otherwise indicated. All runs (length of pipe between end joints) shall have one longitudinal brace minimum. Sway braces shall be constructed in accordance SMACNA guidelines. Branch lines, walls, or floors shall not be used as sway braces. Bracing shall not protrude in the required aircraft clearance areas of operations. ## 3.6.3 Vertical Runs Run is defined as length of pipe between end joints. Vertical runs of piping shall be braced at not more than 3 m (10 foot) vertical intervals. Braces for vertical runs shall be above the center of gravity of the segment being braced. All sway braces shall be constructed in accordance with the drawings. Sway branches shall not be connected to branch lines, walls, or floors. # 3.6.4 Clamps and Hangers Clamps or hangers on uninsulated pipes shall be applied directly to pipe. Insulated piping shall have clamps or hangers applied over insulation in accordance with Section 15080 THERMAL INSULATION FOR MECHANICAL SYSTEMS. # 3.7 SWAY BRACES FOR DUCTS & INFRA RED RADIANT HEATERS #### 3.7.1 Braced Ducts Bracing details and spacing for rectangular and round ducts shall be in accordance with SMACNA Seismic Restraint Mnl, including Appendix E. However, the design seismic loadings for these items shall not be less than loadings obtained using the procedures in TI 809-04. Bracing shall not protrude in the required aircraft clearance areas of operations. 00029/11 REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 ### 3.7.2 Unbraced Ducts Hangers for unbraced ducts shall be attached to the duct within 50 mm (2 inches) of the top of the duct with a minimum of two #10 sheet metal screws in accordance with SMACNA Seismic Restraint Mnl. Unbraced ducts shall be installed with a 150 mm 6 inch minimum clearance to vertical ceiling hanger wires. Bracing shall not protrude in the required aircraft clearance areas of operations. END OF SECTION ### SECTION 15080 # THERMAL INSULATION FOR MECHANICAL SYSTEMS & FIRE PROTECTION SYSTEM WATER RESERVOIR TANK ### PART 1 GENERAL ## 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. At the discretion of the government, the manufacturer of any material supplied will be required to furnish test reports pertaining to any of the tests necessary to assure compliance with the standard or standards referenced in this specification. ## AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | ASTM A 167 | (1996) Stainless and Heat-Resisting Chromium-
Nickel Steel Plate, Sheet, and Strip | |-------------------|---| | ASTM A 580/A 580M | (1995a) Stainless and Steel Wire | | ASTM B 209 | (1996) Aluminum and Aluminum-Alloy Sheet and Plate | | ASTM C 195 | (1995) Mineral Fiber Thermal Insulating
Cement | | ASTM C 449/C 449M | (1995) Mineral Fiber Hydraulic-Setting
Thermal Insulating and Finishing Cement | | ASTM C 533 | (1995) Calcium Silicate Block and Pipe
Thermal Insulation | | ASTM C 534 | (1994) Preformed Flexible Elastomeric
Cellular Thermal Insulation in Sheet and
Tubular Form | | ASTM C 547 | (1995) Mineral Fiber Pipe Insulation | | ASTM C 552 | (1991) Cellular Glass Thermal Insulation | | ASTM C 553 | (1992) Mineral Fiber Blanket Thermal
Insulation for Commercial and Industrial
Applications | | ASTM C 612 | (1993) Mineral Fiber Block and Board Thermal
Insulation | # REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 | ASTM C 647 | (1995) Properties and Tests of Mastics and
Coating Finishes for Thermal Insulation | |-------------|--| | ASTM C 795 | (1992) Thermal Insulation for Use in Contact
With Austenitic Stainless Steel | | ASTM C 871 | (1995) Chemical Analysis of Thermal
Insulation Materials for Leachable Chloride,
Fluoride, Silicate, and Sodium Ions | | ASTM C 916 | (1985; Rev 1996) Adhesives for Duct Thermal Insulation | | ASTM C 920 | (1995) Elastomeric Joint Sealants | | ASTM C 921 | (1989 R; 1996) Determining the Properties of Jacketing Materials for Thermal Insulation | | ASTM C 1126 | (1996) Specification for Faced or Unfaced Rigid Cellular Phenolic Thermal Insulation | | ASTM D 3278 | (1996) Test Methods for Flash Point of
Liquids by Small Scale & Closed-Cup Apparatus | | ASTM E 84 | (1996a) Surface Burning Characteristics of Building Materials | | ASTM E 96 | (1995) Water Vapor Transmission of Materials | MANUFACTURERS STANDARDIZATION SOCIETY OF THE VALVE AND FITTINGS INDUSTRY (MSS) MSS SP-69 (1996) Pipe Hangers and Supports - Selection and Application MIDWEST INSULATION CONTRACTORS ASSOCIATION (MICA) MICA-01 (1993) National Commercial & Industrial Insulation Standards ## 1.2 SYSTEM DESCRIPTIONS Field-applied insulation and accessories on mechanical systems and fire protection system water
storage reservoir shall be as specified herein; factory-applied insulation is specified under the piping, duct or equipment to be insulated. Field applied insulation materials required for use on Government-furnished items as listed in the SPECIAL CONTRACT REQUIREMENTS shall be furnished and installed by the Contractor. The applications for the insulation and the metal protective covering of the fire protection system water storage reservoir shall be designed fully designed by the Contractor and submitted for approval by the CO. See Section 13206 for requirements. ## 1.3 GENERAL QUALITY CONTROL #### 1.3.1 Standard Products Materials shall be the standard products of manufacturers regularly engaged in the manufacture of such products and shall essentially duplicate items that have been in satisfactory use for at least 2 years prior to bid opening. #### 1.3.2 Installer's Qualifications Qualified installers shall have successfully completed three or more similar type jobs within the last 5 years. #### 1.3.3 Surface Burning Characteristics Unless otherwise specified, insulation not covered with a jacket shall have a flame spread rating no higher than 75 and a smoke developed rating no higher than 150. The outside surface of insulation systems which are located in air plenums, in ceiling spaces, and in attic spaces shall have a flame spread rating no higher than 25 and a smoke developed rating no higher than 50. Insulation materials located exterior to the building perimeter are not required to be fire-rated. Flame spread and smoke developed ratings shall be determined by ASTM E 84. Insulation shall be tested in the same density and installed thickness as the material to be used in the actual construction. Jackets shall comply with the flame spread and smoke developed ratings of 25/50 as determined by ASTM E 84. #### 1.3.4 Identification of Materials Packages or standard containers of insulation, jacket material, cements, adhesives, and coatings delivered for use, and samples required for approval shall have manufacturer's stamp or label attached giving the name of the manufacturer and brand, and a description of the material. # 1.4 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-14 Samples Thermal Insulation Materials; FIO. A complete list of materials, including manufacturer's descriptive technical literature, performance data, catalog cuts, and installation instructions. The product number, k-value, thickness and furnished accessories for each mechanical system requiring insulation shall be included. furnished under this section of the specification shall be submitted at one time. After approval of materials and prior to applying insulation a booklet shall be prepared and submitted for approval. The booklet shall contain marked-up MICA-01 plates (or detail drawings showing the insulation material and insulating system) for each pipe, duct, or piece of equipment required to be insulated per this specification. The MICA plates shall be marked up showing the materials to be installed in accordance with the requirements of this specification for the specific insulation application. The Contractor shall submit all MICA Plates required to show the entire insulating system, including Plates required to show insulation penetrations, vessel bottom and top heads, legs, and skirt insulation as applicable. If the Contractor elects to submit detailed drawings instead of marked-up MICA Plates, the detail drawings shall show cut-away, section views, and details indicating each component of the insulation system and showing provisions for insulating jacketing, and sealing portions of the equipment. For each type of insulation installation on the drawings, provide a label which identifies each component in the installation (i.e., the duct, insulation, adhesive, vapor retarder, jacketing, tape, mechanical fasteners, etc.) insulation by type and manufacturer. Three copies of the booklet shall be submitted at the jobsite to the Contracting Officer. One copy of the approved booklet shall remain with the insulation Contractor's display sample and two copies shall be provided for Government use. After approval of materials actual sections of installed systems properly insulated in accordance with the specification requirements shall be displayed. Such actual sections must remain accessible to inspection throughout the job and will be reviewed from time to time for controlling the quality of the work throughout the construction site. Each material used shall be identified, by indicating on an attached sheet the specification requirement for the material and the material by each manufacturer intended to meet the requirement. Display sample sections will be inspected at the jobsite by the Contracting Officer. Approved display sample sections shall remain on display at the jobsite during the construction period. Upon completion of construction, the display sample sections will be closed and sealed. Pipe Insulation Display Sections: Display sample sections shall include as a minimum an elbow or tee, a valve, dielectric unions and flanges, a hanger with protection shield and insulation insert, or dowel as required, at support point, method of fastening and sealing insulation at longitudinal lap, circumferential lap, butt joints at fittings and on pipe runs, and terminating points for each type of pipe insulation used on the job, and for hot pipelines and cold pipelines, both interior and exterior, even when the same type of insulation is used for these services. Duct Insulation Display Sections: Display sample sections for rigid and flexible duct insulation used on the job. A display section for duct insulation exposed to weather shall be protected by enclosing with a temporary covering. REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 #### 1.5 STORAGE Materials shall be delivered in the manufacturer's unopened containers. Materials delivered and placed in storage shall be provided with protection from weather, humidity, dirt, dust and other contaminants. Insulation material and supplies that become dirty, dusty, wet, or otherwise contaminated may be rejected by the Contracting Officer. ### PART 2 PRODUCTS ## 2.1 GENERAL MATERIALS Materials shall be compatible and shall not contribute to corrosion, soften, or otherwise attack surfaces to which applied in either the wet or dry state. Materials to be used on stainless steel surfaces shall meet ASTM C 795 requirements. Materials shall be asbestos free and conform to the following: #### 2.1.1 Adhesives ## 2.1.1.1 Acoustical Lining Insulation Adhesive Insulation shall be applied in cut-to-size pieces attached to the interior of the duct with a nonflammable, fire-resistant adhesive conforming to ASTM C 916, Type I. Exposed edges of the liner at the duct ends and at other joints where the lining will be subject to erosion shall be coated with a heavy brush coat of the nonflammable, fire-resistant adhesive to prevent delamination of glass fibers. ## 2.1.1.2 Mineral Fiber Insulation Cement Cement shall be in accordance with ASTM C 195. ## 2.1.1.3 Lagging Adhesive Lagging adhesives shall be nonflammable and fire-resistant and shall have flame spread and smoke developed ratings of 25/50 when measured in accordance with ASTM E 84. Adhesives shall be either the Class 1 or Class 2 type as defined below. Class 1 adhesive shall be pigmented [white] [red] and be suitable for bonding fibrous glass cloth to faced and unfaced fibrous glass insulation board; for bonding cotton brattice cloth to faced and unfaced fibrous glass insulation board; for sealing edges of and bounding fibrous glass tape to joints of fibrous glass board; or for bonding lagging cloth to thermal insulation. Class 2 adhesive shall be pigmented white and be suitable for attaching fibrous glass insulation to metal surfaces. Lagging adhesives shall be applied in strict accordance with the manufacturer's recommendations. ### 2.1.2 Contact Adhesive Adhesive may be dispersed in a nonhalogenated organic solvent with a low flash point (flash point less than minus 25 degrees F when tested in accordance with ASTM D 3278) or, dispersed in a nonflammable organic solvent REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 which shall not have a fire point below 200 degrees F. The adhesive shall not adversely affect, initially or in service, the insulation to which it is applied, nor shall it cause any corrosive effect on metal to which it is Any solvent dispersing medium or volatile component of the adhesive shall have no objectionable odor and shall not contain any benzene or carbon tetrachloride. The dried adhesive shall not emit nauseous, irritating, or toxic volatile matters or aerosols when the adhesive is heated to any temperature up to 212 degrees F. The adhesive shall be nonflammable and fire resistant. #### 2.1.3 Caulking ASTM C 920, Type S, Grade NS, Class 25, Use A. # 2.1.4 Corner Angles Nominal 0.016 inch aluminum 1 x 1 inch with factory applied kraft backing. Aluminum shall be ASTM B 209, Alloy 3003, 3105, or 5005. #### 2.1.5 Finishing Cement Mineral fiber hydraulic-setting thermal insulating cement ASTM C 449/C 449M. # 2.1.6 Fibrous Glass Cloth and Glass Tape Fibrous glass cloth and glass tape shall have flame spread and smoke developed ratings of no greater than 25/50 when measured in accordance with ASTM E 84. Fibrous glass cloth and tape shall be 20 x 20 maximum size mesh. Tape shall be 4 inch wide rolls. Class 3 tape shall be 4.5 ounces per square yard. #### 2.1.7 Staples Outward clinching type [monel] [ASTM A 167, Type 304 or 316 stainless steel]. # 2.1.8 Jackets ASTM C 921, Type I, maximum moisture vapor transmission 0.02 perms, minimum puncture resistance 50 Beach units on
all surfaces except concealed ductwork, where a minimum puncture resistance of 25 Beach units is acceptable. Minimum tensile strength, 35 pound/inch width. ASTM C 921, Type II, minimum puncture resistance 25 Beach units, tensile strength minimum 20 pound/inchwidth. Jackets used on insulation exposed in finished areas shall have white finish suitable for painting without sizing. #### 2.1.8.1 White Vapor Retarder ASJ (All Service Jacket) For use on hot/cold pipes, ducts, or equipment vapor retarder jackets used on insulation exposed in finished areas shall have white finish suitable for painting without sizing. This jacket shall be used on all piping not designated to have aluminum or PVC jackets. ## 2.1.8.2 Aluminum Jackets Aluminum jackets shall be corrugated, embossed or smooth sheet, 0.016 inch nominal thickness; ASTM B 209, Temper H14, Temper H16, Alloy 3003, 5005, or 3105 with factory applied moisture retarder. Corrugated aluminum jacket shall not be used outdoors. Aluminum jacket securing bands shall be Type 304 stainless steel, 0.015 inch thick, 1/2 inch wide for pipe under 12 inch diameter and 3/4 inch wide for pipe over 12 inch and larger diameter. Aluminum jacket circumferential seam bands shall be 2×0.016 inch aluminum matching jacket material. Bands for insulation below ground shall be $3/4~\mathrm{x}$ 0.020 inch) thick stainless steel, or fiberglass reinforced tape. jacket may, at the option of the Contractor, be provided with a factory fabricated Pittsburg or "Z" type longitudinal joint. When the "Z" joint is used, the bands at the circumferential joints shall be designed by the manufacturer to seal the joints and hold the jacket in place. #### 2.1.8.3 Polyvinyl Chloride (PVC) Jackets Polyvinyl chloride (PVC) jacket and fitting covers shall have high impact strength, UV resistant rating or treatment and moderate chemical resistance with minimum thickness 0.030 inch. Insulation under PVC jacket shall meet jacket manufacturer's written recommendations. #### 2.1.9 Vapor Retarder Coating The vapor retarder coating shall be fire and water resistant and appropriately selected for either outdoor or indoor service. Color shall be white. The water vapor permeance of the compound shall not exceed 0.05 perm and shall be determined according to procedure B of ASTM E 96 utilizing apparatus described in ASTM E 96. The coating shall be a nonflammable, fire resistant type. The flash point of the compound shall not be less than 80 degrees F and shall be determined in accordance with ASTM D 3278. All other application and service properties shall be in accordance with ASTM C 647. #### 2.1.10 Wire Soft annealed ASTM A 580/A 580M Type 302, 304 or 316 stainless steel, 16 or 18 gauge. #### 2.2 PIPE INSULATION MATERIALS Pipe insulation materials shall be as follows: ## 2.2.1 Aboveground Cold Pipeline Insulation for minus 30 degrees to plus 60 degrees F shall be as follows: #### 2.2.1.1 Outdoor, Indoor - Exposed or Concealed ### 2.2.1.1.1 Cellular Glass ASTM C 552, Type II, and Type III. 00029/11 REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 2.2.1.1.2 Flexible Cellular Insulation ASTM C 534, Type I or II. Type II shall have vapor retarder skin on both sides of the insulation. 2.2.1.1.3 Phenolic Insulation ASTM C 1126, Type III. A maximum allowable leachable chloride content shall comply with ASTM C 795 when tested in accordance with ASTM C 871. 2.2.1.1.4 Mineral Fiber ASTM C 547 2.2.2 Aboveground Hot Pipeline For aboveground hot pipeline above 60 degrees F insulation the following requirements shall be met. 2.2.2.1 Outdoor, indoor - Exposed or Concealed 2.2.2.1.1 Mineral Fiber ASTM C 547, Class 1 or Class 2 as required for the operating temperature range. 2.2.2.1.2 Calcium Silicate ASTM C 533, Type I indoor only, or outdoors above 250 degrees F pipe temperature. 2.2.2.1.3 Cellular Glass ASTM C 552, Type II and Type III. 2.2.2.1.4 Flexible Cellular Insulation ASTM C 534, Type I or II to 200 degrees F service. 2.2.2.1.5 Phenolic Insulation ASTM C 1126 Type III to 250 F service. A maximum allowable leachable chloride content shall comply with ASTM C 795 when tested in accordance with ASTM C 871. 2.2.2.1.6 Perlite Insulation ASTM C 610 2.2.3 Below Ground Pipeline Insulation ASTM C 552, Type II. 00029/11 REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 2.3 DUCT INSULATION MATERIALS Duct insulation materials shall be as follows: 2.3.1 Rigid Mineral Fiber ASTM C 612, Class 1. 2.3.2 Flexible Mineral Fiber ASTM C 553, Type I, Class B-2. 2.3.3 Cellular Glass ASTM C 552, Type I. 2.3.4 Phenolic Foam ASTM C 1126 Type II. A maximum allowable leachable chloride content shall comply with ASTM C 795 when tested in accordance with ASTM C 871. 2.3.5 Flexible Cellular ASTM C 534 Type II. 2.4 EQUIPMENT INSULATION MATERIALS Equipment insulation materials shall be as follows: 2.4.1 Cold Equipment Insulation For temperatures below 60 degrees F. 2.4.1.1 Cellular Glass ASTM C 552, Type I, Type III, or Type IV as required. 2.4.1.2 Flexible Cellular Insulation ASTM C 534, Type II. 2.4.1.3 Phenolic Foam ASTM C 1126 Type II. A maximum allowable leachable chloride content shall comply with ASTM C 795 when tested in accordance with ASTM C 871. 2.4.2 Hot Equipment Insulation For temperatures above 60 degrees F. 00029/11 REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 2.4.2.1 Rigid Mineral Fiber ASTM C 612, Type 2, 3, 4 or 5 as required for temperature encountered to 1800 degrees F. 2.4.2.2 Flexible Mineral Fiber ASTM C 553, Type 1, 2, 3, 4, 5, 6, or 7 as required for temperature encountered to 1200 degrees F. 2.4.2.3 Cellular Glass ASTM C 552, Type I, Type III, or Type IV as required. 2.4.2.4 Flexible Cellular Insulation ASTM C 534, Type II, to 200 degrees F. 2.4.2.5 Phenolic Foam ASTM C 1126 Type II to 250 degrees F. A maximum allowable leachable chloride content shall comply with ASTM C 795 when tested in accordance with ASTM C 871. 2.4.2.6 Molded Expanded Perlite ASTM C 610 PART 3 EXECUTION 3.1 APPLICATION - GENERAL # 3.1.1 Installation Except as otherwise specified, material shall be installed in accordance with the manufacturer's written instructions. Insulation materials shall not be applied until tests specified in other sections of this specification are completed. Material such as rust, scale, dirt and moisture shall be removed from surfaces to receive insulation. Insulation shall be kept clean and dry. Insulation shall not be removed from its shipping containers until the day it is ready to use and shall be returned to like containers or equally protected from dirt and moisture at the end of each workday. Insulation that becomes dirty shall be thoroughly cleaned prior to use. If insulation becomes wet or if cleaning does not restore the surfaces to like new condition, the insulation will be rejected, and shall be immediately removed from the jobsite. Joints shall be staggered on multi layer insulation. Mineral fiber thermal insulating cement shall be mixed with demineralized water when used on stainless steel surfaces. Insulation, jacketing and accessories shall be installed in accordance with MICA-01 standard plates except where modified herein or on the drawings. REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 ## 3.1.2 Painting and Finishing Painting shall be as specified in Section 09900 PAINTING, GENERAL. ## 3.1.3 Flexible Cellular Insulation Flexible cellular insulation shall be installed with seams and joints sealed with a contact adhesive. Flexible cellular insulation shall not be used on surfaces greater than 200 degrees F. Seams shall be staggered when applying multiple layers of insulation. Insulation exposed to weather and not shown to have jacketing shall be protected with two coats of UV resistant finish as recommended by the manufacturer after the adhesive is dry. # 3.1.4 Welding No welding shall be done on piping, duct or equipment without written approval of the Contracting Officer. The capacitor discharge welding process may be used for securing metal fasteners to duct. # 3.1.5 Pipes/Ducts/Equipment which Require Insulation Insulation is required, unless stated otherwise, on all pipes, ducts, or equipment, which operate at or below 60 F and at or above 80 F. This includes domestic hot and cold water lines. All refrigerant suction and liquid lines shall be provided with insulation. All lines located outside of the building shall be provided with aluminum weatherproof covering over insulation as specified herein. Fire protection lines shall be provided with insulation as specified under Section 3.2 below. Ductwork insulation shall be as specified the following paragraphs: Exterior duct insulation shall be provided on all supply ductwork and return air ductwork which is not indicated to be provided with interior duct insulation. Interior duct insulation shall be provided in all outside air intake ductwork from outside intake louver to HVAC unit; and in all exhaust ducts from the exhaust dampers to the outside air discharge louver. # 3.2 PIPE INSULATION INSTALLATION # 3.2.1 Pipe Insulation ## 3.2.1.1 General Pipe insulation shall be installed on aboveground hot and cold pipeline systems of all types, and the fire protection system foam mains and lines located in the main hanger portion as specified below to form a continuous thermal retarder, including straight runs, fittings and appurtenances unless specified otherwise. Installation shall be with full length units of insulation and using a single cut piece to complete a run. Cut pieces or scraps abutting each other shall not be used. Pipe insulation shall be omitted on the following: - a. Piping used for fire protection except as noted in these specifications or as noted on the plan. Foam mains and fire protection lines in Main Hanger, Room 101, and all spaces wherein the room temperatures are not planned to be
held above freezing are to be insulated. - b. Chromium plated pipe to plumbing fixtures. However, fixtures for use by the physically handicapped shall have the hot water supply and drain, including the trap, insulated where exposed. - c. Sanitary drain lines. - d. Unions in pipe above 60 degrees F. - e. Strainers in pipe above 60 degrees F. - f. Check valves in pipe above 60 degrees F. - q. Air chambers. - 3.2.1.2 Pipes Passing Through Sleeves - a. Pipe insulation shall be continuous through the sleeve. - b. An aluminum jacket with factory applied moisture retarder shall be provided over the insulation wherever penetrations require sealing. - c. Where penetrating interior walls, the aluminum jacket shall extend 2 inches beyond either side of the wall and shall be secured on each end with a band. - d. Where penetrating floors, the aluminum jacket shall extend from a point below the backup material to a point 10 inches above the floor with one band at the floor and one not more than 1 inch from the end of the aluminum jacket. - e. Where penetrating waterproofed floors, the aluminum jacket shall extend from below the backup material to a point 2 inchesabove the flashing with a band 1 inch from the end of the aluminum jacket. - f. Where penetrating exterior walls, the aluminum jacket required for pipe exposed to weather shall continue through the sleeve to a point 2 inches beyond the interior surface of the wall. - g. Where penetrating roofs, pipe shall be insulated as required for interior service to a point flush with the top of the flashing and sealed with vapor retarder coating. The insulation for exterior application shall but tightly to the top of flashing and interior insulation. An exterior aluminum jacket shall extend 2 inches down beyond the end of the insulation to form a counter flashing. The flashing and counter flashing shall be sealed underneath with caulking. # 3.2.1.3 Pipes Passing Through Hangers - a. Insulation, whether hot or cold application, shall be continuous through hangers. All horizontal pipes 2 inches and smaller shall be supported on hangers with the addition of a Type 40 protection shield to protect the insulation in accordance with MSS SP-69. Whenever insulation shows signs of being compressed, or when the insulation or jacket shows visible signs of distortion at or near the support shield, insulation inserts as specified below for piping larger than 2 inches shall be installed. - b. Horizontal pipes larger than 2 inches at 60 degrees F and above shall be supported on hangers in accordance with MSS SP-69, and Section 15400 PLUMBING, GENERAL PURPOSE. - c. Horizontal pipes larger than 2 inches and below 60 degrees F shall be supported on hangers with the addition of a Type 40 protection shield in accordance with MSS SP-69. An insulation insert of cellular glass or calcium silicate or perlite (above 80 degrees F) shall be installed above each shield. The insert shall cover not less than the bottom 180 degree arc of the pipe. Inserts shall be the same thickness as the insulation, and shall extend 2 inches on each end beyond the protection shield. When insulation inserts are required per the above, and the insulation thickness is less than 1 inch, wooden or cork dowels or blocks may be installed between the pipe and the shield to prevent the weight of the pipe from crushing the insulation, as an option to installing insulation inserts. The insulation jacket shall be continuous over the wooden dowel, wooden block, or insulation insert. - Vertical pipes shall be supported with either Type 8 or Type 42 riser clamps with the addition of two Type 40 protection shields in accordance with MSS SP-69 covering the 360 degree arc of the insulation. An insulation insert of cellular glass or calcium silicate shall be installed between each shield and the pipe. insert shall cover the 360 degree arc of the pipe. Inserts shall be the same thickness as the insulation, and shall extend 2 inches on each end beyond the protection shield. When insulation inserts are required per the above, and the insulation thickness is less than 1 inch, wooden or cork dowels or blocks may be installed between the pipe and the shield to prevent the hanger from crushing the insulation, as an option instead of installing insulation inserts. The insulation jacket shall be continuous over the wooden dowel, wooden block, or insulation insert. The vertical weight of the pipe shall be supported with hangers located in a horizontal section of the pipe. When the pipe riser is longer than 30 feet, the weight of the pipe shall be additionally supported with hangers in the vertical run of the pipe which are directly clamped to the pipe, penetrating the pipe insulation. These hangers shall be REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 > insulated and the insulation jacket sealed as indicated herein for anchors in a similar service. e. Inserts shall be covered with a jacket material of the same appearance and quality as the adjoining pipe insulation jacket, shall overlap the adjoining pipe jacket 1-1/2 inches, and shall be sealed as required for the pipe jacket. The jacket material used to cover inserts in flexible cellular insulation shall conform to ASTM C 921, Type 1, and is allowed to be of a different material than the adjoining insulation material. # 3.2.1.4 Flexible Cellular Pipe Insulation Flexible cellular pipe insulation shall be tubular form for pipe sizes 6 inches and less. Type II sheet insulation used on pipes larger than 6 inches shall not be stretched around the pipe. On pipes larger than 12 inches, adhere insulation directly to the pipe on the lower 1/3 of the pipe. Seams shall be staggered when applying multiple layers of insulation. Sweat fittings shall be insulated with miter-cut pieces the same size as on adjacent piping. Screwed fittings shall be insulated with sleeved fitting covers fabricated from miter-cut pieces and shall be overlapped and sealed to the adjacent pipe insulation. #### 3.2.1.5 Pipes in high abuse area. In high abuse areas such as janitor closets, traffic areas in equipment rooms, kitchens, and mechanical rooms, aluminum jackets over pipe covering shall be utilized. Mechanical Room 109 is not considered to be a high abuse area except for piping under 5 ft. above the floor. Pipe insulation in Room 109 shall be protected to the 5 ft level with aluminum jacket. # Aboveground Cold Pipelines The following shall be included for aboveground cold pipelines minus 30 degrees to plus 60 degrees F: - a. Domestic cold and chilled drinking water. - b. Make-up water. - c. Refrigerant suction lines. - d. Air conditioner condensate drains. - e. Exposed lavatory drains, exposed domestic water piping and drains to areas for handicap personnel. #### 3.2.2.1 Insulation Thickness Insulation thickness for cold pipelines shall be determined using Table I. Table I - Cold Piping Insulation Thickness Pipe Size (inches) 00029/11 REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 | Type of
Service | Material | Runouts
up to
2 in* | 1 in
&
less | 1.25 -
2 in | 2.5 -
4 in | 5 -
6 in | 8 in
&
larger | |--|----------------|---------------------------|-------------------|-------------------|-------------------|-------------------|---------------------| | Refrigerant
suction
piping | CG
FC
PF | | 1.5
1.0
1.0 | 1.5
1.0
1.0 | 1.5
1.0
1.0 | 1.5
1.0
1.0 | 1.5
1.0
1.0] | | Cold domestic
water, above
and below
ceilings | CG
FC
PF | 1.5
3/8
3/8 | 1.5
3/8
3/8 | 1.5
3/8
3/8 | 1.5
3/8
3/8 | 1.5
3/8
3/8 | 1.5
3/8
3/8 | | Exposed lavatory drains exposed domestic water piping & drains to areas for handicap personnel | | 0.5 | 0.5 | 0.5 | 0.5 | 3/4 1.5 | 3/4
1.5 | | Air
conditioning
condensate
drain located
inside building | FC
PF | | 3/8
3/8 | 0.5 | 0.5 | N/A
N/A | N/A
N/A | ^{*}When runouts to terminal units exceed 12 feet, the entire length of runout shall be insulated like main feed pipe. ## LEGEND: PF - Phenolic Foam CG - Cellular Glass CS - Calcium Silicate MF - Mineral Fiber FC - Flexible Cellular #### 3.2.2.2 Jacket for Fibrous, Cellular Glass, and Phenolic Foam Insulated Pipe Insulation shall be covered with a factory applied vapor retarder jacket or field applied seal welded PVC jacket. Insulation inside the building shown to be protected with an aluminum jacket shall have the insulation and vapor retarder jacket installed as specified herein. The aluminum jacket shall be installed as specified for piping exposed to weather, except sealing of the laps of the aluminum jacket is not required. In high abuse areas such as janitor closets and traffic areas in equipment rooms, kitchens, and mechanical rooms, aluminum jackets shall be utilized. Mechanical Room 109 is not considered to be a high abuse area. Pipe insulation to the 5 ft level will be protected. - Insulation for Straight Runs (Fibrous, Cellular Glass and Phenolic 3.2.2.3 Foam) - Insulation shall be applied to the pipe with joints tightly butted. The ends of fibrous insulation shall be sealed off with vapor retarder coating at intervals not to exceed 15 feet. - Longitudinal laps of the jacket material shall overlap not less than 1-1/2 inches. Butt strips 3 inches wide shall be provided for circumferential joints. - c. Laps and butt strips shall be secured with adhesive and stapled on 4 inch centers if not factory self-sealing. - Factory self-sealing lap systems may be used when the ambient temperature is between 40 degrees and 120 degrees F during installation. The lap system shall be installed in accordance with manufacturer's recommendations. Stapler shall be used only if specifically recommended by the manufacturer. Where gaps occur, the section shall be
replaced or the gap repaired by applying adhesive under the lap and then stapling. - e. All Staples, including those used to repair factory self-seal lap systems, shall be coated with a vapor retarder coating. All seams, except those on factory self-seal systems shall be coated with vapor retarder coating. - f. Breaks and punctures in the jacket material shall be patched by wrapping a strip of jacket material around the pipe and securing it with adhesive, stapling, and coating with vapor retarder coating. The patch shall extend not less than 1-1/2 inches past the break. - At penetrations such as thermometers, the voids in the insulation shall be filled and sealed with vapor retarder coating. #### 3.2.2.4 Insulation for Fittings and Accessories - a. Pipe insulation shall have ends thoroughly coated with a vapor retarder coating not less than 6 inches from each flange, union, valve, anchor, or fitting in all directions. - b. Precut, preformed insulation for placement over fittings, flanges, unions, valves, anchors, and mechanical couplings shall be used. Precut, preformed insulation shall exhibit the same properties as adjoining pipe insulation. Where precut/preformed is unavailable, rigid preformed pipe insulation sections may be segmented into the shape required. Insulation of the same thickness and conductivity as the adjoining pipe insulation shall be used. If nesting size insulation is used, the insulation shall be overlapped 2 inches or one pipe diameter. Loose fill mineral fiber or insulating cement shall be used to fill the voids. Elbows REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 > insulated using segments shall not have less than 3 segments per elbow. - c. Upon completion of installation of insulation on flanges, unions, valves, anchors, fittings and accessories, terminations insulation not protected by factory vapor retarder jackets or PVC fitting covers shall be protected with two coats of vapor retarder coating with a minimum total thickness of 1/16 inch, applied with glass tape embedded between coats. Tape seams shall overlap 1 inch. The coating shall extend out onto the adjoining pipe insulation 2 inches. - Anchors attached directly to the pipe shall be insulated for a sufficient distance to prevent condensation but not less than 6 inches from the insulation surface. - Flexible connections at pumps and other equipment shall be insulated with 0.59 inch flexible cellular insulation, unless otherwise indicated. - Insulation shall be marked showing the location of unions, strainers, and check valves. # 3.2.2.5 Optional PVC Fitting Covers At the option of the Contractor, premolded, one or two piece PVC fitting covers may be used in lieu of the vapor retarder and embedded glass tape. Factory premolded insulation segments shall be used under the fitting covers for elbows. Insulation segments shall be the same thickness as adjoining pipe insulation and the insulation shall be protected with one coat of vapor retarder coating under the PVC cover. The covers shall be secured by PVC vapor retarder tape, adhesive, seal-welding or with tacks made for securing Seams in the cover, and tacks and laps to adjoining pipe PVC covers. insulation jacket, shall be sealed with vapor retarder tape to ensure that the assembly has a continuous vapor seal. #### 3.2.3 Aboveground Hot Pipelines For hot pipelines above 60 degrees F the following shall be included: - a. Domestic hot water. - b. Hot water heating. # 3.2.3.1 Insulation Thickness Insulation thickness for hot pipelines shall be determined using Table II. ## LEGEND: PF - Phenolic Foam CG - Cellular Glass CS - Calcium Silicate MF - Mineral Fiber FC - Flexible Cellular Table II - Hot Piping Insulation Thickness Pipe Size (inches) | Type of
Service
(degrees F) | Material | Runouts
up to
2 in | 1 in
&
less | 1.25 -
2
in | 2.5 -
4
in | 5 -
6
in | 8 in
&
larger | |---|--|--|---|---|---|---|---| | Hot domestic water supply & recirculating system (200 F max) | CG
FC
PF
MF | 1.5
0.5
0.5
0.5 | 1.5
1.0
1.0 | 1.5
1.0
1.0 | 1.5
1.5
1.0
1.5 | 1.5
1.5
1.0
1.5 | 1.5
1.5
1.0
1.5 | | Compressed Air discharge steam & condensate return (201-250 F) | CG
PF
MF
CS | | 1.5
1.0
1.5
1.5 | 2.0
1.0
1.5
2.0 | 2.0
1.0
2.0
2.5 | 2.0
1.0
2.0
2.5 | 2.5
1.5
2.5
2.5 | | Heating hot water, supply & return (250 F max) Steam (251 - 350 F) | CG
PF
MF
CS
CG
MF
CS | 1.5
0.5
0.5
1.0
1.5
1.5 | 1.5
1.0
1.5
1.5
2.5
2.0
2.5 | 2.0
1.0
1.5
2.0
3.0
2.5
2.5 | 2.0
1.0
2.0
2.5
3.5
2.5
3.5 | 2.0
1.0
2.5
2.5
3.5
3.0
3.5 | 2.5
1.5
3.0
2.5]
4.0
3.5
4.5] | | Steam
(351 - 500 F) | CG
MF
CS | 2.0
1.5
2.0 | 3.5
3.0
3.5 | 4.0
3.5
4.0 | 4.5
4.0
4.5 | 5.0
4.0
5.0 | 5.5
4.5
5.5] | ^{*}When runouts to terminal units exceed 12 feet, the entire length of runout shall be insulated like the main feed pipe. # 3.2.3.2 Jacket for Insulated Pipe Insulation shall be covered, in accordance with manufacturer's recommendations, with a factory applied Type II jacket or field applied aluminum where required or seal welded PVC. # 3.2.3.3 Insulation for Straight Runs - a. Insulation shall be applied to the pipe with joints tightly butted. - b. Longitudinal laps of the jacket material shall overlap not less than 1-1/2 inches, and butt strips 3 incheswide shall be provided for circumferential joints. - c. Laps and butt strips shall be secured with adhesive and stapled on 4 inch centers if not factory self-sealing. Adhesive may be omitted where pipe is concealed. - Factory self-sealing lap systems may be used when the ambient temperature is between 40 degrees and 120 degrees F and shall be installed in accordance with manufacturer's instructions. Laps and butt strips shall be stapled whenever there is nonadhesion of the system. Where gaps occur, the section shall be replaced or the gap repaired by applying adhesive under the lap and then stapling. - Breaks and punctures in the jacket material shall be patched by wrapping a strip of jacket material around the pipe and be secured with adhesive and stapled on 4 inch centers if not factory selfsealing. Adhesive may be omitted where pipe is concealed. Patch shall extend not less than 1-1/2 inches past the break. - Flexible cellular pipe insulation shall be installed by slitting tubular sections and applying onto piping or tubing. Alternately, whenever possible, slide unslit sections over the open ends of piping or tubing. All seams and butt joints shall be secured and sealed with adhesive. When using self seal products only the butt joints shall be secured with adhesive. Insulation shall be pushed on the pipe, never pulled. Stretching of insulation may result in open seams and joints. All edges shall be clean cut. Rough or jagged edges of the insulation shall not be permitted. Proper tools such as sharp knives shall be used. Type II sheet insulation when used on pipe larger than 6 inches shall not be stretched around the pipe. On pipes larger than 12 inches, adhere sheet insulation directly to the pipe on the lower 1/3 of the pipe. #### Insulation for Fittings and Accessories 3.2.3.4 - The run of the line pipe insulation shall have the ends brought up to the item. - b. Insulation of the same thickness and conductivity as the adjoining pipe insulation, either premolded or segmented, shall be placed around the item abutting the adjoining pipe insulation, or if nesting size insulation is used, overlapping 2 inches or one pipe diameter. Loose fill mineral fiber or insulating cement shall be used to fill the voids. Insulation for elbows less than 3 inch size shall be premolded. Insulation for elbows 3 inch size and larger shall be either premolded or segmented. Elbows insulated using segments shall have not less than 3 segments per elbow. Insulation may be wired or taped on until finish is applied. - Upon completion of installation of insulation on flanges, unions, valves, anchors, fittings and accessories, terminations and insulation not protected by factory vapor retarder jackets or PVC fitting covers shall be protected with two coats of Class 1 adhesive applied with glass tape embedded between coats. Tape REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 > seams shall overlap 1 inch. Adhesive shall extend onto the adjoining insulation not less than 2 inches. The total dry film thickness shall be not less than 1/16 inch. - Insulation terminations shall be tapered to unions at a 45-degree angle. - e. At the option of the Contractor, factory premolded one- or twopiece PVC fitting covers may be used in lieu of the adhesive and embedded glass tape. Factory premolded segments or factory or field cut blanket insert insulation segments shall be used under the cover and shall be the same thickness as adjoining pipe insulation. The covers shall be secured by PVC vapor retarder tape, adhesive, seal-welding or with tacks made for securing PVC covers. #### Piping Exposed to Weather 3.2.4 Piping exposed to weather shall be insulated and jacketed as specified for the applicable service inside the building. After this procedure, an aluminum jacket shall be applied. PVC jacketing requires no factory applied jacket beneath it. Flexible cellular insulation exposed to weather shall be treated in accordance with paragraph PIPE INSULATION MATERIALS. #### 3.2.4.1 Aluminum
Jacket The jacket for hot piping may be factory applied. The jacket shall overlap not less than 2 inches at longitudinal and circumferential joints and shall be secured with bands at not more than 12 inch centers. Longitudinal joints shall be overlapped down to shed water and located at 4 or 8 o'clock positions. Joints on piping 60 degrees F and below shall be sealed with caulking while overlapping to prevent moisture penetration. Where jacketing on piping 60 degrees F and below abuts an uninsulated surface, joints shall be caulked to prevent moisture penetration. Joints on piping above 60 degrees F shall be sealed with a moisture retarder. #### 3.2.4.2 Insulation for Fittings Flanges, unions, valves, fittings, and accessories shall be insulated and finished as specified for the applicable service. Two coats of an emulsion type weatherproof mastic recommended by the insulation manufacturer shall be applied with glass tape embedded between coats. Tape overlaps shall be not less than 1 inch and the adjoining aluminum jacket not less than 2 inches. Factory preformed aluminum jackets may be used in lieu of the above. Molded PVC fitting covers shall be used with PVC lagging and adhesive welded moisture tight. # 3.2.4.3 PVC Lagging PVC lagging shall be ultraviolet resistant and adhesive welded vapor tight with manufacturer's recommended adhesive. Installation shall include provision for thermal expansion. #### 3.2.5 Below ground Pipe Insulation The underground hot water heating lines to the Snow Melting System for the Hanger Doors shall be insulated and encased in an insulated factory made underground piping conduit. #### DUCT INSULATION INSTALLATION 3.3 Except for oven hood exhaust duct insulation, corner angles shall be installed on external corners of insulation on ductwork in exposed finished spaces before covering with jacket. Duct insulation shall be omitted on exposed supply and return ducts in air conditioned spaces unless otherwise Air conditioned spaces shall be defined as those spaces directly supplied with cooled conditioned air or provided with a remote cooling device such as a fan-coil unit. ## 3.3.1 Duct Insulation Thickness Duct insulation thickness shall be in accordance with Table III. Table III - Minimum Duct Insulation (inches) | Cold Air Ducts | 2.0 | |------------------------|-----| | Fresh Air Intake Ducts | 1.5 | | | | | Warm Air Ducts | 2.0 | | Fresh Air Intake Ducts | 1.5 | # 3.3.2 Insulation and Vapor Retarder for Cold Air Duct Insulation and vapor retarder for cold air duct below 60 degrees F: Ducts and associated equipment shall be insulated to a thickness which is in accordance with Table III. The following shall be insulated: - a. Supply ducts. - b. Return air ducts. - c. Plenums. - d. Coil headers and return bends. - e. Coil casings. - i. Fresh air intake ducts. Insulation for rectangular ducts shall be flexible type where concealed, minimum density 3/4 pcf and rigid type where exposed, minimum density 3 pcf. Insulation for round/oval ducts shall be flexible type, minimum density 3/4 pcf with a factory Type I jacket; or, a semi rigid board, minimum density 3 pcf, formed or fabricated to a tight fit, edges beveled and joints tightly butted and staggered, with a factory applied Type I all service jacket. Insulation for exposed ducts shall be provided with either a white, paintable, factory-applied Type I jacket or a vapor retarder jacket coating finish as specified. Fibrous and cellular glass insulation on concealed duct shall be provided with a factory-applied Type I vapor retarder jacket. The total dry film thickness shall be approximately 1/16 inch. Duct insulation shall be continuous through sleeves and prepared openings except fire wall penetrations. Duct insulation terminating at fire dampers, shall be continuous over the damper collar and retaining angle of fire dampers, which are exposed to unconditioned air and which may be prone to condensate formation. Duct insulation and vapor retarder shall cover the collar, neck, and any uninsulated surfaces of diffusers, registers and grills. retarder materials shall be applied to form a complete unbroken vapor seal over the insulation. # 3.3.2.1 Installation on Concealed Duct - a. For rectangular, oval or round ducts, insulation shall be attached by applying Class 2 adhesive around the entire perimeter of the duct in 6 inch wide strips on 12 inch centers. - For rectangular and oval ducts, 24 inches and larger insulation shall be additionally secured to bottom of ducts by the use of mechanical fasteners. Fasteners shall be spaced on 18 inch centers and not more than 18 inches from duct corners. - c. For rectangular, oval and round ducts, mechanical fasteners shall be provided on sides of duct risers for all duct sizes. Fasteners shall be spaced on 18 inch centers and not more than 18 inches from duct corners. - d. Insulation shall be impaled on the mechanical fasteners where used and shall be pressed thoroughly into the adhesive. Care shall be taken to ensure vapor retarder jacket joints overlap 2 inches. insulation shall not be compressed to a thickness less than that specified. Insulation shall be carried over standing seams and trapeze-type duct hangers. - e. Self-locking washers shall be installed where mechanical fasteners are used. The pin shall be trimmed back and bent over. - Jacket overlaps shall be secured under the overlap with Class 2 adhesive and stapled on 4 inch centers. Staples and seams shall be coated with a brush coat of vapor retarder coating. - g. Breaks in the jacket material shall be covered with patches of the same material as the vapor retarder. The patches shall extend not less than 2 inches beyond the break or penetration in all directions and shall be secured with Class 2 adhesive and staples. Staples and joints shall be sealed with a brush coat of vapor retarder coating. - At jacket penetrations such as hangers, thermometers, and damper operating rods, voids in the insulation shall be filled and the penetration sealed with a brush coat of vapor retarder coating. - Insulation terminations and pin punctures shall be sealed and flashed with a reinforced vapor retarder coating finish. coating shall overlap the adjoining insulation and uninsulated surface 2 inches. Pin puncture coatings shall extend 2 inches from the puncture in all directions. - Where insulation standoff brackets occur, insulation shall be extended under the bracket and the jacket terminated at the bracket. #### 3.3.2.2 Installation on Exposed Duct Work - a. For rectangular ducts, rigid insulation shall be secured to the duct by mechanical fasteners on all four sides of the duct, spaced not more than 12 inches apart and not more than 3 inches from the edges of the insulation joints. A minimum of two rows of fasteners shall be provided for each side of duct 12 inches and larger. One row shall be provided for each side of duct less than 12 inches. - b. Duct insulation shall be formed with minimum jacket seams. Each piece of rigid insulation shall be fastened to the duct using mechanical fasteners. When the height of projections is less than the insulation thickness, insulation shall be brought up to standing seams, reinforcing, and other vertical projections and shall not be carried over. Vapor retarder jacket shall be continuous across seams, reinforcing, and projections. When height of projections is greater than the insulation thickness, insulation and jacket shall be carried over. - c. Insulation shall be impaled on the fasteners; self-locking washers shall be installed and the pin trimmed and bent over. - d. Joints in the insulation jacket shall be sealed with a 4 inchwide strip of the same material as the vapor retarder jacket. The strip shall be secured with Class 2 adhesive and stapled. Staples and seams shall be sealed with a brush coat of vapor retarder coating. - Breaks and ribs or standing seam penetrations in the jacket e. material shall be covered with a patch of the same material as the jacket. Patches shall extend not less than 2 inches beyond the break or penetration and shall be secured with Class 2 adhesive and stapled. Staples and joints shall be sealed with a brush coat of vapor retarder coating. - f. At jacket penetrations such as hangers, thermometers, and damper operating rods, the voids in the insulation shall be filled and the penetrations sealed with a brush coat of vapor retarder coating. - Insulation terminations and pin punctures shall be sealed and flashed with a reinforced vapor retarder coating finish. coating shall overlap the adjoining insulation and uninsulated surface 2 inches. Pin puncture coatings shall extend 2 inches from the puncture in all directions. - Oval and round ducts, flexible type, shall be insulated with factory Type I jacket insulation with minimum density of 3/4 pcf, attached by applying Class 2 adhesive around the entire perimeter of the duct in 6 inch wide stripe on 12 inch centers. #### 3.3.3 Insulation for Warm Air Duct For warm air ducts above 60 degrees F, ducts and associated equipment shall be insulated to a thickness which is in accordance with Table III. following shall be insulated: - a. Supply ducts. - b. Return air ducts. - c. Plenums. - d. Coil-headers and return bends. - e. Coil casings. - f. Fresh air intake ducts. Insulation for rectangular ducts shall be flexible type where concealed, minimum density 3/4 pcf; and rigid type where exposed and/or used an internal duct lining, minimum density 3 pcf. Insulation on exposed ducts shall be provided with a white, paintable, factory-applied Type II jacket, or finished with Class 1 adhesive finish. Flexible type insulation shall be used for round ducts, minimum density 3/4 pcf with a factory-applied Type II jacket. Insulation on concealed duct shall be provided with a factoryapplied Type II jacket. Class 1 adhesive finish where indicated to be used shall be accomplished by applying two coats of Class 1 adhesive with a layer of glass
cloth embedded between the coats. The total dry film thickness shall be approximately 1/16 inch. Duct insulation shall be continuous through sleeves and prepared openings. Duct insulation shall terminate at fire dampers and flexible connections. All fresh air intake ducts shall be insulated with internal duct insulation as specified herein before and as indicated on the plans. Internal duct insulation shall be rigid type not less than 1" thick and shall have a density of not less than 3 pcf; and conforming to Fed. Spec. HH-I-545. Increase duct sizes indicated on the plans to compensate for thickness of lining. Internal duct insulation acoustical properties: The material shall be tested by an independent testing laboratory to determine the sound absorption coefficient in accordance with ASTM C423-77 using mounting F025. The sound aborption coefficients shall meet or exceed the following values: # Octave Band Center Frequency (Hz) | Thickness | <u>125</u> | <u>250</u> | <u>500</u> | 1000 | 2000 | 4000 | |-----------|------------|------------|------------|------|------|------| | 1" | .13 | .45 | .45 | .65 | .74 | .90 | | 2" | .25 | .73 | .94 | .95 | .95 | .95 | ## 3.3.3.1 Installation on Concealed Duct - a. For rectangular, oval and round ducts, insulation shall be attached by applying Class 2 adhesive around the entire perimeter of the duct in 6 inch wide strips on 12 inch centers. - b. For rectangular and oval ducts 24 inches and larger, insulation shall be secured to the bottom of ducts by the use of mechanical fasteners. Fasteners shall be spaced on 18 inch centers and not more than 18 inches from duct corner. - c. For rectangular, oval and round ducts, mechanical fasteners shall be provided on sides of duct risers for all duct sizes. Fasteners shall be spaced on 18 inch centers and not more than 18 inches from duct corners. - d. The insulation shall be impaled on the mechanical fasteners where used and shall be pressed thoroughly into the adhesive. The insulation shall not be compressed to a thickness less than that specified. Insulation shall be carried over standing seams and trapeze-type hangers. - e. Self-locking washers shall be installed where mechanical fasteners are used and the pin trimmed and bent over. - f. Insulation jacket shall overlap not less than 2 inches at joints and the lap shall be secured with Class 2 adhesive under the lap and stapled on 4 inch centers. # 3.3.3.2 Installation on Exposed Duct - a. For rectangular ducts, the rigid insulation shall be secured to the duct by the use of mechanical fasteners on all four sides of the duct, spaced not more than 12 inches apart and not more than 3 inches from the edges of the insulation joints. A minimum of two rows of fasteners shall be provided for each side of duct 12 inches and larger and a minimum of one row for each side of duct less than 12 inches. - b. Duct insulation with factory-applied jacket shall be formed with minimum jacket seams, and each piece of rigid insulation shall be fastened to the duct using mechanical fasteners. When the height of projection is less than the insulation thickness, insulation shall be brought up to standing seams, reinforcing, and other vertical projections and shall not be carried over the projection. Jacket shall be continuous across seams, reinforcing, projections. Where the height of projections is greater than the insulation thickness, insulation and jacket shall be carried over the projection. - c. Insulation shall be impaled on the fasteners; self-locking washers shall be installed and pin excess clipped and bent over. - d. Joints on jacketed insulation shall be sealed with a 4 inch wide strip of the same material as the jacket. The strip shall be secured with Class 2 adhesive and stapled. - Breaks and penetrations in the jacket material shall be covered with a patch of the same material as the jacket. Patches shall extend not less than 2 inches beyond the break or penetration and shall be secured with Class 2 adhesive and stapled. - Insulation terminations and pin punctures shall be sealed and flashed with a Class 1 adhesive. Two coats of Class 1 adhesive coating shall be applied with glass cloth embedded between coats. The total coating shall have a dry film thickness of approximately 1/16 inch and shall overlap the adjoining insulation and uninsulated surface 2 inches. - Oval and round ducts, flexible type, shall be insulated with factory Type I jacket insulation, minimum density of 3/4 pcf attached by applying Class 2 adhesive around the entire perimeter of the duct in 6 inch wide stripe on 12 inch center. Joints shall be sealed with a 4 inch wide strip of the same material as the The strip shall be secured with Class 2 adhesive and jacket. stapled. #### 3.3.4 Ducts Handling Air for Dual Purpose For air handling ducts for dual purpose below and above 60 degrees F, ducts shall be insulated as specified for cold air duct. #### Insulation for Interior Lined Duct 3.3.5 Material and installation requirements shall be as specified herein above. #### 3.3.6 Duct Test Holes After duct systems have been tested, adjusted, and balanced, breaks in the insulation and jacket shall be repaired in accordance with the applicable section of this specification for the type of duct insulation to be repaired. REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 #### 3.4 EOUIPMENT INSULATION INSTALLATION ### 3.4.1 General Removable insulation sections shall be provided to cover parts of equipment which must be opened periodically for maintenance including vessel covers, fasteners, flanges and accessories. Equipment insulation shall be omitted on the following: - a. Handholes. - b. Boiler manholes. - c. Cleanouts. - d. ASME stamps. - e. Manufacturer's nameplates. # 3.4.2 Insulation for Cold Equipment Cold equipment below 60 degrees F: Insulation shall be furnished on equipment handling media below 60 degrees F including the following: - a. Refrigeration equipment parts that are not factory insulated. - b. Air handling equipment parts that are not factory insulated. # 3.4.2.1 Insulation Type Insulation shall be suitable for the temperature encountered. Thicknesses shall be as follows: - a. Equipment handling media between 35 and 60 degrees F: 2 inch thick cellular glass, 1-1/2 inch thick flexible cellular, or 1 inch thick phenolic foam. - b. Equipment handling media between 0 degree F and 34 degrees F: 3-1/2 inch thick cellular glass, 2-1/2 inch flexible cellular, or 1-1/2 inch thick phenolic foam. - c. Equipment handling media between minus 30 degrees F and 1 degree F: 4 inch thick cellular glass 3 inch thick flexible cellular, or 1-1/2 inch thick phenolic foam. # 3.4.2.2 Pump Insulation a. Pumps shall be insulated by forming a box around the pump housing. The box shall be constructed by forming the bottom and sides using joints which do not leave raw ends of insulation exposed. Joints between sides and between sides and bottom shall be joined by adhesive with lap strips for rigid mineral fiber and contact adhesive for flexible cellular insulation. The box shall conform to the requirements of MICA-01 plate No. 49 when using flexible cellular insulation. Joints between top cover and sides shall fit tightly forming a female shiplap joint on the side pieces and a male joint on the top cover, thus making the top cover removable. - b. Exposed insulation corners shall be protected with corner angles. - Upon completion of installation of the insulation, including removable sections, two coats of vapor retarder coating shall be applied with a layer of glass cloth embedded between the coats. The total dry thickness of the finish shall be 1/16 inch. parting line shall be provided between the box and the removable sections allowing the removable sections to be removed without disturbing the insulation coating. Caulking shall be applied to parting line, between equipment and removable section insulation, and at all penetrations. ## 3.4.2.3 Other Equipment - a. Insulation shall be formed or fabricated to fit the equipment. To ensure a tight fit on round equipment, edges shall be beveled and joints shall be tightly butted and staggered. - Insulation shall be secured in place with bands or wires at intervals as recommended by the manufacturer but not more than 12 inch centers except flexible cellular which shall be adhered. Insulation corners shall be protected under wires and bands with suitable corner angles. - c. Cellular glass and phenolic foam insulation shall be set in a coating of bedding compound, and joints shall be sealed with bedding compound as recommended by the manufacturer. Mineral fiber insulation joints shall be filled with finishing cement. - d. Insulation on heads of heat exchangers shall be removable. Removable section joints shall be fabricated using a male-female shiplap type joint. The entire surface of the removable section shall be finished by applying two coats of vapor retarder coating with a layer of glass cloth embedded between the coats. The total dry thickness of the finish shall be 1/16 inch. - e. Exposed insulation corners shall be protected with corner angles. - Insulation on equipment with ribs shall be applied over 6 x 6 inches by 12 gauge welded wire fabric which has been cinched in place, or if approved by the Contracting Officer, spot welded to the equipment over the ribs. Insulation shall be secured to the fabric with J-hooks and 2 x 2 incheswashers or shall be securely banded or wired in place on 12 inch centers. ## 3.4.2.4 Vapor Retarder Upon completion of installation of insulation, penetrations shall be caulked. Two coats of vapor retarder coating shall be applied over insulation, including removable sections, with a layer of glass cloth embedded between the coats. The total dry thickness of the finish shall be 1/16 inch. Caulking shall be applied to parting line between equipment and removable section insulation. # 3.4.3 Insulation for Hot Equipment
Insulation shall be furnished on equipment handling media above 60 degrees F including the following: - a. Air Eliminators - b. Pumps handling media above 100 degrees F. #### 3.4.3.1 Insulation Insulation shall be suitable for the temperature encountered. Shell and tube-type heat exchangers shall be insulated for the temperature of the shell medium. Insulation thicknesses shall be as follows: a. Equipment handling media to 250 degrees F: 2 inch thick rigid mineral fiber, 2 inch thick flexible mineral fiber, 2 inch thick calcium silicate, 1.5 inch cellular glass, 1.5 inch thick phenolic foam; to 200 degrees F 1.0 inch Flexible Cellular. # 3.4.3.2 Insulation of Pumps Pumps shall be insulated by forming a box around the pump housing. The box shall be constructed by forming the bottom and sides using joints which do not leave raw ends of insulation exposed. Bottom and sides shall be banded to form a rigid housing which does not rest on the pump. Joints between top cover and sides shall fit tightly. The top cover shall have a joint forming a female shiplap joint on the side pieces and a male joint on the top cover, making the top cover removable. Two coats of Class I adhesive shall be applied over insulation, including removable sections, with a layer of glass cloth embedded between the coats. A parting line shall be provided between the box and the removable sections allowing the removable sections to be removed without disturbing the insulation coating. The total dry thickness of the finish shall be 1/16 inch. Caulking shall be applied to parting line of the removable sections and penetrations. # 3.4.3.3 Other Equipment a. Insulation shall be formed or fabricated to fit the equipment. To ensure a tight fit on round equipment, edges shall be beveled and joints shall be tightly butted and staggered. - Insulation shall be secured in place with bands or wires at intervals as recommended by the manufacturer but not greater than 12 inch centers except flexible cellular which shall be adhered. Insulation corners shall be protected under wires and bands with suitable corner angles. - c. On high vibration equipment, cellular glass insulation shall be set in a coating of bedding compound as recommended by the manufacturer, and joints shall be sealed with bedding compound. Mineral fiber joints shall be filled with finishing cement. - Insulation on heads of heat exchangers shall be removable. removable section joint shall be fabricated using a male-female shiplap type joint. Entire surface of the removable section shall be finished as specified. - e. Exposed insulation corners shall be protected with corner angles. - f. On equipment with ribs, such as boiler flue gas connection, draft fans, and fly ash or soot collectors, insulation shall be applied over 6 x 6 inch by 12 gauge welded wire fabric which has been cinched in place, or if approved by the Contracting Officer, spot welded to the equipment over the ribs. Insulation shall be secured to the fabric with J-hooks and 2×2 inch washers or shall be securely banded or wired in place on 12 inch (maximum) centers. - g. On equipment handling media above 600 degrees F, insulation shall be applied in two or more layers with joints staggered. - Upon completion of installation of insulation, penetrations shall be caulked. Two coats of Class I adhesive shall be applied over insulation, including removable sections, with a layer of glass cloth embedded between the coats. The total dry thickness of the finish shall be 1/16 inch. Caulking shall be applied to parting line between equipment and removable section insulation. END OF SECTION SECTION 15400 ## PLUMBING, GENERAL PURPOSE # PART 1 GENERAL # 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. # AIR CONDITIONING AND REFRIGERATION INSTITUTE (ARI) | ARI 700 | (1995) | Specifications | for | Fluorocarbon | and | |---------|---------|----------------|-----|--------------|-----| | | Other R | efrigerants | | | | ARI 1010 (1994) Self-Contained, Mechanically-Refrigerated Drinking-Water Coolers ## AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI) | ANSI Z21.10.1 | (1993; Z21.10.1a; Z21.10.1b; Z21.10.1c) Gas
Water Heaters Vol. I Storage Water Heaters
with Input Ratings of 75,000 Btu Per Hour or | |---------------|---| | ANSI Z21.10.3 | Less (1993; Z21.10.3a; Z21.10.3b) Gas Water | | | Heaters Vol. III Storage, With Input Ratings
Above 75,000 Btu Per Hour, Circulating and
Instantaneous Water Heaters | ANSI Z21.22 (1986; Z21.22a) Relief Valves and Automatic Gas Shutoff Devices for Hot Water Supply Systems # AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | ASTM A 47 | (1990;
Casting | | 1995) | Ferritic | Malleable | Iron | |------------|-------------------|-----|--------|-----------|------------|-------| | ASTM A 47M | (1990;
Casting | | 1996) | Ferritic | Malleable | Iron | | ASTM A 53 | (1997) | Pip | e, Ste | el, Black | and Hot-Di | pped, | ASTM A 53 (1997) Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless ASTM A 74 (1996) Cast Iron Soil Pipe and Fittings ASTM A 105/A 105M (1996) Carbon Steel Forgings for Piping Applications DACA67-00-R-0222 SECTION 15400 - Page 1 of 43 | ASTM A 183 | (1983; R 1990) Carbon Steel Track Bolts and Nuts | |-------------------|---| | ASTM A 193/A 193M | (1997a) Alloy-Steel and Stainless Steel
Bolting Materials for High-Temperature
Service | | ASTM A 515/A 515M | (1992) Pressure Vessel Plates, Carbon Steel, for Intermediate- and Higher-Temperature Service | | ASTM A 516/A 516M | (1990; R 1996) Pressure Vessel Plates, Carbon
Steel, for Moderate- and Lower-Temperature
Service | | ASTM A 518 | (1992; R 1997) Corrosion-Resistant High-
Silicon Iron Castings | | ASTM A 518M | (1992; R 1997) Corrosion-Resistant High-
Silicon Iron Castings (Metric) | | ASTM A 536 | (1984; R 1993) Ductile Iron Castings | | ASTM A 733 | (1993) Welded and Seamless Carbon Steel and
Austenitic Stainless Steel Pipe Nipples | | ASTM A 888 | (1996) Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications | | ASTM B 32 | (1996) Solder Metal | | ASTM B 42 | (1996) Seamless Copper Pipe, Standard Sizes | | ASTM B 43 | (1996) Seamless Red Brass Pipe, Standard
Sizes | | ASTM B 75 | (1995a) Seamless Copper Tube | | ASTM B 88 | (1996) Seamless Copper Water Tube | | ASTM B 88M | (1996) Seamless Copper Water Tube (Metric) | | ASTM B 111 | (1995) Copper and Copper-Alloy Seamless
Condenser Tubes and Ferrule Stock | | ASTM B 117 | (1997) Operating Salt Spray (FOG) Apparatus | | | (1997) Operating Sait Spray (100) Apparatus | | ASTM B 152M | (1994) Copper Sheet, Strip, Plate, and Rolled Bar (Metric) | |-------------|---| | ASTM B 306 | (1996) Copper Drainage Tube (DWV) | | ASTM B 370 | (1992) Copper Sheet and Strip for Building Construction | | ASTM B 584 | (1996) Copper Alloy Sand Castings for General Applications | | ASTM B 641 | (1993) Seamless and Welded Copper
Distribution Tube (Type D) | | ASTM B 813 | (1993) Liquid and Paste Fluxes for Soldering Applications of Copper and Copper Alloy Tube | | ASTM B 828 | (1992) Making Capillary Joints by Soldering of Copper and Copper Alloy Tube and Fittings | | ASTM C 564 | (1995a) Rubber Gaskets for Cast Iron Soil
Pipe and Fittings | | ASTM C 920 | (1995) Elastomeric Joint Sealants | | ASTM C 1053 | (1990; R 1995) Borosilicate Glass Pipe and Fittings for Drain, Waste, and Vent (DWV) Applications | | ASTM D 638 | (1996) Tensile Properties of Plastics | | ASTM D 638M | (1996) Tensile Properties of Plastics (Metric) | | ASTM D 1004 | (1994a) Initial Tear Resistance of Plastic
Film and Sheeting | | ASTM D 1248 | (1984; R 1989) Polyethylene Plastics Molding and Extrusion Materials | | ASTM D 1785 | (1996a) Poly(Vinyl Chloride) (PVC) Plastic Pipe, Schedules 40, 80, and 120 | | ASTM D 2000 | (1996) Rubber Products in Automotive
Applications | | ASTM D 2235 | (1996a) Solvent Cement for Acrylonitrile-
Butadiene-Styrene (ABS) Plastic Pipe and
Fittings | | ASTM D 2239 | (1996a) Polyethylene (PE) Plastic Pipe (SIDR-PR) Based on Controlled Inside Diameter | # REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 | ASTM D 2241 | (1996a) Poly(Vinyl Chloride) (PVC) Pressure-
Rated Pipe (SDR Series) | |-------------|---| | ASTM D 2447 | (1995) Polyethylene (PE) Plastic Pipe,
Schedules 40 and 80, Based on Outside
Diameter | | ASTM D 2464 | (1996a) Threaded Poly(Vinyl Chloride) (PVC)
Plastic Pipe Fittings, Schedule 80 | | ASTM D 2466 | (1996a) Poly(Vinyl Chloride) (PVC) Plastic
Pipe Fittings, Schedule 40 | | ASTM D 2467 | (1996a) Poly(Vinyl Chloride) (PVC) Plastic
Pipe Fittings, Schedule 80 | | ASTM D 2485 | (1991; R 1996) Evaluating Coatings for High
Temperature Service | | ASTM D 2564 | (1996a) Solvent Cements for Poly(Vinyl
Chloride) (PVC) Plastic Piping Systems | | ASTM D 2657 | (1996) Heat Fusing Joining Polyolefin Pipe
and Fittings | | ASTM D 2661 | (1996) Acrylonitrile-Butadiene-Styrene (ABS)
Schedule 40 Plastic Drain, Waste, and Vent
Pipe and Fittings | | ASTM D 2665 | (1996) Poly(Vinyl Chloride) (PVC) Plastic
Drain, Waste, and Vent Pipe and Fittings | | ASTM D 2672 | (1996a) Joints for IPS PVC Pipe Using Solvent
Cement | | ASTM D 2683 | (1995) Socket-Type Polyethylene Fittings for
Outside Diameter-Controlled Polyethylene Pipe
and Tubing | |
ASTM D 2737 | (1996a) Polyethylene (PE) Plastic Tubing | | ASTM D 2822 | (1991; R 1997) Asphalt Roof Cement | | ASTM D 2846 | (1996) Chlorinated Poly(Vinyl Chloride)
(CPVC) Plastic Hot- and Cold-Water
Distribution Systems | | ASTM D 2855 | (1996) Making Solvent-Cemented Joints with Poly(Vinyl Chloride) (PVC) Pipe and Fittings | | ASTM D 2996 | (1995) Filament-Wound "Fiberglass" (Glass-Fiber-Reinforced Thermosetting-Resin) Pipe | | ASTM D 3035 | (1995) Polyethylene (PE) Plastic Pipe (DR-PR)
Based on Controlled Outside Diameter | |-------------|---| | ASTM D 3122 | (1995) Solvent Cements for Styrene-Rubber (SR) Plastic Pipe and Fittings | | ASTM D 3138 | (1995) Solvent Cements for Transition Joints
Between Acrylonitrile-Butadiene-Styrene (ABS)
and Poly(Vinyl Chloride) (PVC) Non-Pressure
Piping Components | | ASTM D 3139 | (1996a) Joints for Plastic Pressure Pipes
Using Flexible Elastomeric Seals | | ASTM D 3212 | (1996a) Joints for Drain and Sewer Plastic
Pipes Using Flexible Elastomeric Seals | | ASTM D 3261 | (1996) Butt Heat Fusion Polyethylene (PE)
Plastic Fittings for Polyethylene (PE)
Plastic Pipe and Tubing | | ASTM D 3308 | (1991a) PTFE Resin Skived Tape | | ASTM D 3311 | (1994) Drain, Waste, and Vent (DWV) Plastic
Fittings Patterns | | ASTM D 4060 | (1995) Abrasion Resistance of Organic
Coatings by the Taber Abraser | | ASTM D 4101 | (1996a) Propylene Plastic Injection and Extrusion Materials | | ASTM D 4551 | (1996) Poly(Vinyl Chloride) (PVC) Plastic Flexible Concealed Water-Containment Membrane | | ASTM E 1 | (1995) ASTM Thermometers | | ASTM E 96 | (1995) Water Vapor Transmission of Materials | | ASTM F 409 | (1995) Thermoplastic Accessible and
Replaceable Plastic Tube and Tubular Fittings | | ASTM F 437 | (1993) Threaded Chlorinated Poly(Vinyl Chloride) (CPVC) Plastic Pipe Fittings, Schedule 80 | | ASTM F 438 | (1993) Socket-Type Chlorinated Poly(Vinyl Chloride) (CPVC) Plastic Pipe Fittings, Schedule 40 | | ASTM F 439 | (1993a) Socket-Type Chlorinated Poly(Vinyl Chloride) (CPVC) Plastic Pipe Fittings, Schedule 80 | | ASTM F 441 | (1995) Chlorinated Poly(Vinyl Chloride)
(CPVC) Plastic Pipe, Schedules 40 and 80 | |---|---| | ASTM F 442 | (1994) Chlorinated Poly(Vinyl Chloride)
(CPVC) Plastic Pipe (SDR-PR) | | ASTM F 477 | (1995) Elastomeric Seals (Gaskets) for
Joining Plastic Pipe | | ASTM F 493 | (1993a) Solvent Cements for Chlorinated Poly(Vinyl Chloride) (CPVC) Plastic Pipe and Fittings | | ASTM F 628 | (1995) Acrylonitrile-Butadiene-Styrene (ABS)
Schedule 40 Plastic Drain, Waste, and Vent
Pipe with a Cellular Core | | ASTM F 891 | (1993a) Coextruded Poly(Vinyl Chloride) (PVC) Plastic Pipe with a Cellular Core | | ASTM F 1290 | (1993) Electrofusion Joining Polyolefin Pipe and Fittings | | ASTM F 1760 | (1996) Poly(Vinyl Chloride) (PVC) Non-Pressure Plastuc Pipe Having Reprocessed-Recycled Content. | | AMERICAN SOCIETY OF
ENGINEERS (ASHRAE) | HEATING, REFRIGERATING AND AIR-CONDITIONING | | ASHRAE 34 | (1992; Addenda a-j) Number Designation and Safety Classification of Refrigerants | | | barety classification of Refrigerants | | ASHRAE 90.1 | (1989; 90.1b; 90.1c; 90.1d; 90.1e; 90.1g; 90.1i) Energy Efficient Design of New Buildings Except Low-Rise Residential Buildings | | ASHRAE 90.1 ASME INTERNATIONAL (AS | (1989; 90.1b; 90.1c; 90.1d; 90.1e; 90.1g; 90.1i) Energy Efficient Design of New Buildings Except Low-Rise Residential Buildings | | | (1989; 90.1b; 90.1c; 90.1d; 90.1e; 90.1g; 90.1i) Energy Efficient Design of New Buildings Except Low-Rise Residential Buildings | | ASME INTERNATIONAL (AS | (1989; 90.1b; 90.1c; 90.1d; 90.1e; 90.1g; 90.1i) Energy Efficient Design of New Buildings Except Low-Rise Residential Buildings | | ASME INTERNATIONAL (AS | (1989; 90.1b; 90.1c; 90.1d; 90.1e; 90.1g; 90.1i) Energy Efficient Design of New Buildings Except Low-Rise Residential Buildings ME) (1991) Air Gaps in Plumbing Systems (1997) Supports for Off-the-Floor Plumbing | | ASME INTERNATIONAL (AS ASME A112.1.2 ASME A112.6.1M | (1989; 90.1b; 90.1c; 90.1d; 90.1e; 90.1g; 90.1i) Energy Efficient Design of New Buildings Except Low-Rise Residential Buildings ME) (1991) Air Gaps in Plumbing Systems (1997) Supports for Off-the-Floor Plumbing Fixtures for Public Use | # 00029/11 # REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 DACA67-00-R-0222 SECTION 15400 - Page 7 of 43 | ASME A112.21.1M | (1991) Floor Drains | |-----------------|---| | ASME A112.21.2M | (1983) Roof Drains | | ASME A112.36.2M | (1991) Cleanouts | | ASME B1.20.1 | (1983; R 1992) Pipe Threads, General Purpose (Inch) | | ASME B16.3 | (1992) Malleable Iron Threaded Fittings | | ASME B16.4 | (1992) Gray Iron Threaded Fittings | | ASME B16.5 | (1996) Pipe Flanges and Flanged Fittings NPS 1/2 thru NPS 24 | | ASME B16.12 | (1991) Cast Iron Threaded Drainage Fittings | | ASME B16.15 | (1985; R 1994) Cast Bronze Threaded Fittings
Classes 125 and 250 | | ASME B16.18 | (1984; R 1994) Cast Copper Alloy Solder Joint
Pressure Fittings | | ASME B16.21 | (1992) Nonmetallic Flat Gaskets for Pipe
Flanges | | ASME B16.22 | (1995) Wrought Copper and Copper Alloy Solder
Joint Pressure Fittings | | ASME B16.23 | (1992; Errata Jan 1994) Cast Copper Alloy
Solder Joint Drainage Fittings - DWV | | ASME B16.24 | (1991; Errata) Cast Copper Alloy Pipe Flanges, Class 150, 300, 400, 600, 900, 1500, and 2500, and Flanged Fittings, Class 150 and 300 | | ASME B16.29 | (1994) Wrought Copper and Wrought Copper
Alloy Solder Joint Drainage Fittings - DWV | | ASME B16.34 | (1996) Valves - Flanged, Threaded, and Welding End | | ASME B16.39 | (1986; R 1994) Malleable Iron Threaded Pipe Unions Classes 150, 250, and 300 | | ASME B31.1 | (1995; B31.1a; B31.1b; B31.1c) Power Piping | | ASME B31.5 | (1992; B31.5a) Refrigeration Piping | | ASME B40.1 | (1991) Gauges - Pressure Indicating Dial Type
- Elastic Element | ASME BPV VIII Div 1 (1998) Boiler and Pressure Vessel Code; Section VIII, Pressure Vessels Division 1 - Basic Coverage ASME BPV IX (1998) Boiler and Pressure Vessel Code; Section IX, Welding and Brazing Qualifications ASME CSD-1 (1995; CSD-1a; CSD-1b) Controls and Safety Devices for Automatically Fired Boilers AMERICAN SOCIETY OF SANITARY ENGINEERING (ASSE) ASSE ANSI/ASSE 1001 (1990) Pipe Applied Atmospheric Type Vacuum Breakers ASSE 1002 (1986) Water Closet Flush Tank Ball Cocks ASSE ANSI/ASSE 1003 (1995) Water Pressure Reducing Valves for Domestic Water Supply Systems ASSE 1005 (1986) Water Heater Drain Valves - 3/4-Inch Iron Pipe Size ASSE ANSI/ASSE 1006 (1989) Residential Use (Household) Dishwashers ASSE ANSI/ASSE 1011 (1995) Hose Connection Vacuum Breakers ASSE ANSI/ASSE 1012 (1995) Backflow Preventers with Intermediate Atmospheric Vent ASSE 1013 (1993) Reduced Pressure Principle Backflow Preventers ASSE 1018 (1986) Trap Seal Primer Valves Water Supply Fed ASSE ANSI/ASSE 1037 (1986; Rev thru Mar 1990) Pressurized Flushing Devices (Flushometers) for Plumbing Fixtures AMERICAN WATER WORKS ASSOCIATION (AWWA) AWWA-01 (1995) Standard Methods for the Examination of Water and Wastewater AWWA B300 (1992) Hypochlorites AWWA B301 (1992) Liquid Chlorine REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 AWWA ANSI/AWWA C105/A21.5 (1993) Polyethylene Encasement for Ductile- Iron Pipe Systems AWWA C203 (1991) Coal-Tar Protective Coatings and Linings for Steel Water Pipelines - Enamel and Tape - Hot-Applied AWWA C606 (1987) Grooved and Shouldered Joints AWWA ANSI/AWWA C700 (1995) Cold-Water Meters - Displacement Type, Bronze Main Case AWWA D100 (1996) Welded Steel Tanks for Water Storage AWWA M20 (1973) Manual: Water Chlorination Principles and Practices AMERICAN WELDING SOCIETY (AWS) AWS A5.8 (1992) Filler Metals for Brazing and Braze Welding AWS B2.2 (1991) Brazing Procedure and Performance Qualification CAST IRON SOIL PIPE INSTITUTE (CISPI) CISPI 301 (1995) Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications CISPI 310 (1995) Coupling for Use in Connection with Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications CISPI HSN-85 (1985) Neoprene Rubber Gaskets for Hub and Spigot Cast Iron Soil Pipe and Fittings CODE OF FEDERAL REGULATIONS (CFR) 10 CFR 430 Energy Conservation Program for Consumer Products 21 CFR 175 Indirect Food Additives: Adhesives and Components of Coatings COMMERCIAL ITEM DESCRIPTIONS (CID) CID A-A-240 (Rev A) Shower Head, Ball Joint #### COPPER DEVELOPMENT ASSOCIATION (CDA) CDA-02 (1995) Copper Tube Handbook COUNCIL OF AMERICAN BUILDING OFFICIALS (CABO) CABO A117.1 (1992; Errata Jun 1993) Accessible and Usable Buildings and Facilities FOUNDATION FOR CROSS-CONNECTION CONTROL AND HYDRAULIC RESEARCH (FCCHR) FCCCHR-01 (1993) Manual of Cross-Connection Control HYDRAULIC INSTITUTE (HI) HI ANSI/HI 1.1-1.5 (1994) Centrifugal Pumps INTERNATIONAL ASSOCIATION OF PLUMBING AND MECHANCIAL OFFICIALS IAPMO ANSI/IAPMO Z124.5 (1997) Plastic Toilet (Water Closets) Seats MANUFACTURERS STANDARDIZATION SOCIETY OF THE VALVE AND FITTINGS | INDUSTRY (MSS) | | |----------------|---| | MSS SP-25 | (1998) Standard Marking System for Valves, Fittings, Flanges and Unions | | MSS SP-44 | (1996) Steel PipeLine Flanges
| | MSS SP-58 | (1993) Pipe Hangers and Supports - Materials,
Design and Manufacture | | MSS SP-67 | (1995) Butterfly Valves | | MSS SP-69 | (1996) Pipe Hangers and Supports - Selection and Application | | MSS SP-70 | (1990) Cast Iron Gate Valves, Flanged and Threaded Ends | | MSS SP-71 | (1997) Cast Iron Swing Check Valves, Flanges and Threaded Ends | and Threaded Ends (1992) Ball Valves with Flanged or Butt-MSS SP-72 Welding Ends for General Service MSS SP-73 (1991; R 1996) Brazing Joints for Copper and Copper Alloy Pressure Fittings MSS SP-78 (1987; R 1992) Cast Iron Plug Valves, Flanged and Threaded Ends #### 00029/11 REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 MSS SP-80 (1997) Bronze Gate, Globe, Angle and Check Valves MSS SP-83 (1995) Class 3000 Steel Pipe Unions Socket- Welding and Threaded (1994) Cast Iron Globe & Angle Valves, MSS SP-85 Flanged and Threaded Ends MSS SP-110 (1996) Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA) NEMA 250 (1991) Enclosures for Electrical Equipment (1000 Volts Maximum) NATIONAL FIRE PROTECTION ASSOCIATION (NFPA) NFPA 90A (1996) Installation of Air Conditioning and Ventilating Systems PLUMBING AND DRAINAGE INSTITUTE (PDI) PDI WH 201 (1992) Water Hammer Arresters SOCIETY OF AUTOMOTIVE ENGINEERS (SAE) SAE J 1508 (1996) Hose Clamps THE SOCIETY FOR PROTECTIVE COATING (SSPC) SSPC SP 5 (1994) White Metal Blast Cleaning UNDERWRITERS LABORATORIES (UL) UL 174 (1996; Rev thru Nov 1997) Household Electric Storage Tank Water Heaters (1996) Commercial Electric Dishwashers UL 921 # 1.2 STANDARD PRODUCTS Specified materials and equipment shall be standard products of a manufacturer regularly engaged in the manufacture of such products. Specified equipment shall essentially duplicate equipment that has performed satisfactorily at least two years prior to bid opening. REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 ## 1.3 PERFORMANCE REQUIREMENTS # 1.3.1 Welding Piping shall be welded in accordance with qualified procedures using performance-qualified welders and welding operators. All welding shall be in accordance with Section 15052. Procedures and welders shall be qualified in accordance with ASME BPV IX. Welding procedures qualified by others, and welders and welding operators qualified by another employer, may be accepted as permitted by ASME B31.1. The Contracting Officer shall be notified 24 hours in advance of tests, and the tests shall be performed at the work site if practicable. Welders or welding operators shall apply their assigned symbols near each weld they make as a permanent record. Structural members shall be welded in accordance with Section 05055 WELDING, STRUCTURAL. # 1.3.2 Cathodic Protection and Pipe Joint Bonding Cathodic protection and pipe joint bonding systems shall be in accordance with Section 13112 CATHODIC PROTECTION SYSTEM (IMPRESSED CURRENT). #### 1.4 ELECTRICAL WORK Motors, motor controllers and motor efficiencies shall conform to the requirements of Section 16415 ELECTRICAL WORK, INTERIOR. Electrical motor-driven equipment specified herein shall be provided complete with motors. Equipment shall be rated at 60 Hz, single phase, ac unless otherwise indicated. Where a motor controller is not provided in a motor-control center on the electrical drawings, a motor controller shall be as indicated. Motor controllers shall be provided complete with properly sized thermal-overload protection in each ungrounded conductor, auxiliary contact, and other equipment, at the specified capacity, and including an allowable service factor. ## 1.5 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-01 Data Welding; GA. A copy of qualified procedures and a list of names and identification symbols of qualified welders and welding operators. Vibration-Absorbing Features; FIO. Details of vibration-absorbing features, including arrangement, foundation plan, dimensions and specifications. SD-04 Drawings Plumbing System; FIO. Detail drawings consisting of illustrations, schedules, performance charts, instructions, brochures, diagrams, and other information to illustrate the requirements and operations of each system. Detail drawings for the complete plumbing system including piping layouts and locations of connections; dimensions for roughing-in, foundation, and support points; schematic diagrams and wiring diagrams or connection and interconnection diagrams. Detail drawings shall indicate clearances required for maintenance and operation. Where piping and equipment are to be supported other than as indicated, details shall include loadings and proposed support methods. Mechanical drawing plans, elevations, views, and details, shall be drawn to scale. Test reports in booklet form showing all field tests performed to adjust each component and all field tests performed to prove compliance with the specified performance criteria, completion and testing of the installed system. Each test report shall indicate the final position of controls. Backflow Prevention Assembly Tests; FIO. Certification of proper operation shall be as accomplished in accordance with state regulations by an individual certified by the state to perform such tests. The Contractor shall provide written documentation of the tests performed and signed by the individual performing the tests. SD-13 Certificates Materials and Equipment; FIO. Where materials or equipment are specified to comply with requirements of AGA, or ASME, proof of such compliance. The label or listing of the specified agency will be acceptable evidence. In lieu of the label or listing, a written certificate may be submitted from an approved, nationally recognized testing organization equipped to perform such services, stating that the items have been tested and conform to the requirements and testing methods of the specified agency. Where equipment is specified to conform to requirements of the ASME Boiler and Pressure Vessel Code, the design, fabrication, and installation shall conform to the code. Bolts; FIO. Written certification by the bolt manufacturer that the bolts furnished comply with the specified requirements. The certification shall include illustrations of product-required markings, the date of manufacture, and the number of each type of bolt to be furnished based on this certification. SD-19 Operation and Maintenance Manuals Plumbing System; FIO. Six copies of the operation manual outlining the step-by-step procedures required for system startup, operation and shutdown. The manual shall include the manufacturer's name, model number, service manual, parts list, and brief description of all equipment and their basic operating features. Six copies of the maintenance manual listing routine maintenance procedures, possible breakdowns and repairs. The manual shall include piping and equipment layout and simplified wiring and control diagrams of the system as installed. ## 1.6 REGULATORY REQUIREMENTS Plumbing work shall be in accordance with IAMPO Code, 1999. #### 1.7 PROJECT/SITE CONDITIONS The Contractor shall become familiar with details of the work, verify dimensions in the field, and advise the Contracting Officer of any discrepancy before performing any work. #### PART 2 PRODUCTS ## 2.1 MATERIALS Materials for various services shall be in accordance with TABLES I and II. Pipe schedules shall be selected based on service requirements. Pipe fittings shall be compatible with the applicable pipe materials. Material or equipment containing lead shall not be used in any potable water system. Hubless cast-iron soil pipe shall not be installed underground, under concrete floor slabs, or in crawl spaces below kitchen floors # 2.1.1 Pipe Joint Materials Grooved pipe and hubless cast-iron soil pipe shall not be used under ground. Joints and gasket materials shall conform to the following: - a. Coupling for Cast-Iron Pipe: for hub and spigot type ASTM A 74, AWWA C606. For hubless type: CISPI 310 - b. Coupling for Steel Pipe: AWWA C606. - c. Couplings for Grooved Pipe: Ductile Iron ASTM A 536 (Grade 65-45-12). - d. Flange Gaskets: Gaskets shall be made of non-asbestos material in accordance with ASME B16.21. Gaskets shall be flat, 1/16 inch thick, and contain Aramid fibers bonded with Styrene Butadiene Rubber (SBR) or Nitro Butadiene Rubber (NBR). Gaskets shall be the full face or self centering flat ring type. Gaskets used for hydrocarbon service shall be bonded with NBR. - e. Neoprene Gaskets for Hub and Cast-Iron Pipe and Fittings: CISPI HSN-85. - f. Brazing Material: Brazing material shall conform to AWS A5.8, BCuP-5. - g. Brazing Flux: Flux shall be in paste or liquid form appropriate for use with brazing material. Flux shall be as follows: lead-free; have a 100 percent flushable residue; contain slightly acidic reagents; contain potassium borides; and contain fluorides. Silver brazing materials shall be in accordance with AWS A5.8. - h. Solder Material: Solder metal shall conform to ASTM B 32 95-5 tinantimony. - i. Solder Flux: Flux shall be liquid form, non-corrosive, and conform to ASTM B 813, Standard Test 1. - j. PTFE Tape: PTFE Tape, for use with Threaded Metal or Plastic Pipe, ASTM D 3308. - k. Rubber Gaskets for Cast-Iron Soil-Pipe and Fittings (hub and spigot type and hubless type): ASTM C 564. - 1. Rubber Gaskets for Grooved Pipe: ASTM D 2000, maximum temperature 230 degrees F. - m. Flexible Elastomeric Seals: ASTM D 3139, ASTM D 3212 or ASTM F 477 - n. Bolts and Nuts for Grooved Pipe Couplings: Heat-treated carbon steel, ASTM A 183. - o. Solvent Cement for Transition Joints between ABS and PVC Nonpressure Piping Components: ASTM D 3138. - p. Plastic Solvent Cement for ABS Plastic
Pipe: ASTM D 2235. - q. Plastic Solvent Cement for PVC Plastic Pipe: ASTM D 2564 and ASTM D 2855. - s. Flanged fittings including flanges, bolts, nuts, bolt patterns, etc., shall be in accordance with ASME B16.5 class 150 and shall have the manufacturer's trademark affixed in accordance with MSS SP-25. Flange material shall conform to ASTM A 105/A 105M. Blind flange material shall conform to ASTM A 516/A 516M cold service and ASTM A 515/A 515M for hot service. Bolts shall be high strength or intermediate strength with material conforming to ASTM A 193/A 193M. ### 2.1.2 Miscellaneous Materials Miscellaneous materials shall conform to the following: a. Water Hammer Arrester: PDI WH 201. #### 00029/11 # REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 - b. Copper, Sheet and Strip for Building Construction: ASTM B 370. - c. Asphalt Roof Cement: ASTM D 2822. - d. Hose Clamps: SAE J 1508. - e. Supports for Off-The-Floor Plumbing Fixtures: ASME A112.6.1M. - f. Metallic Cleanouts: ASME A112.36.2M. - g. Plumbing Fixture Setting Compound: A preformed flexible ring seal molded from hydrocarbon wax material. The seal material shall be nonvolatile nonasphaltic and contain germicide and provide watertight, gastight, odorproof and verminproof properties. - h. Coal-Tar Protective Coatings and Linings for Steel Water Pipelines: #### AWWA C203. - i. Hypochlorites: AWWA B300. - j. Liquid Chlorine: AWWA B301. - k. Polyethylene Encasement for Ductile-Iron Piping: AWWA ANSI/AWWA C105/A21.5. - 1. Gauges Pressure and Vacuum Indicating Dial Type Elastic Element: ASME B40.1. - m. Thermometers: ASTM E 1. # 2.1.3 Pipe Insulation Material Insulation shall be as specified in Section 15080 THERMAL INSULATION FOR MECHANICAL SYSTEMS. 2.2 PIPE HANGERS, INSERTS, AND SUPPORTS Pipe hangers, inserts, and supports shall conform to MSS SP-58 and MSS SP-69. ### 2.3 VALVES Valves shall be provided on supplies to equipment and fixtures. Valves 2-1/2 inches and smaller shall be bronze with threaded bodies for pipe and solder-type connections for tubing. Valves 3 inches and larger shall have flanged iron bodies and bronze trim. Pressure ratings shall be based upon the application. Grooved end valves may be provided if the manufacturer certifies that the valves meet the performance requirements of applicable MSS standard. Valves shall conform to the following standards: Description Standard | Butterfly Valves | MSS SP-67 | |--|-----------------------| | Cast-Iron Gate Valves, Flanged and
Threaded Ends | MSS SP-70 | | Cast-Iron Swing Check Valves, Flanged and
Threaded Ends | MSS SP-71 | | Ball Valves with Flanged Butt-Welding Ends
for General Service | MSS SP-72 | | Ball Valves Threaded, Socket-Welding,
Solder Joint, Grooved and Flared Ends | MSS SP-110 | | Cast-Iron Plug Valves, Flanged and
Threaded Ends | MSS SP-78 | | Bronze Gate, Globe, Angle, and Check Valves | MSS SP-80 | | Steel Valves, Socket Welding and Threaded Ends | ASME B16.34 | | Cast-Iron Globe and Angle Valves, Flanged and Threaded Ends | MSS SP-85 | | Vacuum Relief Valves | ASSE ANSI/ASSE 1001 | | Water Pressure Reducing Valves | ASSE ANSI/ASSE 1003 | | Water Heater Drain Valves | ASSE 1005 | | Trap Seal Primer Valves | ASSE 1018 | | Temperature and Pressure Relief Valves for Hot Water Supply Systems | ANSI Z21.22 | | Temperature and Pressure Relief Valves | ASME CSD-1 | | for Automatically Fired Hot
Water Boilers
CW, | Safety Code No., Part | | ₩, | Article 5 | # 2.3.1 Wall Faucets (Hose Bibbs) Wall faucets with vacuum-breaker backflow preventer shall be brass with 3/4 inch male inlet threads, hexagon shoulder, and 3/4 inch hose connection. Faucet handle shall be securely attached to stem. # 2.3.2 Wall Hydrants Wall hydrants with vacuum-breaker backflow preventer shall have a nickle-brass or nickel-bronze wall plate or flange with nozzle and detachable key handle. A brass or bronze operating rod shall be provided within a galvanized iron casing of sufficient length to extend through the wall so that the valve is inside the building, and the portion of the hydrant between the outlet and valve is self-draining. A brass or bronze valve with coupling and union elbow having metal-to-metal seat shall be provided. Valve rod and seat washer shall be removable through the face of the hydrant. The hydrant shall have 3/4 inch exposed hose thread on spout and 3/4 inch male pipe thread on inlet. ### 2.3.3 Relief Valves Water heaters and hot water storage tanks shall have a combination pressure and temperature (P&T) relief valve. The pressure relief element of a P&T relief valve shall have adequate capacity to prevent excessive pressure buildup in the system when the system is operating at the maximum rate of heat input. The temperature element of a P&T relief valve shall have a relieving capacity which is at least equal to the total input of the heaters when operating at their maximum capacity. Relief valves shall be rated according to ANSI Z21.22. Relief valves for systems where the maximum rate of heat input is less than 200,000 Btuh shall have 3/4 inch minimum inlets, and 3/4 inch outlets. Relief valves for systems where the maximum rate of heat input is greater than 200,000 Btuh shall have 1 inch minimum inlets, and 1 inch outlets. The discharge pipe from the relief valve shall be the size of the valve outlet. # 2.4 FIXTURES Fixtures shall be water conservation type, in accordance with NAPHCC-01. Fixtures for use by the physically handicapped shall be in accordance with CABO Al17.1. Vitreous china, nonabsorbent, hard-burned, and vitrified throughout the body shall be provided. Porcelain enameled ware shall have specially selected, clear white, acid-resisting enamel coating evenly applied on surfaces. No fixture will be accepted that shows cracks, crazes, blisters, thin spots, or other flaws. Fixtures shall be equipped with appurtenances such as traps, faucets, stop valves, and drain fittings. Each fixture and piece of equipment requiring connections to the drainage system shall be equipped with a trap. Brass expansion or toggle bolts capped with acorn nuts shall be provided for supports, and polished chromium-plated pipe, valves, and fittings shall be provided where exposed to view. Fixtures with the supply discharge below the rim shall be equipped with backflow preventers. Internal parts of flush and/or flushometer valves, shower mixing valves, shower head face plates, pop-up stoppers of lavatory waste drains, and pop-up stoppers and overflow tees and shoes of bathtub waste drains may contain acetal resin, fluorocarbon, nylon, acrylonitrilebutadiene-styrene (ABS) or other plastic material, if the material has provided satisfactory service under actual commercial or industrial operating conditions for not less than 2 years. Plumbing fixtures shall be as indicated in paragraph 3.10 PLUMBING FIXTURE SCHEDULE. # 2.5 BACKFLOW PREVENTERS Backflow preventers shall be approved and listed by the Foundation For Cross-Connection Control & Hydraulic Research. Reduced pressure principle assemblies, double check valve assemblies, atmospheric (nonpressure) type vacuum breakers, and pressure type vacuum breakers shall be tested, approved, and listed in accordance with FCCCHR-01. Backflow preventers with intermediate atmospheric vent shall conform to ASSE ANSI/ASSE 1012. Reduced pressure principle backflow preventers shall conform to ASSE 1013. Hose connection vacuum breakers shall conform to ASSE ANSI/ASSE 1011. Pipe applied atmospheric type vacuum breakers shall conform to ASSE ANSI/ASSE 1001. Air gaps in plumbing systems shall conform to ASME A112.1.2. #### 2.6 DRAINS ### 2.6.1 Floor and Shower Drains Floor and shower drains shall consist of a galvanized body, integral seepage pan, and adjustable perforated or slotted chromium-plated bronze, nickel-bronze, or nickel-brass strainer, consisting of grate and threaded collar. Floor drains shall be cast iron except where metallic waterproofing membrane is installed. Drains shall be of double drainage pattern for embedding in the floor construction. The seepage pan shall have weep holes or channels for drainage to the drainpipe. The strainer shall be adjustable to floor thickness. A clamping device for attaching flashing or waterproofing membrane to the seepage pan without damaging the flashing or waterproofing membrane shall be provided when required. Drains shall be provided with threaded or caulked connection. In lieu of a caulked joint between the drain outlet and waste pipe, a neoprene rubber gasket conforming to ASTM C 564 may be installed, provided that the drain is specifically designed for the rubber gasket compression type joint. Floor and shower drains shall conform to ASME A112.21.1M. # 2.6.1.1 Drains Drains valves installed in connection with waterproofed floors or shower pans shall be equipped with bolted-type device to securely clamp flashing. ### 2.7 TRAPS Unless otherwise specified, traps shall be plastic per ASTM F 409 or copperalloy adjustable tube type with slip joint inlet and swivel. Traps shall be without a cleanout. Tubes shall be copper alloy with walls not less than 0.032 inch thick within commercial tolerances, except on the outside of bends where the thickness may be reduced slightly in manufacture by usual commercial methods. Inlets shall have rubber washer and copper alloy nuts for slip joints above the discharge level. Swivel joints shall be below the discharge level and shall be of metal-to-metal or metal-to-plastic type as required for the application. Nuts shall have flats for wrench grip. Outlets shall have internal pipe thread, except that when required for the application, the outlets shall have sockets for solder-joint connections. The depth of the water seal shall be not less than 2 inches. The interior diameter shall be not more than 1/8 inch over or under the nominal size, and interior
surfaces shall be reasonably smooth throughout. A copper alloy "P" trap assembly consisting of an adjustable "P" trap and threaded trap wall nipple with cast brass wall flange shall be provided for lavatories. assembly shall be a standard manufactured unit and may have a rubbergasketed swivel joint. # 2.8 WATER HEATERS Water heater types and capacities shall be as indicated. Each primary water heater shall have controls with an adjustable range that includes 90 to 120 degrees F. Hot water systems utilizing recirculation systems shall be tied into building off-hour controls. The thermal efficiencies and standby heat losses shall conform to TABLE III for each type of water heater specified. The only exception is that storage water heaters and hot water storage tanks having more than 500 gallons storage capacity need not meet the standard loss requirement if the tank surface area is not insulated to R-12.5 and if a standing light is not used. # 2.8.1.3 Electric Type Electric type water heaters shall conform to UL 174 with dual heating elements. Each element shall be 4.5 KO. The elements shall be wired so that only one element can operate at a time. # 2.8.2 Phenolic Resin Coatings The phenolic resin coating shall be applied at either the coil or coating manufacturer's factory. The coil shall be chemically cleaned to remove any scale if present and to etch the metal surface. The exposed exterior surface of the coil shall be abrasively cleaned to white metal blast in accordance with SSPC SP 5. The coating shall be a product specifically intended for use on the material the water heating coils are made of. Steel, copper, copper alloy, or stainless steel coatings shall be capable of withstanding temperatures up to 400 degrees F dry bulb; and meet the requirements of 21 CFR 175. The entire exterior surface of each coil shall be coated with three component phenolic resin coating system. The system shall consist of the following: wash primer, pigmented base coat, the clear top coat. Immediate and final cure times and temperatures shall be as recommended by the coating manufacturer. # 2.8.2.1 Wash Primer The wash primer shall be composed of a combination of polyvinyl butyral and a heat hardening phenolic resin. The weight per gallon shall be between 7.0 lbs per gallon minimum and 7.4 lbs. per gallon maximum. # 2.8.2.2 Pigmented Base Coat The pigmented baking phenolic base coat shall consist of heat hardening phenolic resins, suitable pigments of the earth type, and softening agents, and shall not contain drying oils or cellulose material. The weight per gallon shall be between 10.3 lbs per gallon minimum and 10.7 lbs per gallon maximum. The non-volatile solids content shall be between 60 percent minimum and 64 percent maximum by weight. ### 2.8.2.3 Clear Top Coat The clear non-pigmented baking phenolic top coat shall have a weight per gallon of between 8.65 lbs per gallon minimum and 8.95 lbs per gallon maximum. The non-volatile solids content shall be between 48 percent minimum and 52 percent maximum by weight. ### 2.8.2.4 Certificate of Compliance A certificate of compliance shall be submitted by the coating manufacturer that documents successful use of coating system under service conditions indicated on the drawings for a minimum of 2 years at three different locations, and that the coating material and application comply with the testing procedures outlined. # 2.8.2.5 Test Panels Steel test panel substrate shall be 24 gauge in thickness. The panels shall be coated with one coat wash primer, then pigmented baking phenolic to a dry film thickness of 4 to 6 mil, then clear baking phenolic to a total dry film thickness of 5 to 7 mil. The panels shall then be subjected to the tests specified below: - a. Heat Test: Test panel shall be minimum $2-3/4 \times 5-7/8$ inches in size. A coated test panel shall show no cracking, flaking, or other failure after the panel has been tested in accordance with ASTM D 2485, with a furnace temperature of 400 degrees F. - b. Abrasion Test: A coated test panel shall show no more than a 40 milligram loss when tested in accordance with ASTM D 4060, utilizing a Tabor Abraser CS-17F wheel with a 1000 g weight for 1000 cycles. - c. Corrosion Test: A coated test panel shall show no corrosion after being subjected to a 500 hour salt spray test in accordance with ASTM B 117. ### 2.9 HOT-WATER STORAGE TANKS Hot-water storage tanks shall be constructed by one manufacturer, ASME stamped for the working pressure, and shall have the National Board (ASME) registration. The tank shall be cement-lined or glass-lined steel type in accordance with AWWA D100. The heat loss shall conform to TABLE III as determined by the requirements of ASHRAE 90.1. Each tank shall be equipped with a thermometer, conforming to ASTM E 1, Type I, Class 3, Range C, style and form as required for the installation, and with 7 inch scale. Thermometer shall have a separable socket suitable for a 3/4 inch tapped opening. Tanks shall be equipped with a pressure gauge 6 inch minimum diameter face. Insulation shall be as specified in Section 15080 THERMAL INSULATION FOR MECHANICAL SYSTEMS. Storage tank capacity shall be as shown. # 2.10 WATER METER Main service water meters shall of the compound meter type suitable for 175 psi. working pressure. The meter shall be the full size of the attached line. The meter shall be of the type approved by the Water Utility, or if required shall be purchased from the Water Utility. ### 2.11 NOT USED #### 2.12 COMPRESSED AIR SYSTEM The compressed system consists of providing some additional branch piping and some quick connector type outlets. #### PART 3 EXECUTION # 3.1 GENERAL INSTALLATION REQUIREMENTS The plumbing system shall be installed complete with necessary fixtures, fittings, traps, valves, and accessories. Water and drainage piping shall be remodeled and revised as indicated on the plans. Water piping shall be connected to the existing lines and extended to the new fixtures. # 3.1.1 Water Pipe, Fittings, and Connections #### 3.1.1.1 Utilities The piping shall be extended to the new fixtures, outlets, and equipment. The hot-water and cold-water piping system shall be arranged and installed to permit draining. The supply line to each item of equipment or fixture, except faucets, flush valves, or other control valves which are supplied with integral stops, shall be equipped with a shutoff valve to enable isolation of the item for repair and maintenance without interfering with operation of other equipment or fixtures. Supply piping to fixtures, faucets, hydrants, shower heads, and flushing devices shall be anchored to prevent movement. # 3.1.1.2 Cutting and Repairing The work shall be carefully laid out in advance, and unnecessary cutting of construction shall be avoided. Damage to building, piping, wiring, or equipment as a result of cutting shall be repaired by mechanics skilled in the trade involved. # 3.1.1.3 Protection of Fixtures, Materials, and Equipment Pipe openings shall be closed with caps or plugs during installation. Fixtures and equipment shall be tightly covered and protected against dirt, water, chemicals, and mechanical injury. Upon completion of the work, the fixtures, materials, and equipment shall be thoroughly cleaned, adjusted, and operated. Safety guards shall be provided for exposed rotating equipment. # 3.1.1.4 Mains, Branches, and Runouts Piping shall be installed as indicated. Pipe shall be accurately cut and worked into place without springing or forcing. Structural portions of the building shall not be weakened. Aboveground piping shall run parallel with the lines of the building, unless otherwise indicated. Branch pipes from service lines may be taken from top, bottom, or side of main, using crossover fittings required by structural or installation conditions. Supply pipes, valves, and fittings shall be kept a sufficient distance from other work and other services to permit not less than 1/2 inch between finished covering on the different services. Bare and insulated water lines shall not bear directly against building structural elements so as to transmit sound to the structure or to prevent flexible movement of the Water pipe shall not be buried in or under floors unless specifically indicated or approved. Changes in pipe sizes shall be made with reducing fittings. Use of bushings will not be permitted except for use in situations in which standard factory fabricated components are furnished to accommodate specific excepted installation practice. Change in direction shall be made with fittings, except that bending of pipe 4 inches and smaller will be permitted, provided a pipe bender is used and wide sweep bends are formed. The center-line radius of bends shall be not less than six diameters of the pipe. Bent pipe showing kinks, wrinkles, flattening, or other malformations will not be acceptable. # 3.1.1.5 Pipe Drains Pipe drains indicated shall consist of 3/4 inch hose bibb with renewable seat and gate or ball valve ahead of hose bibb. At other low points, 3/4 inch brass plugs or caps shall be provided. Disconnection of the supply piping at the fixture is an acceptable drain. # 3.1.1.6 Expansion and Contraction of Piping Allowance shall be made throughout for expansion and contraction of water pipe. Each hot-water and hot-water circulation riser shall have expansion loops or other provisions such as offsets, changes in direction, etc., where indicated and/or required. Risers shall be securely anchored as required or where indicated to force expansion to loops. Branch connections from risers shall be made with ample swing or offset to avoid undue strain on fittings or short pipe lengths. Horizontal runs of pipe over 50 feet in length shall be anchored to the wall or the supporting construction about midway on the run to force expansion, evenly divided, toward the ends. Sufficient flexibility shall be provided on branch runouts from mains and risers to provide
for expansion and contraction of piping. Flexibility shall be provided by installing one or more turns in the line so that piping will spring enough to allow for expansion without straining. If mechanical grooved pipe coupling systems are provided, the deviation from design requirements for expansion and contraction may be allowed pending approval of Contracting Officer. ### 3.1.1.7 Commercial-Type Water Hammer Arresters Commercial-type water hammer arresters shall be provided on hot- and cold-water supplies and shall be located as generally indicated, with precise location and sizing to be in accordance with PDI WH 201. Water hammer arresters, where concealed, shall be accessible by means of access doors or removable panels. Commercial-type water hammer arresters shall conform to PDI WH 201. Vertical capped pipe columns will not be permitted. # 3.1.2 Compressed Air Piping (Non-Oil Free) Compressed air piping shall be installed as specified for water piping and suitable for 125 psig working pressure. Compressed air piping shall have supply lines and discharge terminals legibly and permanently marked at both ends with the name of the system and the direction of flow. ### 3.1.3 Joints Installation of pipe and fittings shall be made in accordance with the manufacturer's recommendations. Mitering of joints for elbows and notching of straight runs of pipe for tees will not be permitted. Joints shall be made up with fittings of compatible material and made for the specific purpose intended. #### 3.1.3.1 Threaded Threaded joints shall have American Standard taper pipe threads conforming to ASME B1.20.1. Only male pipe threads shall be coated with graphite or with an approved graphite compound, or with an inert filler and oil, or shall have a polytetrafluoroethylene tape applied. # 3.1.3.2 Mechanical Couplings Grooved mechanical joints shall be prepared according to the coupling manufacturer's instructions. Pipe and groove dimensions shall comply with the tolerances specified by the coupling manufacturer. The diameter of grooves made in the field shall be measured using a "go/no-go" gauge, vernier or dial caliper, or narrow-land micrometer. Groove width and dimension of groove from end of the pipe shall be measured and recorded for each change in grooving tool setup to verify compliance with coupling manufacturer's tolerances. Grooved joints shall not be used in concealed locations. # 3.1.3.3 Union and Flanged Unions, flanges and mechanical couplings shall not be concealed in walls, ceilings, or partitions. Unions shall be used on pipe sizes 2-1/2 inches and smaller; flanges shall be used on pipe sizes 3 inches and larger. # 3.1.3.4 Cast Iron Soil, Waste and Vent Pipe Bell and spigot compression and hubless gasketed clamp joints for soil, waste and vent piping shall be installed per the manufacturer's recommendations. # 3.1.3.5 Copper Tube and Pipe The tube or fittings shall not be annealed when making connections. Connections shall be made with a multiflame torch. - a. Brazed. Brazed joints shall be made in conformance with AWS B2.2, MSS SP-73, and CDA-02 with flux and are acceptable for line sizes. Copper to copper joints shall include the use of copper-phosphorus or copper-phosphorus-silver brazing metal without flux. Brazing of dissimilar metals (copper to bronze or brass) shall include the use of flux with either a copper-phosphorus, copper-phosphorus-silver or a silver brazing filler metal. - b. Soldered. Soldered joints shall be made with flux and are only acceptable for lines 2 inches and smaller. Soldered joints shall conform to ASME B31.5 and CDA-02. - c. Copper Tube Extracted Joint. An extracted mechanical joint may be made in copper tube. Joint shall be produced with an appropriate tool by drilling a pilot hole and drawing out the tube surface to form a collar having a minimum height of three times the thickness of the tube wall. To prevent the branch tube from being inserted beyond the depth of the extracted joint, dimpled depth stops shall be provided. Branch tube shall be notched for proper penetration into fitting to ensure a free flow joint. Extracted joints shall be brazed in accordance with NAPHCC-01 using B-Cup series filler metal in accordance with MSS SP-73. Soldered extracted joints will not be permitted. # 3.1.4 Dissimilar Pipe Materials Connections between ferrous and non-ferrous copper pipe shall be made with dielectric unions or flange waterways. ### 3.1.5 Corrosion Protection for Buried Pipe and Fittings ### 3.1.5.1 Cast Iron and Ductile Iron Pressure pipe shall have protective coating, a cathodic protection system, and joint bonding. Pipe, fittings, and joints shall have a protective coating. The protective coating shall be completely encasing polyethylene tube or sheet in accordance with AWWA ANSI/AWWA C105/A21.5. Joints and fittings shall be cleaned, coated with primer, and wrapped with tape. The pipe shall be cleaned, coated, and wrapped prior to pipe tightness testing. Joints and fittings shall be cleaned, coated, and wrapped after pipe tightness testing. Tape shall conform to AWWA C203 and shall be applied with a 50 percent overlap. Primer shall be as recommended by the tape manufacturer. # 3.1.5.2 Steel Steel pipe, joints, and fittings shall be cleaned, coated with primer, and wrapped with tape. Pipe shall be cleaned, coated, and wrapped prior to pipe tightness testing. Joints and fittings shall be cleaned, coated, and wrapped after pipe tightness testing. Tape shall conform to AWWA C203 and shall be applied with a 50 percent overlap. Primer shall be as recommended by the tape manufacturer. # 3.1.6 Pipe Sleeves and Flashing Pipe sleeves shall be furnished and set in their proper and permanent location. # 3.1.6.1 Sleeve Requirements Pipes passing through concrete or masonry walls or concrete floors or roofs shall be provided with pipe sleeves fitted into place at the time of construction. Sleeves are not required for cast-iron soil pipe passing through concrete slab on grade, except where penetrating a membrane waterproof floor. A modular mechanical type sealing assembly may be installed in lieu of a waterproofing clamping flange and caulking and sealing of annular space between pipe and sleeve. The seals shall consist of interlocking synthetic rubber links shaped to continuously fill the annular space between the pipe and sleeve with corrosion-protected carbon steel bolts, nuts, and pressure plates. The links shall be loosely assembled with bolts to form a continuous rubber belt around the pipe with a pressure plate under each bolt head and each nut. After the seal assembly is properly positioned in the sleeve, tightening of the bolt shall cause the rubber sealing elements to expand and provide a watertight seal between the pipe and the sleeve. Each seal assembly shall be sized as recommended by the manufacturer to fit the pipe and sleeve involved. Sleeves shall not be installed in structural members, except where indicated or approved. Rectangular and square openings shall be as detailed. Each sleeve shall extend through its respective floor, or roof, and shall be cut flush with each surface, except for special circumstances. Pipe sleeves passing through floors in wet areas such as mechanical equipment rooms, lavatories, kitchens, and other plumbing fixture areas shall extend a minimum of 4 inches above the finished floor. Unless otherwise indicated, sleeves shall be of a size to provide a minimum of 1/4 inch clearance between bare pipe and inside of sleeve or between jacket over insulation and sleeves. Sleeves in bearing walls shall be steel pipe or cast-iron pipe. Sleeves for membrane waterproof floors shall be steel pipe, cast-iron pipe, or plastic pipe. Membrane clamping devices shall be provided on pipe sleeves for waterproof floors. Sleeves in nonbearing walls or ceilings may be steel pipe, cast-iron pipe, galvanized sheet metal with lock-type longitudinal seam, or moisture-resistant fiber or plastic. Plastic sleeves shall not be used in nonbearing fire walls, roofs, or floor/ceilings. Except as otherwise specified, the annular space between pipe and sleeve, or between jacket over insulation and sleeve, shall be sealed as indicated with sealants conforming to ASTM C 920 and with a primer, backstop material and surface preparation as specified in Section 07900 JOINT SEALING. Pipes passing through sleeves in concrete floors over crawl spaces shall be sealed as specified above. The annular space between pipe and sleeve or between jacket over insulation and sleeve shall not be sealed for interior walls which are not designated as fire rated. Sleeves through below-grade walls in contact with earth shall be recessed 1/2 inch from wall surfaces on both sides. Annular space between pipe and sleeve shall be filled with backing material and sealants in the joint between the pipe and [concrete] [masonry] wall as specified above. Sealant selected for the earth side of the wall shall be compatible with dampproofing/waterproofing materials that are to be applied over the joint sealant. # 3.1.6.2 Flashing Requirements Pipes passing through roof or floor waterproofing membrane shall be installed through a 16 ounce copper flashing, each within an integral skirt or flange. Flashing shall be suitably formed, and the skirt or flange shall extend not less than 8 inches from the pipe and shall be set over the roof or floor membrane in a solid coating of bituminous cement. The flashing shall extend up the pipe a minimum of 10 inches. For cleanouts, the flashing shall be turned down into the hub and caulked after placing the ferrule. Pipes passing through pitched roofs shall be flashed, using lead or copper flashing, with an adjustable integral flange of adequate size to extend not less than 8 inches from the pipe in all directions and lapped into the roofing to provide a watertight seal. The annular space between the flashing and the bare pipe or between the flashing and the metal-jacketcovered
insulation shall be sealed as indicated. Flashing for dry vents shall be turned down into the pipe to form a waterproof joint. Pipes, up to and including 10 inches in diameter, passing through roof or floor waterproofing membrane may be installed through a cast-iron sleeve with caulking recess, anchor lugs, flashing-clamp device, and pressure ring with brass bolts. Flashing shield shall be fitted into the sleeve clamping device. Pipes passing through wall waterproofing membrane shall be sleeved as described above. A waterproofing clamping flange shall be installed. # 3.1.6.3 Not Used # 3.1.6.4 Optional Counterflashing Instead of turning the flashing down into a dry vent pipe, or caulking and sealing the annular space between the pipe and flashing or metal-jacket-covered insulation and flashing, counterflashing may be accomplished by utilizing the following: - a. A standard roof coupling for threaded pipe up to 6 inches in diameter - b. A tack-welded or banded-metal rain shield around the pipe. ### 3.1.6.5 Pipe Penetrations of Slab on Grade Floors Where pipes, fixture drains, floor drains, cleanouts or similar items penetrate slab on grade floors, except at penetrations of floors with waterproofing membrane as specified in paragraphs Flashing Requirements and Waterproofing, a groove 1/4 to 1/2 inch wide by 1/4 to 3/8 inch deep shall be formed around the pipe, fitting or drain. The groove shall be filled with a sealant as specified in Section 07900 JOINT SEALING. ### 3.1.7 Fire Seal Where pipes pass through fire walls, fire-partitions, fire-rated pipe chase walls or floors above grade, a fire seal shall be provided as specified in Section 07840 FIRESTOPPING. # 3.1.8 Supports #### 3.1.8.1 General Hangers used to support piping 2 inches and larger shall be fabricated to permit adequate adjustment after erection while still supporting the load. Pipe guides and anchors shall be installed to keep pipes in accurate alignment, to direct the expansion movement, and to prevent buckling, swaying, and undue strain. Piping subjected to vertical movement when operating temperatures exceed ambient temperatures shall be supported by variable spring hangers and supports or by constant support hangers. In the support of multiple pipe runs on a common base member, a clip or clamp shall be used where each pipe crosses the base support member. Spacing of the base support members shall not exceed the hanger and support spacing required for an individual pipe in the multiple pipe run. Threaded sections of rods shall not be formed or bent. # 3.1.8.2 Pipe Supports and Structural Bracing, Seismic Requirements Piping and attached valves shall be supported and braced to resist seismic loads. Structural steel required for reinforcement to properly support piping, headers, and equipment, but not shown, shall be provided. Material used for supports shall be as specified in Section 05120 STRUCTURAL STEEL. # 3.1.8.3 Pipe Hangers, Inserts, and Supports Installation of pipe hangers, inserts and supports shall conform to MSS SP-58 and MSS SP-69, except as modified herein. - a. Types 5, 12, and 26 shall not be used. - b. Type 3 shall not be used on insulated pipe. - c. Type 18 inserts shall be secured to concrete forms before concrete is placed. Continuous inserts which allow more adjustment may be used if they otherwise meet the requirements for type 18 inserts. - d. Type 19 and 23 C-clamps shall be torqued per MSS SP-69 and shall have both locknuts and retaining devices furnished by the manufacturer. Field-fabricated C-clamp bodies or retaining devices are not acceptable. - e. Type 20 attachments used on angles and channels shall be furnished with an added malleable-iron heel plate or adapter. - f. Type 24 may be used only on trapeze hanger systems or on fabricated frames. - g. Type 39 saddles shall be used on insulated pipe 4 inches and larger when the temperature of the medium is 60 degrees F or higher. Type 39 saddles shall be welded to the pipe. - h. Type 40 shields shall: - (1) Be used on insulated pipe less than 4 inches. - (2) Be used on insulated pipe 4 inches and larger when the temperature of the medium is 60 degrees F or less. - (3) Have a high density insert for pipe 2 inches and larger and for smaller pipe sizes when the insulation is suspected of being visibly compressed, or distorted at or near the shield/insulation interface. High density inserts shall have a density of 8 pcf or greater. - i. Horizontal pipe supports shall be spaced as specified in MSS SP-69 and a support shall be installed not over 1 foot from the pipe fitting joint at each change in direction of the piping. Pipe supports shall be spaced not over 5 feet apart at valves. Operating temperatures in determining hanger spacing for PVC or CPVC pipe shall be 120 degrees F for PVC and 180 degrees F for CPVC. Horizontal pipe runs shall include allowances for expansion and contraction. - j. Vertical pipe shall be supported at each floor, except at slab-on-grade, at intervals of not more than 15 feet nor more than 8 feet from end of risers, and at vent terminations. Vertical pipe risers shall include allowances for expansion and contraction. - k. Type 40 shields used on insulated pipe shall have high density inserts with a density of 8 pcf or greater. - 1. Type 35 guides using steel, reinforced polytetrafluoroethylene (PTFE) or graphite slides shall be provided to allow longitudinal pipe movement. Slide materials shall be suitable for the system operating temperatures, atmospheric conditions, and bearing loads encountered. Lateral restraints shall be provided as needed. Where steel slides do not require provisions for lateral restraint the following may be used: - (1) On pipe 4 inches and larger when the temperature of the medium is 60 degrees F or higher, a Type 39 saddle, welded to the pipe, may freely rest on a steel plate. - (2) On pipe less than 4 inches a Type 40 shield, attached to the pipe or insulation, may freely rest on a steel plate. - (3) On pipe 4 inches and larger carrying medium less that 60 degrees F a Type 40 shield, attached to the pipe or insulation, may freely rest on a steel plate. - m. Pipe hangers on horizontal insulated pipe shall be the size of the outside diameter of the insulation. The insulation shall be continuous through the hanger on all pipe sizes and applications. - n. Where there are high system temperatures and welding to piping is not desirable, the type 35 guide shall include a pipe cradle, welded to the guide structure and strapped securely to the pipe. The pipe shall be separated from the slide material by at least 4 inches or by an amount adequate for the insulation, whichever is greater. - o. Hangers and supports for plastic pipe shall not compress, distort, cut or abrade the piping, and shall allow free movement of pipe except where otherwise required in the control of expansion/contraction. # 3.1.9 Pipe Cleanouts Pipe cleanouts shall be the same size as the pipe except that cleanout plugs larger than 4 inches will not be required. A cleanout installed in connection with cast-iron soil pipe shall consist of a long-sweep 1/4 bend or one or two 1/8 bends extended to the place shown. An extra-heavy castbrass or cast-iron ferrule with countersunk cast-brass head screw plug shall be caulked into the hub of the fitting and shall be flush with the floor. Cleanouts in connection with other pipe, where indicated, shall be Tpattern, 90-degree branch drainage fittings with cast-brass screw plugs, except plastic plugs shall be installed in plastic pipe. Plugs shall be the same size as the pipe up to and including 4 inches. Cleanout tee branches with screw plug shall be installed at the foot of soil and waste stacks, at the foot of interior downspouts, on each connection to building storm drain where interior downspouts are indicated, and on each building drain outside Cleanout tee branches may be omitted on stacks in single the building. story buildings with slab-on-grade construction or where less than 18 inches of crawl space is provided under the floor. Cleanouts on pipe concealed in partitions shall be provided with chromium plated bronze, nickel bronze, nickel brass or stainless steel flush type access cover plates. access covers shall be provided and secured to plugs with securing screw. Square access covers may be provided with matching frames, anchoring lugs and cover screws. Cleanouts in finished walls shall have access covers and frames installed flush with the finished wall. Cleanouts installed in finished floors subject to foot traffic shall be provided with a chrome- plated cast brass, nickel brass, or nickel bronze cover secured to the plug or cover frame and set flush with the finished floor. Heads of fastening screws shall not project above the cover surface. Where cleanouts are provided with adjustable heads, the heads shall be cast iron. ### 3.2 WATER HEATERS AND HOT WATER STORAGE TANKS #### 3.2.1 Relief Valves No valves shall be installed between a relief valve and its water heater or storage tank. The P&T relief valve shall be installed where the valve actuator comes in contact with the hottest water in the heater. Whenever possible, the relief valve shall be installed directly in a tapping in the tank or heater; otherwise, the P&T valve shall be installed in the hot-water outlet piping. A vacuum relief valve shall be provided on the cold water supply line to the hot-water storage tank or water heater and mounted above and within 6 inches above the top of the tank or water heater. ### 3.2.2 Phenolic Resin Application Process The phenolic resin coating shall be applied at either the coil or coating manufacturer's factory. The hot water coil shall be chemically cleaned to remove any scale if present and to etch the metal surface. The exposed exterior surface of the coil shall be abrasively cleaned to white metal blast in accordance with SSPC SP 5. The exterior surface shall be coated with the three-component coating system
in the following sequence and manner. For immediate and final cure times and temperature, the recommendations of the coating manufacturer shall be followed. - a. Wash Primer. One coat of wash primer shall be applied by flooding. - b. Pigmented Base Coat. Pigmented baking phenolic coating shall be applied in several coats by immersion or flooding to a dry film thickness of 4 to 6 mils. - c. Clear Top Coat. Clear non-pigmented baking phenolic top coat shall be applied in several coats by immersion or flooding. The final coat may be applied by spraying. The dry film thickness of the total coating system shall be between 5 and 7 mils. ### 3.2.3 Heat Traps Piping to and from each water heater and hot water storage tank shall be routed horizontally and downward a minimum of 2 feet before turning in an upward direction. ### 3.2.4 Connections to Water Heaters Connections of metallic pipe to water heaters shall be made with dielectric unions or flanges. #### 3.3 FIXTURES AND FIXTURE TRIMMINGS Angle stops, straight stops, stops integral with the faucets, or concealed type of lock-shield, and loose-key pattern stops for supplies with threaded, sweat or solvent weld inlets shall be furnished and installed with fixtures. Where connections between copper tubing and faucets are made by rubber compression fittings, a beading tool shall be used to mechanically deform the tubing above the compression fitting. Exposed traps and supply pipes for fixtures and equipment shall be connected to the rough piping systems at the wall, unless otherwise specified under the item. Floor and wall escutcheons shall be as specified. Drain lines and hot water lines of fixtures for handicapped personnel shall be insulated and do not require polished chrome finish. Plumbing fixtures and accessories shall be installed within the space shown. ### 3.3.1 Fixture Connections Where space limitations prohibit standard fittings in conjunction with the cast-iron floor flange, special short-radius fittings shall be provided. Connections between earthenware fixtures and flanges on soil pipe shall be made gastight and watertight with a closet-setting compound or neoprene gasket and seal. Use of natural rubber gaskets or putty will not be permitted. Fixtures with outlet flanges shall be set the proper distance from floor or wall to make a first-class joint with the closet-setting compound or gasket and fixture used. # 3.3.2 Flushometer Valves Flushometer valves shall be secured to prevent movement by anchoring the long finished top spud connecting tube to wall adjacent to valve with approved metal bracket. Flushometer valves for water closets shall be installed eleven one half inches minimum above the bowl rim, see architectural elevations. # 3.3.3 Height of Fixture Rims Above Floor Lavatories shall be mounted with rim 31 inches above finished floor. Wallhung drinking fountains and water coolers shall be installed with rim 42 inches above floor. Wall-hung service sinks shall be mounted with rim 28 inches above the floor. Installation of fixtures for use by the physically handicapped shall be in accordance with CABO A117.1. ### 3.3.4 Shower Bath Outfits The area around the water supply piping to the mixing valves and behind the escutcheon plate shall be made watertight by caulking or gasketing. # 3.3.5 Fixture Supports Fixture supports for off-the-floor lavatories, urinals, water closets, and other fixtures of similar size, design, and use, shall be of the chair-carrier type. The carrier shall provide the necessary means of mounting the fixture, with a foot or feet to anchor the assembly to the floor slab. Adjustability shall be provided to locate the fixture at the desired height and in proper relation to the wall. Support plates, in lieu of chair carrier, shall be fastened to the wall structure only where it is not possible to anchor a floor-mounted chair carrier to the floor slab. ### 3.3.5.1 Support for Solid Masonry Construction Chair carrier shall be anchored to the floor slab. Where a floor-anchored chair carrier cannot be used, a suitable wall plate shall be imbedded in the masonry wall. # 3.3.5.2 Support for Cellular-Masonry Wall Construction Chair carrier shall be anchored to floor slab. Where a floor-anchored chair carrier cannot be used, a suitable wall plate shall be fastened to the cellular wall using through bolts and a back-up plate. # 3.3.5.3 Support for Steel Stud Frame Partitions Chair carrier shall be used. The anchor feet and tubular uprights shall be of the heavy duty design; and feet (bases) shall be steel and welded to a square or rectangular steel tube upright. Wall plates, in lieu of flooranchored chair carriers, shall be used only if adjoining steel partition study are suitably reinforced to support a wall plate bolted to these study. # 3.3.5.4 Support for Wood Stud Construction Where floor is a concrete slab, a floor-anchored chair carrier shall be used. Where entire construction is wood, wood crosspieces shall be installed. Fixture hanger plates, supports, brackets, or mounting lugs shall be fastened with not less than No. 10 wood screws, 1/4 inch thick minimum steel hanger, or toggle bolts with nut. The wood crosspieces shall extend the full width of the fixture and shall be securely supported. # 3.3.5.5 Wall-Mounted Water Closet Gaskets Where wall-mounted water closets are provided, reinforced wax, treated felt, or neoprene gaskets shall be provided. The type of gasket furnished shall be as recommended by the chair-carrier manufacturer. #### 3.3.6 Backflow Prevention Devices & New Water Meter Plumbing fixtures, equipment, and pipe connections shall not cross connect or interconnect between a potable water supply and any source of nonpotable water. A new backflow preventer shall be installed on the existing water service to the building where indicated on the drawings. Access shall be provided for maintenance and testing. Device shall be a standard commercial unit, double check type with two shutoff valves, flanged connections, Watts Series 7090CDA or approved equal. A new full line size utility type compound water meter shall be installed immediately in front of the foregoing backflow preventer. ### 3.3.7 Access Panels Access panels shall be provided for concealed valves and controls, or any item requiring inspection or maintenance. Access panels shall be of sufficient size and located so that the concealed items may be serviced, maintained, or replaced. Access panels shall be as specified in Section 05500 MISCELLANEOUS METAL. # 3.3.8 Traps Each trap shall be placed as near the fixture as possible, and no fixture shall be double-trapped. Traps installed on cast-iron soil pipe shall be cast iron. Traps installed on steel pipe or copper tubing shall be recess-drainage pattern, or brass-tube type. Traps for acid-resisting waste shall be of the same material as the pipe. ### 3.4 VIBRATION-ABSORBING FEATURES Mechanical equipment, including compressors and pumps, shall be isolated from the building structure by approved vibration-absorbing features, unless otherwise shown. Each foundation shall include an adequate number of standard isolation units. Each unit shall consist of machine and floor or foundation fastening, together with intermediate isolation material, and shall be a standard product with printed load rating. Piping connected to mechanical equipment shall be provided with flexible connectors. Isolation unit installation shall limit vibration to 40 percent of the lowest equipment rpm. # 3.5 IDENTIFICATION SYSTEMS ### 3.5.1 Identification Tags Identification tags made of brass, engraved laminated plastic, or engraved anodized aluminum, indicating service and valve number shall be installed on valves, except those valves installed on supplies at plumbing fixtures. Tags shall be 1-3/8 inch minimum diameter, and marking shall be stamped or engraved. Indentations shall be black, for reading clarity. Tags shall be attached to valves with No. 12 AWG, copper wire, chrome-plated beaded chain, or plastic straps designed for that purpose. # 3.5.2 Color Coding Color coding for piping identification shall be as specified in Section 09900 PAINTING, GENERAL. #### 3.6 ESCUTCHEONS Escutcheons shall be provided at finished surfaces where bare or insulated piping, exposed to view, passes through floors, walls, or ceilings, except in boiler, utility, or equipment rooms. Escutcheons shall be fastened securely to pipe or pipe covering and shall be satin-finish, corrosion-resisting steel, polished chromium-plated zinc alloy, or polished chromium-plated copper alloy. Escutcheons shall be either one-piece or split-pattern, held in place by internal spring tension or setscrew. # 3.7 PAINTING Painting of pipes, hangers, supports, and other iron work, either in concealed spaces or exposed spaces, is specified in Section 09900 PAINTING, GENERAL. ### 3.8 TESTS, FLUSHING AND DISINFECTION ### 3.8.1 Plumbing System The following tests shall be performed on the plumbing system in accordance with NAPHCC-01. - a. Drainage and Vent Systems Tests. - b. Building Sewers Tests. - c. Water Supply Systems Tests. # 3.8.1.1 Test of Backflow Prevention Assemblies Backflow prevention assembly shall be tested using gauges specifically designed for the testing of backflow prevention assemblies. Gauges shall be tested annually for accuracy in accordance with the University of Southern California's Foundation of Cross Connection Control and Hydraulic Research or the American Water Works Association Manual of Cross Connection (Manual M-14). Report form for each assembly shall include, as a minimum, the following: Data on Device Data on Testing Firm Type of Assembly Name Manufacturer Address Model Number Certified Tester Serial Number Certified Tester No. Size Date of Test Location Test Pressure Readings Serial Number and Test Data of Gauges If the unit fails to meet specified requirements, the unit shall be repaired and retested. ### 3.8.1.2 Compressed Air Piping
(Nonoil-Free) Piping systems shall be filled with oil-free dry air or gaseous nitrogen to 150 psig and hold this pressure for 2 hours with no drop in pressure. ### 3.8.2 Defective Work If inspection or test shows defects, such defective work or material shall be replaced or repaired as necessary and inspection and tests shall be repeated. Repairs to piping shall be made with new materials. Caulking of screwed joints or holes will not be acceptable. ### 3.8.3 System Flushing Before tests, potable water piping shall be flushed. In general, sufficient water shall be used to produce a minimum water velocity of 2.5 feet per second through piping being flushed. Flushing shall be continued until entrained dirt and other foreign materials have been removed and until discharge water shows no discoloration. System shall be drained at low points. Strainer screens shall be removed, cleaned, and replaced in line. After flushing and cleaning, systems shall be prepared for service by immediately filling water piping with clean, fresh potable water. Any stoppage, discoloration, or other damage to the finish, furnishings, or parts of the building due to the Contractor's failure to properly clean the piping system shall be repaired by the Contractor. When the system flushing is complete, the hot-water system shall be adjusted for uniform circulation. Flushing devices and automatic control systems shall be adjusted for proper operation. # 3.8.4 Operational Test Upon completion of and prior to acceptance of the installation, the Contractor shall subject the plumbing system to operating tests to demonstrate satisfactory functional and operational efficiency. Such operating tests shall cover a period of not less than 8 hours for each system and shall include the following information in a report with conclusion as to the adequacy of the system: - a. Time, date, and duration of test. - b. Water pressures at the most remote and the highest fixtures. - c. Operation of each fixture and fixture trim. - d. Operation of each valve, hydrant, and faucet. - e. Temperature of each domestic hot-water supply. - f. Operation of each floor and roof drain by flooding with water. - g. Operation of each vacuum breaker and backflow preventer. #### 3.9.5 Disinfection After operational tests are complete, the entire domestic hot- and coldwater distribution system shall be disinfected. System shall be flushed as specified, before introducing chlorinating material. The chlorinating material shall be hypochlorites or liquid chlorine. Water chlorination procedure shall be in accordance with AWWA M20. The chlorinating material shall be fed into the water piping system at a constant rate at a concentration of at least 50 parts per million (ppm). A properly adjusted hypochlorite solution injected into the main with a hypochlorinator, or liquid chlorine injected into the main through a solution-feed chlorinator and booster pump, shall be used. The chlorine residual shall be checked at intervals to ensure that the proper level is maintained. Chlorine application shall continue until the entire main is filled. The water shall remain in the system for a minimum of 24 hours. Each valve in the system $\,$ being disinfected shall be opened and closed several times during the contact period to ensure its proper disinfection. Following the 24-hour period, no less than 25 ppm chlorine residual shall remain in the system. Water tanks shall be disinfected by the addition of chlorine directly to the filling water. Following a 6 hour period, no less than 50 ppm chlorine residual shall remain in the tank. The system including the tanks shall then be flushed with clean water until the residual chlorine is reduced to less than one part per million. During the flushing period each valve and faucet shall be opened and closed several times. From several points in the system the Contracting Officer will take samples of water in proper disinfection containers for bacterial examination. The samples of water shall be tested for total coliform organisms (coliform bacteria, fecal coliform, streptococcal, and other bacteria) in accordance with AWWA-01. The testing method used shall be either the multiple-tube fermentation technique or the membrane-filter technique. The sterilizing shall be repeated until tests indicate the absence of coliform organisms (zero mean coliform density per 100 milliliters) in the samples for at least 2 full days. The system will not be accepted until satisfactory bacteriological results have been obtained. # 3.10 PLUMBING FIXTURE SCHEDULE # P-1 WATER CLOSET Siphon-jet, elongated bowl, top supply spud, ASME All2.19.2M, wall mounted. Provide floor mounted wall type carrier for bowl. Height of type rim of bowl shall be in accordance with CABO Al17.1 for handicapped units. Seat - ANSI Z124.5, Type A, white plastic, elongated, open front. Flushometer Valve - ASSE ANSI/ASSE 1037, large diaphragm type with non-hold-open feature, backcheck angle control stop, and vacuum breaker. Minimum upper chamber inside diameter of not less than 2-5/8 inches at the point where the diaphragm is sealed between the upper and lower chambers. The maximum water use shall be 1.6 gallons per flush. #### P-2 LAVATORY: Manufacturer's standard sink depth, vitreous china ASME A112.19.2M, countertop, oval type. Faucet - Faucets shall be single control, mixing type. Faucets shall have replaceable seats and washers. Faucets shall have metal replaceable cartridge control unit or metal cartridge units with diaphragm which can be replaced without special tools. Valves and handles shall be copper alloy. Connection between valve and spout for center-set faucet shall be of rigid metal tubing. Flow shall be limited to 0.25 gallon per cycle at a flowing water pressure of 80 psi if a metering device or fitting is used that limits the period of water discharge such as a foot switch or fixture occupancy sensor. If a metering device is not used, the flow shall be limited to 2.5 gpm at a flowing pressure of 80 psi. Handles - Lever Crown type. Cast, formed, or drop forged copper alloy. Drain - Strainer shall be copper alloy or stainless steel. Pop-up drain shall include stopper, lift rods, jam nut, washer, and tail piece. See paragraph FIXTURES for optional plastic accessories. #### P-3 URINAL: Wall hanging, with integral trap and extended shields, ASME A112.19.2Msiphon jet. Top supply connection, back outlet. Provide floor mounted wall carrier for urinal. Flushometer Valve - Similar to Flushometer Valve for P-1. The maximum water use shall be 1 gallon per flush. ### P-4 Shower: Wall Mounted: Shower head shall be adjustable spray, stainless steel or chromium plated brass with ball joint. Control valves shall be copper alloy and have metal integral parts of copper alloy, nickel alloy, or stainless steel. Valves shall be mechanical mixing, single lever type. Shower head shall be vandal proof with integral back. #### P-5 KITCHEN SINK: Ledge back with holes for faucet and spout single bowl 24×21 inches stainless steel ASME All2.19.3M for flush countertop mounted and provided with self rimming fittings or Hudee rim fitting. Faucet and Spout - Cast or wrought copper alloy. Aerator shall have internal threads. Flow shall be limited to 0.25 gallon per cycle at a flowing water pressure of 80 psi. The flow shall be limited to 2.5 gpm at a flowing water pressure of 80 psi. Handle - Cast copper alloy, wrought copper alloy, or stainless steel. Single lever type. Drain Garbage Disposal Assembly - Electric garbage disposal complete with rubber strainers, mounting frame and bolts. Unit shall be plugged into electrical outlet. Outlet shall be switched from a switch located above near the sink. 1-1/2" cast brass trap assembly. #### DF-1 WATER COOLER DRINKING FOUNTAINS: Water cooler drinking fountains shall: be self contained, conform to ARI 1010, use one of the fluorocarbon gases conforming to ARI 700 and ASHRAE 34 which has an Ozone Depletion Potential of less than or equal to 0.05, have a capacity to deliver 8 gph of water at 50 degrees F with an inlet water temperature of 80 degrees F while residing in a room environment of 90 degrees F, and have self-closing valves. Self-closing valves shall have automatic stream regulators, have a flow control capability, have a push button actuation or have a cross-shaped index metal turn handle without a hood. Exposed surfaces of stainless steel shall have No. 4 general polish finish. Spouts shall provide a flow of water at least 4 inches high so as to allow the insertion of a cup or glass under the flow of water. # 3.11 POSTED INSTRUCTIONS Framed instructions under glass or in laminated plastic, including wiring and control diagrams showing the complete layout of the entire system, shall be posted where directed. Condensed operating instructions explaining preventive maintenance procedures, methods of checking the system for normal safe operation, and procedures for safely starting and stopping the system shall be prepared in typed form, framed as specified above for the wiring and control diagrams and posted beside the diagrams. The framed instructions shall be posted before acceptance testing of the systems. # 3.12.1 Storage Water Heaters ### 3.12.1.1 Electric - a. Storage capacity of 50 gallons or less, and input rating of 12 kW or less: minimum energy factor (EF) shall be 0.95-0.00132V per 10 CFR 430. - b. Electric storage water heaters shall be provided with an insulated drain pan complete with drain to suitable source. The pan shall be welded stainless steel approximately 2" deep inside with outside dimensions approximately the size of the tank. ### 3.13 TABLES TABLE I PIPE AND FITTING MATERIALS FOR DRAINAGE, WASTE, AND VENT PIPING SYSTEMS -----A B C D E F Item # Pipe and Fitting Materials | 1 | Cast iron soil pipe and fittings, hub and spigot, ASTM A 74 with compression gaskets | X | Х | Х | X | Х | |----
---|---|---|---|---|---| | 2 | Cast iron soil pipe and fittings hubless, CISPI 301 and ASTM A 888 | | Х | Х | Х | | | 3 | Cast iron drainage fittings, threaded, ASME B16.12 for use with Item 10 | Х | | X | Х | | | 4 | Cast iron screwed fittings (threaded) ASME B16.4 for use with Item 10 | | | | X | X | | 5 | Grooved pipe couplings, ferrous and non-ferrous pipe ASTM A 536 and ASTM A 47, ASTM A 47M | X | X | | X | X | | 6 | Ductile iron grooved joint fittings
for ferrous pipe ASTM A 536
and ASTM A 47, ASTM A 47M for use with
Item 5 | X | Х | | X | X | | 7 | Bronze sand casting grooved joint pressure fittings for non-ferrous pipe ASTM B 584, for use with Item 5 | X | Х | | X | X | | 8 | Wrought copper grooved joint pressure pressure fittings for non-ferrous pipe ASTM B 75 C12200, ASTM B 152, ASTM B 152M, C11000, ASME B16.22 for use with Item 5 | Х | X | | | | | 9 | Malleable-iron threaded fittings, galvanized ASME B16.3 for use with Item 10 | | | | Х | Х | | 10 | Steel pipe, seamless galvanized,
ASTM A 53, Type S, Grade B | X | | | X | X | | 11 | Seamless red brass pipe, ASTM B 43 | | X | Х | | | | 12 | Bronzed flanged fittings,
ASME B16.24 for use
with Items 11 and 14 | | | | X | X | | 13 | Cast copper alloy solder joint pressure fittings, ASME B16.18 for use with Item 14 | | | | Х | Х | | 14 | Seamless copper pipe, ASTM B 42 | | | | X | | |----|---|--------|-------------|----|---|---| | 15 | Cast bronze threaded fittings, ASME B16.15 | | | | X | Х | | 16 | Copper drainage tube, (DWV), ASTM B 306 | X* | X | X* | X | Х | | 17 | Wrought copper and wrought alloy solder-joint drainage fittings. ASME B16.29 | X | X | Х | Х | X | | 18 | Cast copper alloy solder joint drainage fittings, DWV, ASME B16.23 | Х | X | Х | Х | Х | | 21 | High-silicon content cast iron pipe
and fittings (hub and spigot, and mechani
ASTM A 518, ASTM A 518M | cal jo | X
oint), | | | Х | | 23 | Filament-wound reinforced thermosetting | | | | | | Χ ### SERVICE: - A Underground Building Soil, Waste and Storm Drain - B Aboveground Soil, Waste, Drain In Buildings - C Underground Vent resin (RTRP) pipe, ASTM D 2996 - D Aboveground Vent - E Interior Rainwater Conductors Aboveground - F Corrosive Waste And Vent Above And Belowground - * Hard Temper TABLE II PIPE AND FITTING MATERIALS FOR PRESSURE PIPING SYSTEMS | | SERVICE | | | | |--|---------|---|---|---| | Item No. Pipe and Fitting Materials | A | В | С | D | | <pre>1 Malleable-iron threaded fittings, a. Galvanized, ASME B16.3 for use with Item 4a</pre> | Х | X | Х | х | | b. Same as "a" but not galvanized
for use with Item 4b | | | Х | | | 2 Grooved pipe couplings, ferrous pipe
ASTM A 536 and
ASTM A 47, ASTM A 47M, non-ferrous | Х | X | Х | | DACA67-00-R-0222 SECTION 15400 - Page 41 of 43 pipe, ASTM A 536 and ASTM A 47, ASTM A 47M | | and ASTM A 4/, ASTM A 4/M | | | | | |----|--|-----|-----|-----|-------| | 3 | Ductile iron grooved joint fittings
for ferrous pipe ASTM A 536
and ASTM A 47, ASTM A 47M for use
with Item 2 | Х | Х | X | | | 4 | Steel pipe: a. Seamless, galvanized, ASTM A 53, Type S, Grade B | X | X | X | X | | | b. Seamless, black,ASTM A 53,Type S, Grade B | | | X | | | 5 | Seamless red brass pipe,
ASTM B 43 | X | X | | X | | 6 | Bronze flanged fittings,
ASME B16.24
for use with Items 5 and 7 | X | Х | | X | | 7 | Seamless copper pipe,
ASTM B 42 | X | X | | X | | 8 | Seamless copper water tube, | X** | X** | X** | X*** | | | ASTM B 88, ASTM B 88M | | | | | | 9 | ASTM B 88, ASTM B 88M Seamless and welded copper distribution tube (Type D) ASTM B 641 | X** | X** | X** | X**** | | 9 | Seamless and welded copper distribution tube (Type D) ASTM B 641 | X** | X** | X** | X**** | | | Seamless and welded copper distribution tube (Type D) ASTM B 641 Cast bronze threaded fittings, ASME B16.15 for use | | | X** | | | 10 | Seamless and welded copper distribution tube (Type D) ASTM B 641 Cast bronze threaded fittings, ASME B16.15 for use with Items 5 and 7 Wrought copper and bronze solder-joint pressure fittings, ASME B16.22 for | X | X | | X | | 10 | Seamless and welded copper distribution tube (Type D) ASTM B 641 Cast bronze threaded fittings, ASME B16.15 for use with Items 5 and 7 Wrought copper and bronze solder-joint pressure fittings, ASME B16.22 for use with Items 5 and 7 Cast copper alloy solder-joint pressure fittings, ASME B16.18 | x | x | x | x | | 15 | Fittings: brass or bronze; ASME B16.15, and ASME B16.18 ASTM B 828 | Х | Х | | |----|--|---|---|---| | 16 | Carbon steel pipe unions, socket-welding and threaded, MSS SP-83 | Х | X | X | | 17 | Malleable-iron threaded pipe unions ASME B16.39 | X | X | | | 18 | Nipples, pipe threaded ASTM A 733 | X | X | X | - A Cold Water Aboveground - B Hot Water 180 degrees F Maximum Aboveground - C Compressed Air Lubricated - D Cold Water Service Belowground Indicated types are minimum wall thicknesses. - ** Type L Hard - *** Type K Hard temper with brazed joints only or type K-soft temper without joints in or under floors - **** In or under slab floors only brazed joints END OF SECTION ### SECTION 15550 GAS FIRED BOILERS AND INFRA RED RADIANT HEATERS, FLUE STACKS & GAS PIPING # PART 1 - GENERAL #### 1.1 APPLICABLE PUBLICATIONS: The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only. The latest edition of the publications shall be used. American Boiler Manufacturers Association (ABMA) Publication: Packaged Firetube Ratings American National Standards Institute (ANSI) Publications: - Z21.13 Gas-Fired Low Pressure Steam and Hot Water Boilers - Z83.3 Gas Utilization Equipment in Large Boilers American Society for Testing and Materials (ASTM) Publications: - A 53 Pipe, Steel, Black and Hot-Dipped Zinc-Coated (Galvanized) Welded and Seamless for Ordinary Uses - C 592 Mineral Fiber Blanket Insulation and Blanket Type Pipe Insulation (Metal Mesh Covered) (Industrial) American Society of Mechanical Engineers (ASME) Publications: ASME Boiler and Pressure Vessel Code and Interpretations: Section IV - Heating Boilers Underwriters Laboratories (UL) Publications: UL 726, Oil-Fired Boiler Assemblies UL 795, Commercial-Industrial Gas Heating Equipment The Hydronics Institute Publication: Testing and Rating Standard for Cast-Iron and Steel Heating Boilers Occupational Safety and Health Administration (OSHA): 1910.219, Mechanical Power Transmission Apparatus # 1.2 SUBMITTALS: # 1.2.1 Shop Drawings and Catalog Cuts: Provide submittals according to Division requirements. - a. Boilers and Water Heater Type Equipment including the following: - (1) Btu Output - (2) Gross Efficiency - (3) ASME Certification - (4) Allowable Working Pressure - (5) Unit Model Number - (6) Catalog Cut from Manufacturers current catalog - b. Unit Trim and Controls - c. Burners - d. Burner Controls - e. Burner Gas Trains - f. Infra Red Radiant Gas Fire Heaters #### 1.2.2 Manufacturer's Certificate: Submit Manufacturer's Certificate of Unit Performance along with evidence that the burner provided shall be a make, model, and type certified and approved by the manufacturer of the unit provided. ### 1.2.3 Field Tests: - a. Strength and Tightness Tests - b. Standards Compliance Tests - c. Combustion Tests - d. Operational Tests - e. Capacity and Efficiency Tests #### 1.3 GENERAL: ### 1.3.1 General Requirements: General requirements include those specified in Division 15, "Basic Mechanical Materials and Requirements," and the additional requirements specified herein below. # 1.3.2 Description: The hot water heating boilers or heating units shall be as specified herein and shall be furnished complete with firing equipment, combustion chamber, insulation with steel jacket, safety and operating controls, integral electrical wiring and other appurtenances, to make the unit a complete, self-contained, fully-automatic unit, ready for service upon completion of utility connections. Additional automatic solenoid valves and gas pressure reducing valves as shown shall be provided with the units. Infra-Red Radiant Heaters shall be as specified herein and shown the plans. The units shall be complete with direct spark ignition and induced draft fan. Gas vents through the roof shall be Class B double walled vents. Combustion air shall be ducted from outside wall intake louvers with insulated ducts. Gas distribution to the units shall be 5 psig. Pressures shall be reduced at the respective units as shown or specified. ### 1.3.3 Associated Work: Other work associated with hot water heating boiler (units) including certain boiler system appurtenances, hydronic piping, insulation of equipment and piping, space temperature controls, vibration isolation, painting and marking of equipment, testing and balancing air and water system, is covered in other sections of this specification. See Section 15556. # 1.3.4 Standard Commercial Product for Boilers and Burners Units: Boilers and burners shall be the manufacturer's standard commercial product. Prior to commencement of construction, the Contractor shall submit a certified written report from the boiler manufacturer to show that substantially identical equipment of
comparable capacity has been successfully installed and operated in at least three installations under similar operating conditions. The report shall include the date of installation, type, model, capacity, and address location of installed boiler. Provide evidence of certification by the Hydronics Institute for IBR or SBI ratings of steel boilers, ABMA Packaged Firetube Boiler ratings for the required capacity, and ASHRAE 90.1b-1992 and AGA for Units HWP-109 and No. B-4 (In Pump House). A standard commercial product is a product which has been sold or is currently being offered for sale, on the commercial market through advertisements or manufacturer's catalogs, or brochures. ### 1.3.5 Service Availability: The Contractor shall submit a certified list of qualified permanent service organizations for boilers, boiler controls, burners and instrumentation which includes their addresses and qualifications. These service organizations shall be reasonably convenient to the equipment installation and able to render satisfactory service to the equipment on a regular and emergency basis during the warranty period of the contract. ### 1.3.6 Technical Publications: One commercial manual shall be provided with each boiler. The manual shall include the operation, inspection, and maintenance instructions recommended in the referenced standards and specifications. #### 1.3.7 Safety Standards: - a. Hot water boilers, burners, and any supplementary control devices, safety interlocks, or limit controls required under this specification, shall meet the requirements of the following standards as applicable: - (1) Gas fired units UL 726, ANSI Z83.3, ANSI Z21.13 or UL 795 - (2) All units ASME Boiler and Pressure Vessel Code, Section IV - b. Guards: Couplings, motor shafts, gears, and other moving parts shall be fully guarded in accordance with OSHA 1910.219. Guards shall be cast iron or expanded metal. Guards shall be removable without disassembling the guarded unit. ### 1.3.7 Gas Utility Coordination: The Contractor shall connect to the gas utility lines to provide natural gas service to metering points indicated on the drawings and at supply pressures indicated. Main gas supply pressures from the Utility Company meter and PRV to the structure are indicated to be 5 psig. # 1.4 WARRANTY: Contractor shall warranty all material equipment and installation for a period of two years from substantial completion. Substantial completion date shall be as determined by CO. # PART 2 - PRODUCTS - 2.1 BOILER TYPES Three Types of Units Required as Follows: - a. HW Heating Boiler HVAC Systems (B-109): 4 pass, scotch marine, self-contained, gas fired, wetback, 30 psig, packaged type mounted on a structural steel base, gas fired, modulating from 2 psig gas, low water cutoff, automatic fired, forced draft, lonox type. Boiler shall be a true scotch-marine type and not a modified or compact type. Boiler shall have a true round and cylindrical housing. Unit shall have a double wall SS pressure type flue vent as shown on the plans. The boiler NOx requirement is 30 PPM NOx, 100 PPM CO, corrected to 3% for 02 based on best available control sequence. Refer to WAC 173-400-112 and 113. - b. Fire Protection Storage Tank Heating Unit (B-4): Packaged type domestic hot heating type gas fired heating unit, 150 psi WP, 14" W.C. gas pressure, automatic fired complete with low water cutoff, gas train, additional electric solenoid shut valve on gas supply line, combination temperature/pressure relief valve, metal jacket and Class B flue stack vent complete with flashing and WP Terminal Cap. # 2.1.1 Design Requirements: Each Boiler shall have a gross output as scheduled with an efficiency of not less than 80 percent. The boiler shall be designed, tested, and installed in accordance with Section IV (Heating Boilers) of the ASME Boiler and Pressure Vessel Code. Boiler shall be suitable for installation in the space shown with ample room for opening doors and cleaning and/or removal and replacement of tubes and/or appurtenances. Boiler shall be painted in accordance with manufacturer's standard requirement. Boiler shall also be painted with heat-resisting paint. Boilers design working pressure shall be 150 psig. Boiler operating pressures shall be as indicated # 2.2 BURNERS AND CONTROL EQUIPMENT: ### 2.2.1 Boiler B-109 Gas Fired Power Burner Combustion control system shall be full modulation principle, 4 to 1 turndown ratio. Gas burner shall be the partial pre-mix type, complete with primary air fan. Ignition system shall be the interrupted-pilot type, and pilot shall be the electrode-ignited natural gas type. Burner and combustion control equipment shall be designed for firing Natural Gas having a specific gravity of 0.6 and a heating value of approximately 1000 Btu per cubic foot, and shall be an integral part of the boiler. Gas train shall accept gas supply pressures as indicated on the drawings. Operations shall be energized from an outdoor controller below outside temperatures of 65 degrees F. Water temperature differentials shall be between 170 to 190 degrees F. for off and on starting of burner. ### 2.2.2 Boiler B-4 Integral unit type controls set for 110 to 120 degree operations outlet water temperature to prevent condensation within the unit and the vents. Low water cutoff shall be provided and piped as indicated on the drawings. Unit, and the entire system, shall be energized from an immersion aquastat located in the side of the FP Reservoir. See drawing notes. The final system water temperature shall be controlled by a electric/electronic 3-way mixing valve located on the boiler outlet piping as indicated on the plans. # 2.3 BOILER TRIM AND CONTROL EQUIPMENT: ### 2.3.1 Relief Valves: Shall have ample relieving capacity for the full output of the boilers and heating units furnished. Relief-valve piping shall conform to ASTM A 53. Schedule 40 steel pipe and shall be piped full-size to a floor drain or to outside as indicated. Relief valve for Boiler No. 4 shall be a combination temperature/pressure type valve. 2.3.2 Pressure Gages: Provide gages at boilers and heating units. ### 2.3.3 Thermometers: Shall indicate hot water temperature and have a scale equivalent to 1.5 times the outlet water temperature. # 2.3.4 Drain Piping: Shall be complete with drain valve as indicated and piping to a floor drain or outside as indicated. ### 2.3.5 Water Feeding Device (B-109): A water pressure-reducing valve shall be provided in the makeup water line to the boiler and shall function to maintain a water pressure of 20 psig in the hot water system. In addition, a bypass fresh water line shall be provided for rapid filling of the system. ### 2.3.6 Backflow Preventers See Section 15400 PLUMBING, GENERAL PURPOSE, and Section 15556, 2.5, FORCED HOT WATER HEATING SYSTEMS." ### 2.3.7 Air Vent Valve: Shall have screwed connection and stainless steel disk and seats to vent entrapped air. Units shall be provided with a ball valve on the inlet. Vent discharges shall have tubing drains and shall be piped to floor and/or drains as indicated. # 2.3.8 Operating Controller: Shall be the adjustable temperature, thermostatic immersion type and shall function to operate the boilers at the water temperatures indicated. The control shall actuate the burner through an electric relay system so as to maintain the boiler water temperature within normal prescribed limits at all loads within the rated capacity of the boiler. ### 2.3.9 High Temperature Limit Switch: Shall be the immersible aquastat type and have a temperature setting above that of the operating. Aquastat shall function to cause a safety shutdown by closing all fuel valves, shutting down the burner equipment, activating a red indicating light, and sounding an alarm in the event that boiler water temperature rises above the operating temperature to the high limit setting. A safety shutdown due to high temperature shall require manual reset before operation can be resumed and shall prevent recycling of the burner equipment. ### 2.3.10 Low-Water Level Cutoff Controllers: Shall be of the float or electrode-actuated type. Low-water level cutoff shall function to cause a safety shutdown by closing all fuel valves, shutting down the burner equipment, activating a red indicating light and sounding an alarm in the event that the water level drops below the lowest safe permissible water level established by the boiler manufacturer and ASME Boiler and Pressure Vessel Code. A safety shutdown due to low water shall require manual reset before operation can be resumed and shall prevent recycling of the burner equipment. # 2.3.11 Boiler Safety Control Circuits: Boiler safety control circuits, including control circuits for burner and draft fan, shall be single-phase, two-wire one-side grounded, and not over 120 Volts. All safety control switching shall be in the ungrounded conductor. Overcurrent protection shall be provided. In addition to circuit grounds, metal parts, which do not carry current, shall be grounded by proper grounding connection to the grounding conductor. # 2.3.12 Indicating Lights (B 109): Each safety interlock requiring a manual reset shall have an individually-labeled indicating light. All non-recycling controls/interlocks shall have the reset located on the control/interlock itself. Indicating lights shall have colors as follow: - a. Amber for ignition on - b. Green for main fuel safety shut-off valves open - c. Red for safety lockout on flame failure, low water pressure, low water level, and high temperature - d. Blue for draft #### 2.3.13 Alarm Bell (B-109): Alarm bell, mounted on boiler and integrally wired, not less than 4 inches in diameter shall be provided. Bell shall be electrically operated, and a manual disconnect switch at the bell shall be provided. Disconnect switch shall be of such type and so wired that switching off the alarm following a safety shutdown will not prevent the alarm from sounding again upon
recurrence of a subsequent safety shutdown condition. #### 2.3.14 Post-Combustion Purge (B-109): Controls and wiring shall be provided as necessary to assure operation of the draft fan for a period of not less than 15 seconds or of sufficient duration to provide four complete air changes in the boiler (whichever is greater,) following shutdown of the burner upon satisfaction of heat demand. Upon completion of the post-combustion purge period, the draft fan shall automatically shutdown until the next restart. #### 2.4 INFRARED RADIANT HEATERS #### 2.4.1 General Provide ceiling suspended type gas-fired infrared space heaters installed in accordance with local codes as shown on the plans. Heaters shall be sized as shown on the schedule on the plans. #### 2.4.2 Description Heaters shall be equipped with a 24-volt direct spark ignition with automatic 100% shutoff system. Power supplied to each heater shall be 120 VAC, 60 Hz. Heater controls shall include a pressure switch designed to provide complete unit shutoff in the event of combustion air or flue blockage. The heaters shall be equipped with an on-line diagnosis monitoring light system. The three lights shall monitor the power to the heater, insufficient air flow, and the spark ignition and combination gas valve operation. Heater shall be provided with pressure reducing valves to reduce the distribution pressure from 5 psig to 7" to 14" W.C for firing. The heaters shall be equipped with a thermal protector integral with the motor designed to prevent overheating of the motor due to overload and failure to start. The heater's burner shall consist of a heavy-duty cast iron atmosphereic burner. The flame characteristics shall be highly luminous for maximum radiant heat transfer through the emitter tube wall. The heater's emitter tube shall operate at an average surface temperature of 700 to 800 degrees F. and shall be made of 16 gauge calorized aluminum steel or calorized titanium alloy Alumi-Therm steel for long lift. (4 $^{\prime\prime}$ O. D.) The system shall have a radiant efficiency of 58%. To assure a high degree of safety and increased radiant efficiency, the heaters shall operate under negative pressure at all times during operation to preclude the escape of combustion gases inside the building. The heater exhaust assembly shall include a 120 volt draft inducer. The heaters shall be A.G.A. and C.G.A. design certified for vertical or horizontal venting, maximum 75 feet horizontal side wall venting, and 50 feet outside combustion air inlet duct. The combustion chamber shall be totally enclosed. The heaters shall utilize factory assembled, highly efficient aluminum reflectors with a reflectivity of 97.5%. The reflector ends shall be enclosed for maximum radiant heat output and minimum convection losses. Heaters shall mounted as shown on the plans. ## 2.5 FLUE VENT STACKS & ACCESSORIES: ## 2.5.1 Types Provide flue venting stacks as described herein and detailed on the drawings complete with supports, guides, and roof flashings. ## 2.5.2 For Boiler B-109: Steel, Positive Pressure, Double-wall Vents - a. Description: Double-wall metal stacks conforming to NFPA 211 and UL MH17739 Standards, suitable for use with building heating equipment burning gas, solid, or liquid fuels. - b. Construction: Inner and outer metal shells separated by at least 1-inch (25-mm) airspace, wih positive sealing joints. - c. Inner & Outer Shell: Type 304 stainless steel of the following thickness: - (1) Inner Shell: 20 gauge. - (2) Outer Shell: 22 gauge. - d. Accessories: Tees, elbows, increasers, adjustable length type units, metal cap with bird barrier, adjustable roof flashing, storm collar, support assembly, guide assemblies, adaptors to square from round, firestop spacers, accessories, and fasteners fabricated of similar stainless steel materials and designs as vent pipe straight sections. - e. Installation shall be a shown on the drawings. Supports shall be from the existing structure as indicated. Existing roofing shall be repaired as approved by the CO. ## 2.5.3 For Boiler B-4 and Infra Red Radiant Heaters: Double-wall Vents Provide double walled Class B, standard vent type SS flue complete with supports, flashings, and weatherproof terminal unit. Existing roofing shall be repaired as approved by the CO. 2.5.4 Stack Thermometers, B-109: Provide flue gas thermometer with scale calibrated from 150 degrees F to 750 degrees F and mounted in the flue gas outlet. #### 2.6. NATURAL GAS PIPING #### 2.6.1.1 APPLICABLE PUBLICATIONS: The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only. The latest edition of the publications shall be used. 2.6.1.2 Federal Specifications (Fed. Spec.): L-C-530B(1)Coating, Pipe, Thermoplastic Resin or Thermosetting Epoxy L-T-1512ATape, Pressure Sensitive Adhesive, Pipe Wrapping WW-V-35B(1) Valve, Ball 2.6.1.3 American Society of Mechanical Engineers (ASME) Publication: PTC 25.3 Safety and Relief Valves 2.6.1.4 American Society for Testing and Materials (ASTM) Publications: A 53 Pipe, Steel, Black and Hot-Dipped Zinc-Coated Welded and Seamless Steel Pipe A 135 Electric-Resistance-Welded Steel Pipe A 139 Electric-Fusion (ARC)-Welded Steel Pipe (Sizes 4 inch and over) ## 2.6.2.1 GENERAL REQUIREMENTS: Section Division 15, "Mechanical Basic Materials and Methods," applies to this section except where otherwise specified. #### 2.6.2.2 Gas Lines: Gas lines shall include the building service pipelines from meter to the point at connection to the equipment. Gas lines shall be schedule 40, black steel pipe as specified. - 2.6.2.3 Test Reports: Certified copies of piping pressure tests. - 2.6.2.4 Certificates of Compliance: - a. Welders procedures and qualifications (metal and PE) - b. Pipe coating materials and application procedure #### 2.6.3 - PRODUCTS ## 2.6.3.1 MATERIALS AND EQUIPMENT: Conform to ANSI B31.8 to the extent specified herein, and to the respective specifications and the other requirements specified below. #### 2.6.3.2 GAS VALVES AND ACCESSORIES: #### 2.6.3.2.1 Shut-Off Valves: Shut-off valves for gas piping shall be plug type cocks, and shall be provided where indicated. Plug type cocks shall have iron or steel body, and brass plug. Cocks shall have a minimum pressure rating of 125 psig and shall have threaded or flanged ends. #### 2.6.3.2.2 Pressure Relief Valves: Pressure relief valves shall be designed to prevent gas pressure from exceeding the indicated value, shall have sufficient capacity to prevent over pressuring the system, and shall be adjusted to ensure that a pressure increase shall not cause the unsafe operation of any connected and properly adjusted gas utilization equipment in a low-pressure distribution system. Each pressure relief valve shall meet the performance standards set forth in ASME PTC 25.3, and shall be steel or cast iron. ## 2.6.3.2.3 Strainers Strainers shall be designed to remove particulate matter from the gas stream and shall have a steel or cast iron housing with a removable stainless steel strainer basket with a mesh sized to remove all particles that would interfere with regulator valve operation. Strainer shall be provided on the return water from the FP Reservoir piping to remove normal particulate matter from the system water. ## 2.6.4 - EXECUTION ## 2.6.4.1. General Requirements: Pipe, fittings, valves and accessories will be carefully inspected by the COR or his authorized representative before and after installation and those found defective will be rejected. Pipe and fittings shall be free from fins and burrs. Before being placed in position, clean pipe, fittings, valves, and accessories and maintain in a clean condition. Cut pipe accurately to measurements established at the site and work into place without springing or forcing. #### 2.6.4.1 Joints: Steel Pipe: Joints under 2" shall be threaded or welded. Joints 2" and over shall be welded. Make welded joints in accordance with ANSI B31.8 and API 1104. Welders qualifications, welding procedures and weld examinations shall be in accordance with API 1104. Make up joints between ferrous and nonferrous metallic piping with insulating fittings. Threaded joints shall have tapered threads, evenly cut, and shall be made with Underwriter's Laboratories approved graphite compound for gas service or with polytertrafluorethylene tape applied to the male threads only. After cutting and before threading, ream pipe and remove burrs. Caulking of threaded joints to stop or prevent leaks will not be permitted. #### 2.6.5 TESTS AND INSPECTIONS: #### 2.6.5.1 Inspection and Testing of Welds: Inspect quality of welded joints visually on a sampling basis. Defective welds shall be repaired or removed from the line. ## 2.6.5.1 Pipe Strength and Tightness Tests: Test all gas system piping for leaks with air at 100 psig after construction and before being placed in service. Disconnect piping under test from live gas piping systems. Maintain a permanent written record of pressure test performed and furnish a copy to the COR. ## 2.6.5.2 Purge Mains: Purge lines before placing in service in accordance with ANSI B31.8, Section 841.275. ## 2.6.6 PAINTING All exposed metal gas piping, valves, and other gas lne accessories not specified as being shop coated or otherwise finished shall be cleaned in accordance with SSPC-SP3, primed with primer conforming to SSPC-Paint 11, and top coated with aluminum paint conforming to SSPC-Paint 101 providing a total minimum dry film thickness of 4.5 mils. Touch up damaged factory coatings as required to restore them to their original finish. ## PART 3 - EXECUTION ## 3.1 INSTALLATION: Arrange work so that minimum storage of equipment and material is required at the project site. All parts shall be accessible for inspection, repair, and renewal. Protect material and equipment from the weather. The Contractor shall be responsible for installation,
startup, and tests of equipment as specified below. ## 3.2 BOILER CLEANING: Before being placed in service, boilers shall be cleaned and flushed in accordance with the boiler manufacturer's written instructions. ## 3.3 EQUIPMENT FOUNDATIONS: Locate equipment foundations as shown on the drawings. Foundations shall meet the requirements of the equipment manufacturer and as shown on the structural drawings. Lag boilers to floor pads with expansion anchors. #### 3.4 EQUIPMENT INSTALLATION: Install equipment in accordance with installation instructions of the manufacturers as approved by the CO. Grout equipment mounted on concrete foundations before piping is installed. Install piping in such a manner as not to place a strain on any of the equipment. Do not bolt flanged joints tight unless they match. Grade, anchor, guide, and support all piping without low pockets. Pipe the gas pressure regulator reliefs to the outside. #### 3.5 Installation of Double-wall Connectors, Breechings, and Vents #### 3.5.1 Installation Install gas vent breechings as indicated according to manufacturer's written installation instructions as approved. Locate to comply with stipulated minimum clearances from combustibles. #### 3.5.2 Sealing Methods: Seal between sections of positive-pressure vents according to manufacturer's installation instructions, using only sealants as specified. ## 3.5.3 Supports: Support flue vents as shown on the drawings and at additional intervals recommended by the manufacturer to support the weight of the vent and all accessories, without exceeding loading of appliances. Coordinate support locations and configurations with building construction to which it is being attached. Provide structural channels between existing roof purlins for flue supports. ## 3.6 FIELD TESTS AND INSPECTIONS: #### 3.6.1 General: The Contractor is responsible for the performance of all inspections and tests as specified herein to demonstrate that the boilers and auxiliary equipment, as installed, are in compliance with contract requirements. Start up and initially operate the system with all components operating. During this time, clean the various strainers until no further accumulation of foreign material occurs. Exercise care so that minimum loss of water occurs when strainers are cleaned. Adjust safety and automatic control instruments as necessary to place them in proper operation and sequence. Contractor shall furnish all labor, equipment and test apparatus. The Government will furnish gas, water and electricity for startup, testing and building heating prior to final acceptance. ## 3.6.2 Field Tests: A factory-authorized representative of the respective boiler manufacturer shall operate each boiler and all appurtenances prior to final testing and shall insure that all necessary adjustments have been made. Contractor shall provide testing equipment, including gages, thermometers, calorimeter, orsat apparatus, thermocouple pyrometers, fuel flow meters, water meters, and other equipment required to perform the tests. Draft and fuel pressure steam flow may be measured by permanent gages and meters installed under the contract. Gas flow may be measured by utility company meters. The tests shall include the following performed, when feasible, in the sequence as listed: - a. Strength and tightness tests - b. Standards compliance tests - c. Combustion tests - d. Operational tests - e. Capacity and efficiency tests ## 3.6.3 Strength and Tightness Tests: After installation and connection, subject each boiler to an inspection and hydrostatic test to determine that the boiler and appurtenances were not damaged in transit or handling. Hydrostatic test in accordance with the ASME Code. This test is in addition to the hydrostatic tests performed at the factory. The hydrostatic test at the site shall be certified by an inspector holding an authorized commission from the National Board of Boiler and Pressure Vessel Inspectors. #### 3.6.4 Combustion Tests: Test the fuel burning and combustion control equipment at loads from the small turn-down position to full capacity in increments allowed by the controllers. ## 3.6.5 Operational Test: Test the boilers continuously for a period of at least 8 hours to demonstrate proper operability of the combustion control, flame safeguard control, and safety interlocks. Conduct this test after the adjustment of the combustion controls has been completed under the combustion test. ## 3.6.6 Capacity and Efficiency Tests (B-109 and HWP-109): Perform the capacity and efficiency tests after satisfactory completion of all tests previously specified herein and after the boilers have been operating continuously for 2 days with no nuisance shutdowns. Conduct tests using the specific fuel. Test in accordance with the heat loss method of the ASME Power Test Code PTC 4.1 and report on the ASME Test Form for Abbreviated Efficiency Test. The duration of the tests shall be sufficient to record all necessary data but in no case be less than 4 hours. Submit the test report to the CO. #### 3.6.7 Inspection: The above tests shall be conducted prior to requesting an acceptance inspection by C.O. Ten days advance notice is required for scheduling the inspector to conduct the inspection. END OF SECTION #### SECTION 15556 #### FORCED HOT WATER HEATING SYSTEMS ## PART 1 GENERAL ## 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designations only. ## AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | ASTM A 47 | (1990; R 1995) Ferritic Malleable Iron
Castings | |-------------------|--| | ASTM A 47M | (1990; R 1996) Ferritic Malleable Iron
Castings (Metric) | | ASTM A 53 | (1997) Pipe, Steel, Black and Hot-Dipped,
Zinc-Coated Welded and Seamless | | ASTM A 105/A 105M | (1996) Carbon Steel Forgings for Piping
Applications | | ASTM A 106 | (1997) Seamless Carbon Steel Pipe for High-
Temperature Service | | ASTM A 183 | (1983; R 1990) Carbon Steel Track Bolts and
Nuts | | ASTM A 193/A 193M | (1997a) Alloy-Steel and Stainless Steel
Bolting Materials for High-Temperature
Service | | ASTM A 234/A 234M | (1997) Piping Fittings of Wrought Carbon
Steel and Alloy Steel for Moderate and High
Temperature Service | | ASTM A 366/A 366M | (1996) Steel, Sheet, Carbon, Cold-Rolled, Commercial Quality | | ASTM A 515/A 515M | (1992) Pressure Vessel Plates, Carbon Steel,
for Intermediate- and Higher-Temperature
Service | | ASTM A 516/A 516M | (1990; R 1996) Pressure Vessel Plates, Carbon
Steel, for Moderate- and Lower-Temperature
Service | | ASTM A 536 | (1984; R 1993) Ductile Iron Castings | | ASTM A 569/A 569M | (1997) Commercial Steel (CS) Sheet and Strip, Carbon (0.15 Maximum Percent), Hot-Rolled | |-------------------|--| | ASTM A 653/A 653M | (1996) Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process | | ASTM A 733 | (1993) Welded and Seamless Carbon Steel and
Austenitic Stainless Steel Pipe Nipples | | ASTM B 32 | (1996) Solder Metal | | ASTM B 62 | (1993) Composition Bronze or Ounce Metal
Castings | | ASTM B 75 | (1995a) Seamless Copper Tube | | ASTM B 88 | (1996) Seamless Copper Water Tube | | ASTM B 88M | (1996) Seamless Copper Water Tube (Metric) | | ASTM B 251 | (1993) Wrought Seamless Copper and Copper-
Alloy Tube | | ASTM B 265 | (1995a) Titanium and Titanium Alloy Strip,
Sheet, and Plate | | ASTM B 333 | (1995a) Nickel-Molybdenum Alloy Plate, Sheet, and Strip | | ASTM B 395 | (1995) U-Bend Seamless Copper and Copper
Alloy Heat Exchanger and Condenser Tubes | | ASTM B 395M | (1995) U-Bend Seamless Copper and Copper
Alloy Heat Exchanger and Condenser Tubes
(Metric) | | ASTM B 424 | (1993) Ni-Fe-Cr-Mo-Cu Alloy (UNS N08825 and UNS N08221) Plate, Sheet, and Strip | | ASTM B 650 | (1995) Electrodeposited Engineering Chromium Coatings of Ferrous Substrates | | ASTM B 687 | (1996) Brass, Copper, and Chromium-Plated
Pipe Nipples | | ASTM B 813 | (1993) Liquid and Paste Fluxes for Soldering
Applications of Copper and Copper Alloy Tube | | ASTM B 828 | (1992) Making Capillary Joints by Soldering of Copper and Copper Alloy Tube and Fittings | # REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 | ASTM D 596 | (1991; R 1995) Reporting Results of Analysis of Water | |-------------------------|--| | ASTM D 1248 | (1984, R 1989) Polyethylene Plastics Molding and Extrusion Materials | | ASTM D 1384 | (1996) Corrosion Test for Engine Coolants in Glassware | | ASTM D 2000 | (1996) Rubber Products in Automotive
Applications | | ASTM D 3308 | (1991a) PTFE Resin Skived Tape | | AMERICAN SOCIETY OF MEC | CHANICAL ENGINEERS (ASME) | | ASME B1.20.1 | (1983; R 1992) Pipe Threads, General Purpose (Inch) | | ASME B16.1 | (1989) Cast Iron Pipe Flanges and Flanged
Fittings | | ASME B16.3 | (1992) Malleable Iron Threaded Fittings | | ASME B16.4 | (1992) Gray Iron Threaded Fittings | | ASME B16.5 | (1996) Pipe Flanges and Flanged Fittings NPS 1/2 thru NPS 24 | | ASME B16.9 | (1993) Factory-Made Wrought Steel Buttwelding Fittings | | ASME B16.11 | (1996) Forged Fittings, Socket-Welding and Threaded | | ASME B16.15 | (1985; R 1994) Cast Bronze Threaded Fittings
Classes 125 and 250 | | ASME B16.18 | (1984; R 1994) Cast Copper Alloy Solder Joint Pressure Fittings | | ASME B16.21 | (1992) Nonmetallic Flat Gaskets for Pipe
Flanges | | ASME B16.22 | (1995) Wrought Copper and Copper Alloy Solder
Joint Pressure Fittings | | ASME B16.26 | (1988) Cast Copper Alloy Fittings for Flared
Copper Tubes | | ASME B16.34 |
(1996) Valves - Flanged, Threaded, and
Welding End | ## REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 | FAIRCHILD | AFB, | WA. | PN | GJKZ | 99-0151 | |-----------|------|-----|----|------|---------| |-----------|------|-----|----|------|---------| | ASME B16.39 | (1986; R 1994) Malleable Iron Threaded Pipe
Unions Classes 150, 250, and 300 | |---------------------|--| | ASME B31.1 | (1995; B31.1a; B31.1b; B31.1c) Power Piping | | ASME B40.1 | (1991) Gauges - Pressure Indicating Dial Type
- Elastic Element | | ASME BPV VIII Div 1 | (1998) Boiler and Pressure Vessel Code;
Section VIII, Pressure Vessels Division 1 -
Basic Coverage | | ASME BPV IX | (1998) Boiler and Pressure Vessel Code;
Section IX, Welding and Brazing
Qualifications | ## AMERICAN WELDING SOCIETY (AWS) AWS A5.8 (1992) Filler Metals for Brazing and Braze Welding ## EXPANSION JOINT MANUFACTURERS ASSOCIATION (EJMA) EJMA-01 (1993) EJMA Standards ## HYDRONICS INSTITUTE (HYI) HYI-01 (1998) I=B=R Ratings for Boilers, Baseboard Radiation and Finned Tube (Commercial) Radiation ## MANUFACTURERS STANDARDIZATION SOCIETY OF THE VALVE AND FITTINGS INDUSTRY (MSS) | INDODIKI (NBB) | | |----------------|--| | MSS SP-25 | (1998) Standard Marking System for Valves,
Fittings, Flanges and Unions | | MSS SP-58 | (1993) Pipe Hangers and Supports - Materials,
Design and Manufacture | | MSS SP-69 | (1996) Pipe Hangers and Supports - Selection and Application | | MSS SP-70 | (1990) Cast Iron Gate Valves, Flanged and Threaded Ends | | MSS SP-71 | (1997) Cast Iron Swing Check Valves, Flanges and Threaded Ends | | MSS SP-80 | (1997) Bronze Gate, Globe, Angle and Check
Valves | REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 MSS SP-85 (1994) Cast Iron Globe & Angle Valves, Flanged and Threaded Ends NATIONAL ASSOCIATION OF PLUMBING-HEATING-COOLING CONTRACTORS (NAPHCC) NAPHCC-01 (1996) National Standard Plumbing Code NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA) NEMA 250 (1991) Enclosures for Electrical Equipment (1000 Volts Maximum) #### 1.2 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-01 Data Spare Parts; FIO. Spare parts data for each different item of material and equipment specified , after approval of the related submittals and not later than 3 months prior to the date of beneficial occupancy. The data shall include a complete list of parts and supplies, with current unit prices and source of supply. Welding Procedures and Qualifications; GA. 6 copies of qualified procedures and list of names and identification symbols of qualified welders and welding operators, prior to welding operations. SD-04 Drawings Heating System; FIO. Detail drawings consisting of a complete list of equipment and material, including manufacturer's descriptive and technical literature, performance charts and curves, catalog cuts, and installation instructions. Drawings shall also contain complete wiring and schematic diagrams and any other details required to demonstrate that the system has been coordinated and will properly function as a unit. Drawings shall show proposed layout and anchorage of equipment and appurtenances and equipment relationship to other parts of the work including clearances for maintenance and operation. SD-06 Instructions Framed Instructions; [FIO]. REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 Proposed diagrams, instructions, and other sheets, prior to posting. The instructions shall show wiring and control diagrams and complete layout of the entire system. The instructions shall include, in typed form, condensed operating instructions explaining preventive maintenance procedures, methods of checking the system for normal safe operation and procedures for safely starting and stopping the system. SD-09 Reports Performance Tests; FIO. Performance test reports in booklet form showing all field tests performed to adjust each component and all field tests performed to prove compliance with the specified performance criteria, upon completion and testing of the installed system. Each test report shall indicate the final position of controls. Water Treatment Tests; FIO. The water quality test report shall identify the chemical composition of the heating water. The report shall include a comparison of the condition of the water with the chemical company's recommended conditions. Any required corrective action shall be documented within the report. SD-13 Certificates Bolts; FIO. Written certification that the bolts furnished comply with the requirements of this specification, provided by the bolt manufacturer. The certification shall include illustrations of product-required markings, the date of manufacture, and the number of each type of bolt to be furnished based on this certification. SD-19 Operation and Maintenance Manuals Heating System; FIO. Six copies of operation and six copies of maintenance manuals for the equipment furnished. One complete set, prior to performance testing and the remainder upon acceptance. Operating manuals shall detail the step-by-step procedures required for system startup, operation, and shutdown. Operating manuals shall include the manufacturer's name, model number, parts list, and brief description of all equipment and their basic operating features. Maintenance manuals shall list routine maintenance procedures, water treatment procedures, possible breakdowns and repairs, and troubleshooting guides. Maintenance manuals shall include piping and equipment layout and simplified wiring and control diagrams of the system as installed. Manuals shall be provided prior to the field training course. ## 1.3 QUALIFICATIONS Procedures and welders shall be qualified in accordance with the code under which the welding is specified to be accomplished. #### 1.4 DELIVERY AND STORAGE All equipment delivered and placed in storage shall be stored with protection from the weather, excessive humidity and excessive temperature variation; and dirt, dust, or other contaminants. #### 1.5 FIELD MEASUREMENTS The Contractor shall become familiar with all details of the work, verify all dimensions in the field, and shall advise the Contracting Officer of any discrepancy before performing the work. #### PART 2 PRODUCTS ## 2.1 GENERAL MATERIAL AND EQUIPMENT REQUIREMENTS #### 2.1.1 Standard Products Materials and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of such products and shall essentially duplicate items that have been in satisfactory use for at least 2 years prior to bid opening. Equipment shall be supported by a service organization that is, in the opinion of the Contracting Officer, reasonably convenient to the site. ## 2.1.2 Nameplates Each major item of equipment shall have the manufacturer's name, address, type or style, model or serial number, and catalog number on a plate secured to the item of equipment. ## 2.1.3 Equipment Guards and Access Belts, pulleys, chains, gears, couplings, projecting setscrews, keys, and other rotating parts exposed to personnel contact shall be fully enclosed or guarded in accordance with OSHA requirements. High temperature equipment and piping exposed to contact by personnel or where it creates a potential fire hazard shall be properly guarded or covered with insulation of a type specified. ## 2.1.4 Asbestos Prohibition Asbestos and asbestos-containing products shall not be used. #### 2.1.5 Electrical Work Electrical motor driven equipment specified shall be provided complete with motors, motor starters, and controls. Electric equipment (including motor efficiencies), and wiring shall be in accordance with Section 16415 ELECTRICAL WORK, INTERIOR. High efficiency motors shall be used. Electrical characteristics shall be as specified or indicated. Motor starters shall be provided complete with thermal overload protection and other appurtenances necessary for the motor control specified. Each motor shall be of sufficient size to drive the equipment at the specified capacity without exceeding the nameplate rating of the motor. Manual or automatic control and protective or signal devices required for the operation specified, and any control wiring, conduit, and connection to power required for controls and devices but not shown shall be provided. #### 2.2 PIPING AND FITTINGS #### 2.2.1 General Piping, tubing, and fittings shall be as follows: - a. Hot water heating piping shall be black steel with cast iron, or malleable iron fittings. Welded piping shall be with welded type steel fittings. - b. Vent piping shall be black steel, Schedule 40, with black malleable iron fittings. ## 2.2.2 Steel Pipe Pipe shall conform to ASTM A 53 or ASTM A 106, Grade A or B, black steel, Schedule 40, unless otherwise specified. Steel pipe to be bent shall be ASTM A 53, Grade A, standard, or Grade B, extra strong weight. Steam pipe shall be ASTM A 53 Grade A. #### 2.2.3 and 2.2.4 not used #### Malleable Iron Pipe Fittings Fittings shall conform to ASME B16.3, type required to match adjacent piping. #### 2.2.6 Cast Iron Pipe Fittings Fittings shall conform to ASME B16.1 or ASME B16.4 type required to match adjacent piping. ## 2.2.7 Steel Pipe Fittings Fittings shall have the manufacturer's trademark affixed in accordance with MSS SP-25 so as to permanently identify the manufacturer. ## 2.2.7.1 Welded Fittings Welded fittings shall conform to ASTM A 234/A 234M with WPA marking. Butt welded fittings shall conform to ASME B16.9, and socket welded fittings shall conform to ASME B16.11. #### 2.2.7.2 and 2.2.7.3 Not used ## 2.2.9 Steel
Flanges Flanged fittings including flanges, bolts, nuts, bolt patterns., etc. shall be in accordance with ASME B16.5 class 150 and shall have the manufacturers trademark affixed in accordance with MSS SP-25. Flange material shall conform to ASTM A 105/A 105M. Flanges for high temperature water systems shall be serrated or raised-face type. Blind flange material shall conform to ASTM A 516/A 516M cold service and ASTM A 515/A 515M for hot service. Bolts shall be high strength or intermediate strength with material conforming to ASTM A 193/A 193M. ## 2.2.10 Pipe Threads Pipe threads shall conform to ASME B1.20.1. #### 2.2.11 Nipples Nipples shall conform to ASTM A 733 or ASTM B 687, standard weight. #### 2.2.12 Unions Unions shall conform to ASME B16.39, type to match adjacent piping. ## 2.2.13 Not used ## 2.2.14 Dielectric Unions Unions shall conform to the tensile strength and dimensional requirements specified in ASME B16.39. Unions shall have metal connections on both ends to match adjacent piping. Metal parts of dielectric unions shall be separated so that the electrical current is below 1 percent of the galvanic current which would exist upon metal-to-metal contact. ## 2.2.15 Flexible Pipe Connectors Flexible pipe connectors shall be designed for 125 psi or 150 psi service as appropriate for the static head plus the system head, and 250 degrees F. Connectors may be installed in the Room 109 Sump Pit and the new Manifold Connecting Manhole. The flexible section shall be constructed of rubber, tetrafluoroethylene resin, or corrosion-resisting steel, bronze, monel, or galvanized steel. Materials used and the configuration shall be suitable for the pressure, vacuum, temperature, and circulating medium. The flexible section may have threaded, welded, soldered, flanged, grooved, or socket ends. Flanged assemblies shall be equipped with limit bolts to restrict maximum travel to the manufacturer's standard limits. Unless otherwise indicated, the length of the flexible connectors shall be as recommended by the manufacturer for the service intended. Internal sleeves or liners, compatible with circulating medium, shall be provided when recommended by the manufacturer. #### 2.3 MATERIALS AND ACCESSORIES #### 2.3.1 Iron and Steel Sheets #### 2.3.1.1 Galvanized Iron and Steel Galvanized iron and steel shall conform to ASTM A 653/A 653M, with general requirements conforming to ASTM A 653/A 653M. Gauge numbers specified are Manufacturer's Standard Gauge. #### 2.3.1.2 Uncoated (Black) Steel Uncoated (black) steel shall conform to ASTM A 366/A 366M or ASTM A 569/A 569M, composition, condition, and finish best suited to the intended use. Gauge numbers specified refer to Manufacturer's Standard Gauge. #### 2.3.2 & 2.3.3 Not used #### 2.3.4 Thermometers Thermometers shall have brass, malleable iron, or aluminum alloy case and frame, clear protective face, permanently stabilized glass tube with indicating-fluid column, white face, black numbers, and a 9 inch scale, and thermometers shall have rigid stems with straight, angular, or inclined pattern. ## 2.3.5 Gauges Gauges shall conform to ASME B40.1. ## 2.3.6 Gaskets for Flanges Composition gaskets shall conform to ASME B16.21. Gaskets shall be non-asbestos compressed material in accordance with ASME B16.21, 1/16 inch thickness, full face or self-centering flat ring type. Gaskets shall contain aramid fibers bonded with styrene butadiene rubber (SBR) or nitrile butadiene rubber (NBR). NBR binder shall be used for hydrocarbon service. Gaskets shall be suitable for pressure and temperatures of piping system. ## 2.3.7 Not Used ## 2.3.8 Pipe Hangers, Inserts, and Supports Pipe hangers, inserts, and supports shall conform to MSS SP-58 and MSS SP-69. #### 2.4 VALVES FOR HOT WATER HEATING SYSTEMS #### 2.4.1 Check Valves Sizes 2-1/2 inches and less, bronze shall conform to MSS SP-80, Type 3 or 4, Class 125. Sizes 3 inches through 24 inches, cast iron shall conform to MSS SP-71, Type III or IV, Class 125. ## 2.4.2 Globe Valves Sizes 2-1/2 inches and less, bronze shall conform to MSS SP-80, Type 1, 2 or 3, Class 125. Sizes 3 inches through 12 inches, cast iron shall conform to MSS SP-85, Type III, Class 125. ## 2.4.3 Angle Valves Sizes 2-1/2 inches and less, bronze shall conform to MSS SP-80, Type 1, 2 or 3, Class 125. Sizes 3 inches through 12 inches, cast iron shall conform to MSS SP-85, Type III, Class 125. #### 2.4.4 Gate Valves Sizes 2-1/2 inches and less, bronze shall conform to MSS SP-80, Type 1 or 2, Class 125. Sizes 3 inches through 48 inches, cast iron shall conform to MSS SP-70, Type I, Class 125, Design OT or OF (OS&Y), bronze trim. ## 2.4.5 Air Vents Air vents shall be provided at all piping high points in water systems, with block valve in inlet and internal check valve to allow air vent to be isolated for cleaning and inspection. Outlet connection shall be piped to nearest open site or suitable drain, or terminated 12 inches above finished grade. Pressure rating of air vent shall match pressure rating of piping system. Body and cover shall be cast iron or semi-steel with stainless steel or copper float and stainless steel or bronze internal parts. Air vents installed in piping in chase walls or other inaccessible places shall be provided with an access panel. ## 2.4.6 Balancing Valves Balancing valves shall have meter connections with positive shutoff valves. An integral pointer shall register degree of valve opening. Valves shall be calibrated so that flow in gpm can be determined when valve opening in degrees and pressure differential across valve is known. Each balancing valve shall be constructed with internal seals to prevent leakage and shall be supplied with preformed insulation. Valves shall be suitable for 250 degrees F temperature and working pressure of the pipe in which installed. Valve bodies shall be provided with tapped openings and pipe extensions with shutoff valves outside of pipe insulation. The pipe extensions shall be provided with quick connecting hose fittings for a portable meter to measure the pressure differential. One portable differential meter shall be furnished. The meter suitable for the operating pressure specified shall be complete with hoses, vent, and shutoff valves and carrying case. In lieu of the balancing valve with integral metering connections, a ball valve or plug valve with a separately installed orifice plate or venturi tube may be used for balancing. Plug valves and ball valves 8 inches or larger shall be provided with manual gear operators with position indicators. #### 2.4.7 Automatic Flow Control Valves The valves shall be designed to be sensitive to pressure differential across the valve to provide the required opening. The valves shall be selected for the flow required and provided with a permanent nameplate or tag carrying a record of the factory-determined flow rate and flow control pressure levels. Valves shall control the flow within 5 percent of the tag rating. Valves shall be suitable for the maximum operating pressure of 125 psi or 150 percent of the system operating pressure, whichever is greater. Where the available system pressure is not adequate to provide the minimum pressure differential that still allows flow control, the system pump head shall be increased. Valves shall be suitable for the maximum system operating temperature and pressure. Valve materials shall be same as specified for low temperature heating system check, globe, angle and gate valves. Valve operator shall be the electric motor type or pneumatic type as applicable. Valve operator shall be capable of positive shutoff against the system pump head. #### 2.4.8 Thermowells Thermowells shall be Series 300 stainless steel with threaded brass plug and chain, 2 inch lagging neck and extension type well. Inside diameter and insertion length shall be as required for installation. ## 2.5 COLD WATER CONNECTIONS - HEATING SYSTEMS Heating systems connections to domestic water systems shall be provided which include consecutively in line: a shutoff valve, a strainer, backflow prevention device, water pressure regulator, and a shutoff valve, The entire assembly shall be provided with a bypass line with shutoff valve. $\underline{\text{Boiler}}$ System No. B-4 is an exception to the requirement. The backflow prevention device shall be provided as indicated. The device shall be in compliance with Section 15400 PLUMBING, GENERAL PURPOSE and shall be of the type approved for "High Health Cross Connection Hazard" installations. The valve assembly type and the installation shall be in accordance with USC Manual and/or PNWS-AWWA Manual provisions. No backflow prevention device is required for Boiler No. 4 in Pump House inasmuch as the water service line entering the Pump House is provided with a backflow preventer. ## 2.5.1 Strainers Basket or Y-type strainers shall be the same size as the pipelines in which they are installed. Strainer bodies shall be rated for 125 pound service, with bottoms drilled and plugged. Bodies shall have arrows cast on the sides to indicate the direction of flow. Each strainer shall be equipped with a removable cover and sediment basket. Basket shall not be less than 22 gauge and shall have perforations to provide a net free area through the basket of at least four times that of the entering pipe. ## 2.5.2 Pressure Regulating Valve Valve shall be a type that will not stick nor allow pressure to build up on the low side. Valve shall be set to maintain a terminal pressure approximately 5 psi in excess of the static head on the system and shall operate within a 20 psi variation regardless of initial pressure and without objectionable noise under any condition of operation. #### 2.6 Not used #### 2.7 EXPANSION TANK Pressurization systems shall include a replaceable diaphragm-type captive air expansion tanks which will accommodate the expanded water of the system generated within the normal operating temperature range, limiting this pressure
increase at all components in the system to the maximum allowable pressure at those components. The only air in the system shall be the permanent sealed-in air cushion contained in the diaphragm-type tank. Sizes shall be as indicated. Expansion tanks shall be welded steel, constructed, tested and stamped in accordance with ASME BPV VIII Div 1 for a working pressure of 125 psig and precharged to the minimum operating pressure. Tank air chamber shall be fitted with an air charging valve. Tank shall be supported by steel legs and steel saddles for horizontal installations and vertical for floor mounted tanks. Tanks shall be provided as indicated in the schedule shown on the drawings. ## 2.8 AIR SEPARATOR TANK External air separation tank shall be steel, constructed, tested, and stamped in accordance with ASME BPV VIII Div 1 for a working pressure of 125 psi. The air separator tank inlet and outlets shall be the full size of the connecting mains. Separator shall be sized as indicated on the plans. - 2.9 Not used - 2.10 Not used - 2.11 SYSTEM EQUIPMENT AND ACCESSORIES - 2.11.1 See Section 15550 for Boiler, Flue Stack, & Gas Piping Specifications. - 2.11.2 Circulating Pumps P-109 & P-109A Pumps for hot water shall be of the single-stage end suction, centrifugal non-overloading type, electrically driven. Pump capacity, efficiency, motor size, speed, and impeller type shall be as indicated on the drawings. Pumps shall be supported on a concrete housekeeping pad. Pumps shall be mounted with the motor direct-connected by means of a flexible-shaft coupling. Unit to be mounted on a cast iron, or steel sub-base. Pump housing shall be of close grained cast iron. Shaft shall be carbon or alloy steel, turned and Shaft seal shall be mechanical-seal or stuffing-box type. Impeller, impeller wearing rings, glands, casing wear rings, and shaft sleeve shall be bronze. Bearings shall be ball, roller, oil-lubricated, or bronze-sleeve type, and shall be sealed or isolated to prevent loss of oil or entrance of dirt or water. Motor shall be of a type approved by the manufacturer of the pump. Units shall be provided with across-the-line magnetic starter with in a NEMA 250, Type 1 enclosure with "START-STOP" switch in the cover. #### 2.11.3 Circulating Pump HWP-7 Pumps shall be similar to that specified in Section 2.11.2, above, except that the pump shall be an in-line type and may be direct connected. Pump shall be sized as indicated on the plans ## 2.11.4 Pressure Gauges and Thermometers Gauges shall be provided for each boiler and piping as indicated. thermometer and pressure gauge shall be provided on the high temperature water supply and return mains. Thermometers shall be separable socket type. #### 2.11.5 Pressure Relief Valves One or more pressure relief valves shall be provided for each boiler in accordance with ASME Codes. The aggregate relieving capacity of the relief valves shall be not less than that required by the above code and/or as indicated on the plans. Discharge from the valves shall be installed to flow to floor drains and/or through outside walls as indicated. ## 2.11.6 Drains A drain connection with 3/4 inch hose bib shall be installed at the lowest point in the low temperature water return main near the boilers and other locations indicated. In addition, threaded drain connections with threaded cap or plug shall be installed wherever required for thorough draining of the low temperature water system. #### 2.11.7 Strainers Basket or Y-type strainer-body connections shall be the same size as the pipe lines in which the connections are installed. The bodies shall have arrows clearly cast on the sides to indicate the direction of flow. strainer shall be equipped with an easily removable cover and sediment basket. The body or bottom opening shall be equipped with nipple and gate valve for blowdown. The basket for systems shall be of not less than 0.025 inch thick stainless steel, or monel with small perforations of sufficient number to provide a net free area through the basket of at least 2.5 times that of the entering pipe. The flow shall be into the basket and out through the perforations. For water heating systems, only cast steel bodies shall be used. ## 2.11.8 Three Way Mixing and Diverting Valves The three-way mixing and diverting valves for the snow melting system and the AHU heating coils shall be electric/electronic and shall be as specified in Section 15951, DIRECT DIGITAL CONTROL for HVAC. ## 2.12 INSULATION Shop and field applied insulation shall be as specified in Section 15080 THERMAL INSULATION FOR MECHANICAL SYSTEMS. #### 2.13 FACTORY PAINTED EXPOSED SPACE HEATING EQUIPMENT Radiator and convector enclosures shall be coated with the manufacturer's standard rust inhibiting primer for painting in the field as specified in Section 09900 PAINTING, GENERAL. All other exposed heating equipment shall be painted at the factory with the manufacturer's standard primer and enamel finish. #### 2.14 UNIT HEATERS Heaters shall be as specified below, and shall have a heating capacity not less than that the capacity indicated. ## 2.14.1 Propeller Fan Heaters - Forced Hot Water, UH-107, UUH-109, UH-205 Heaters shall be designed for suspension and arranged for horizontal discharge of air as indicated. Casings shall be not less than 20 gauge black steel and finished with lacquer or enamel. Suitable adjustable four way deflectors shall be provided to assure proper air and heat penetration capacity at floor level based on established design temperature. Suspension from heating pipes will not be permitted. Horizontal discharge type unit heaters shall have discharge or face velocities not in excess of the following: | Unit Capacity, | cfm | Face | Velocity, | fpm | | |----------------|----------|------|-----------|-------|--| | Up to | 1,000 | | | 800 | | | 1,001 | to 3,000 | | | 900 | | | 3,001 a | and over | | | 1,000 | | ## 2.14.2 Heating Elements Heating coils shall be as specified in Section 15895 AIR SUPPLY, DISTRIBUTION, VENTILATION, AND EXHAUST SYSTEM for types indicated. Coils shall be suitable for use with water up to 250 degrees F., and shall have capacities as indicated on the drawings. #### 2.14.3 Motors Motors shall be provided with NEMA 250 general purpose enclosure. Motors and motor controls shall otherwise be as specified in Section 16415 ELECTRICAL WORK, INTERIOR. ## 2.14.4 Motor Switches Motors shall be provided with manual selection switches with "Off," and "Automatic" positions located on the unit heater and shall be equipped with thermal overload protection. #### 2.14.5 Controls Controls shall be low voltage (24V) type adjustable thermostat, wall mounted, complete with transformer and relay, sub-base which will provide for manual switch operations of the fan without a call for heat, and a strap-on-type direct mounted aquastat located on the hot water return line. The thermostat, in the heating cycle, shall cycle the fan off-on to meet the set-temperature of thermostat. The aquastat shall be wired to prevent fan operations when there is no heat present in the return lines except when the switch in the sub-base is energized. ## 2.14.6 Cabinet Unit Heaters - Forced Hot Water, CUH-102 and CUH-103 Heaters shall be cabinet type, fully recessed in the ceiling with flanged cover containing air inlet and outlet grilles. Coils shall be forced hot water type and shall be provided with air vents, shutoff valves, balancing valves. Capacities shall be as indicated on the plans. Casings shall be not less than 16 gauge steel and finished with lacquer or enamel of color selected by the CO. Discharge grilles shall be adjustable type. Fans shall be direct drive centrifugal type, multi-speed motors. Flat filters shall be provided in the cabinet. Filters shall be flame retardant, resin impregnated polyester media mounted on a wire frame. Controls and motor switches shall be as specified for Propeller Unit Heaters directly above. #### 2.15 HEATING AND VENTILATING UNITS Heating and ventilating units shall be as specified in Section 15895 AIR SUPPLY, DISTRIBUTION, VENTILATION, AND EXHAUST SYSTEMS. ## 2.16 WATER TREATMENT SYSTEM The water treatment system shall be capable of manually feeding chemicals into the heating system to prevent corrosion and scale within the heat exchanger and piping system. All water treatment equipment and chemicals shall be furnished and installed by a water treatment company regularly engaged in the installation of water treatment equipment and the provision of water treatment chemicals based upon water condition analyses. The water treatment company shall provide a water sample analysis taken from the building site, each month for one year. #### 2.16.1 Chemical Shot Feeder A shot feeder shall be provided as indicated. Size and capacity of feeder shall be as indicated. The feeder shall be furnished with an air vent, gauge glass, funnel, valves, fittings, and piping. All materials of construction shall be compatible with the chemicals being used. #### 2.16.2 Make Up Water Analysis The Contractor shall have a water analysis made using the following ASTM D 596 format: | Date of Sample | (|) | |---------------------------------|---|----------------| | Temperature | (|) degrees F | | Silica (Si02) | (|) ppm | | Insoluble | (|) ppm | | Iron and Aluminum Oxides | (|) ppm | | Calcium (Ca) | (|) ppm | | Magnesium (Mg) | (|) ppm | | Sodium and Potassium (Na and K) | (|) ppm | | Carbonate (HC03) | (|) ppm | | Sulfate (S04) | (|) ppm | | Chloride (C1) | (|) ppm | | Nitrate (N03) | (|) ppm | | Turbidity | (|) unit | | рН | (|) | | Residual Chlorine | (|) ppm | | Total Alkalinity | (|) ppm | | Noncarbonate Hardness | (|) epm | | Total Hardness | (|) epm | | Dissolved Solids | (|) ppm | | Fluorine | (|) ppm | | Conductivity | (|) microsiemens | ## 2.16.3 Chemicals The Contractor shall have a chemical company specializing in water treatment shall provide pretreatment
chemicals that will remove and permit flushing of mill scale, oil, grease, and other foreign matter from the water heating system. The chemical company shall also provide all treatment chemicals required for the initial fill of the system and for a period of one year of operation. The chemical company shall determine the correct chemicals and concentrations required for the water treatment. The chemicals shall not be proprietary and shall meet required federal, state, and local environmental regulations for the treatment of heating water systems and discharge to the sanitary sewer. The chemicals shall remain stable throughout the operating temperature range of the system, and shall be compatible with pump seals and other elements of the system. #### 2.16.4 Glycol Solutions A 40 percent concentration by volume of industrial grade propylene glycol shall be provided. The glycol shall be tested in accordance with ASTM D REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 1384 with less than 0.5 mils penetration per year for all system metals. The glycol shall contain corrosion inhibitors. Silicate based inhibitors shall not be used. The solution shall be compatible with pump seals, other elements of the system, and all water treatment chemicals used within the system. #### 2.16.5 Test Kits All required test kits and reagents for determining the proper water conditions shall be provided. #### PART 3 EXECUTION #### 3.1 INSTALLATION All work shall be installed as indicated and in accordance with the manufacturer's diagrams and recommendations. #### 3.2 FIELD PAINTING Field painting of exposed pipe shall be as specified in Section 09900 PAINTING, GENERAL. Field painting of factory primed equipment shall be as specified in Section 09900 PAINTING, GENERAL. ## 3.3 WELDING Piping shall be welded in accordance with qualified procedures using performance qualified welders and welding operators. Procedures and welders shall be qualified in accordance with ASME BPV IX. Welding procedures qualified by others, and welders and welding operators qualified by another employer may be accepted as permitted by ASME B31.1. The Contracting Officer shall be notified 24 hours in advance of tests and the tests shall be performed at the work site if practical. The welder or welding operator shall apply his assigned symbol near each weld he makes as a permanent record. Structural members shall be welded in accordance with Section 05055 WELDING, STRUCTURAL. Welding and nondestructive testing procedures for piping shall be as specified in Section 15052 WELDING, PRESSURE PIPING. ## 3.4 PIPING Unless otherwise specified, pipe and fittings installation shall conform to the requirements of ASME B31.1. Pipe shall be cut accurately to measurements established at the job site and worked into place without springing or forcing, completely clearing all windows, doors, and other openings. Cuttings or other weakening of the building structure to facilitate piping installation will not be permitted without written approval. Pipe or tubing shall be cut square, shall have burrs removed by reaming, and shall be so installed as to permit free expansion and contraction without causing damage to building structure, pipe, joints, or hangers. Changes in direction shall be made with factory made fittings, except that bending of pipe up to 4 inches will be permitted, provided a pipe bender is used and wide sweep bends are formed. The center line radius of bends shall not be less than six diameters of the pipe. Bent pipe showing kinks, wrinkles, flattening, or other malformations will not be accepted. Vent pipes shall be installed through the roof as indicated and shall be flashed as specified. Horizontal mains shall pitch up or down in the direction of flow as indicated. The grade shall be not less than 1 inch in 40 feet. Reducing fittings shall be used for changes in pipe sizes. Open ends of pipelines and equipment shall be capped or plugged during installation to keep dirt or other foreign materials out of the systems. Pipe not otherwise specified shall be uncoated. Unions and other components for copper pipe or tubing shall be brass or bronze. Connections between ferrous and copper piping shall be electrically isolated using dielectric unions. #### 3.4.1 Joints Except as otherwise specified, joints used on steel pipe shall be threaded for fittings 1 inch and smaller; threaded or welded for 1-1/4 inches up through 2-1/2 inches; and flanged or welded for 3 inches and larger. Joints between sections of copper tubing or copper pipe shall be flared or sweated. Pipe and fittings 1-1/4 inches and larger installed in inaccessible conduits or trenches beneath concrete floor slabs shall be welded. Unless otherwise specified, connections to equipment shall be made with black malleable iron unions for pipe 2-1/2 inches or smaller in diameter, and with flanges for pipe 3 inches or larger in diameter. ## 3.4.2 Low Temperature Systems Piping may have threaded, welded, or flanged as applicable and as specified. Reducing fittings shall be used for changes in pipe sizes. In horizontal lines, reducing fittings shall be the eccentric type where possible to maintain the top of the adjoining pipes at the same level. #### 3.4.3 Threaded Joints Threaded joints shall be made with tapered threads properly cut, and shall be made tight with PTFE tape complying with ASTM D 3308, or equivalent thread joint compound applied to the male threads only, and in no case to the fittings. ## 3.4.4 Welded Joints Joints shall be fusion-welded unless otherwise required. Changes in direction of piping shall be made with welding fittings only. Branch connection may be made with either welding tees or branch outlet fittings. Branch outlet fittings shall be forged, flared for improvement of flow where attached to the run, and reinforced against external strains. ## 3.4.5 Flanged Joints or Unions Flanged joints or unions shall be provided in each line immediately preceding the connection to each piece of equipment or material requiring maintenance such as coils, pumps, control valves, and similar items. Flanged joints shall be faced true, provided with gaskets, and made square and tight. Full-faced gaskets shall be used with cast iron flanges. ## 3.5 CONNECTIONS TO EQUIPMENT Supply and return connections shall be provided by the Contractor unless otherwise indicated. Valves shall be installed in accordance with the manufacturer's recommendations. Unless otherwise indicated, the size of the supply and return pipes to each piece of equipment shall be not smaller than the connections on the equipment. No bushed connections shall be permitted. Change in sizes shall be made with reducers or increasers only. ## 3.6 BRANCH CONNECTIONS Branches shall pitch up or down as indicated, unless otherwise specified. Connection shall be made to insure unrestricted circulation, eliminate air pockets, and permit drainage of the system. #### 3.7 RISERS The location of risers is approximate. Exact locations of the risers shall be as approved. #### 3.8 SUPPORTS #### 3.8.1 General Hangers used to support piping 2 inches and larger shall be fabricated to permit adequate adjustment after erection while supporting the load. Pipe guides and anchors shall be installed to keep pipes in accurate alignment, to direct the expansion movement, and to prevent buckling, swaying, and undue strain. All piping subjected to vertical movement when operating temperatures exceed ambient temperatures, shall be supported by variable spring hangers and supports or by constant support hangers. Where threaded rods are used for support, they shall not be formed or bent. #### 3.8.1.1 Seismic Requirements for Pipe Supports, Standard Bracing All piping and attached valves shall be supported and braced to resist seismic loads as specified under Section 13082 SEISMIC PROTECTION FOR ARCHITECTURAL, MECHANICAL, AND ELECTRICAL SYSTEMS AND EQUIPMENT (ZONE 2). Structural steel required for reinforcement to properly support piping, headers, and equipment but not shown shall be provided under this section. Material used for supports shall be as specified under Section 05120 STRUCTURAL STEEL. ## 3.8.1.2 Structural Attachments Structural steel brackets required to support piping, headers, and equipment, but not shown, shall be provided under this section. Material and installation shall be as specified under Section 05120 STRUCTURAL STEEL. Pipe hanger loads suspended from steel joist panel points shall not exceed 50 pounds. Loads exceeding 50 pounds shall be suspended from panel points. #### 3.8.1.3 Multiple Pipe Runs In the support of multiple pipe runs on a common base member, a clip or clamp shall be used where each pipe crosses the base support member. Spacing of the base support members shall not exceed the hanger and support spacing required for any individual pipe in the multiple pipe run. ## 3.8.2 Pipe Hangers, Inserts, and Supports Pipe hangers, inserts and supports shall conform to MSS SP-58 and MSS SP-69, except as specified as follows: - a. Types 5, 12, and 26 shall not be used. - b. Type 3 shall not be used on insulated pipe which has a vapor barrier. Type 3 may be used on insulated pipe that does not have a vapor barrier if clamped directly to the pipe and if the clamp bottom does not extend through the insulation and the top clamp attachment does not contact the insulation during pipe movement. - c. Type 18 inserts shall be secured to concrete forms before concrete is placed. Continuous inserts which allow more adjustment may be used if they otherwise meet the requirements for Type 18 inserts. - d. Type 19 and 23 C-clamps shall be torqued per MSS SP-69 and have both locknuts and retaining devices, furnished by the manufacturer. Field-fabricated C-clamp bodies or retaining devices are not acceptable. - e. Type 20 attachments used on angles and channels shall be furnished with an added malleable iron heel plate or
adapter. - f. Type 24 may be used only on trapeze hanger systems or on fabricated frames. - g. Where Type 39 saddle or Type 40 shield are permitted for a particular pipe attachment application, the Type 39 saddle shall be used on all pipe 4 inches and larger. - h. Horizontal pipe supports shall be spaced as specified in MSS SP-69 and a support shall be installed not over 1 foot from the pipe fitting joint at each change in direction of the piping. Pipe supports shall be spaced not over 5 feet apart at valves. - i. Vertical pipe shall be supported at each floor, except at slab-on-grade, and at intervals of not more than 15 feet, except that pipe shall be supported not more than 8 feet from end of risers, and at vent terminations. - j. Type 35 guides using steel, reinforced PTFE or graphite slides shall be provided where required to allow longitudinal pipe movement. Lateral restraints shall be provided as required. Slide materials shall be suitable for the system operating temperatures, atmospheric conditions and bearing loads encountered. Where steel slides do not require provision for restraint or lateral movement, an alternate guide method may be used. On piping 4 inches and larger, a Type 39 saddle may be welded to the pipe and freely rest on a steel plate. On piping under 4 inches, a Type 40 protection shield may be attached to the pipe or insulation and freely rest on a steel slide plate. Where there are high system temperatures and welding to piping is not desirable, then the Type 35 guide shall include a pipe cradle, welded to the guide structure and strapped securely to the pipe. The pipe shall be separated from the slide material by at least 4 inches, or by an amount adequate for the insulation, which ever is greater. k. Except for Type 3, pipe hangers on horizontal insulated pipe shall be the size of the outside diameter of the insulation. ## 3.8.3 Piping in Trenches Piping shall be supported as indicated. #### 3.9 PIPE SLEEVES ## 3.9.1 Pipe Passing Through Concrete or Masonry Pipe passing through concrete or masonry walls or concrete floors or roofs shall be provided with pipe sleeves fitted into place at the time of construction. Sleeves shall not be installed in structural members except where indicated or approved. Rectangular and square openings shall be as detailed. Each sleeve shall extend through its respective wall, floor, or roof, and shall be cut flush with each surface. Unless otherwise indicated, sleeves shall provide a minimum of 1/4 inch annular space between bare pipe or insulation surface and sleeves. Sleeves in bearing walls, waterproofing membrane floors, and wet areas shall be steel pipe or cast iron pipe. Sleeves in nonbearing walls, floors, or ceilings may be steel pipe, cast iron pipe, or galvanized sheet metal with lock-type longitudinal seam and of the metal thickness indicated. Except in pipe chases or interior walls, the annular space between pipe and sleeve or between jacket over insulation and sleeve in nonfire rated walls and floors shall be sealed as indicated and specified in Section 07900 JOINT SEALING. ## 3.9.2 Pipes Passing Through Waterproofing Membranes Pipes passing through waterproofing membranes shall be installed through a 4 pound lead-flashing sleeve, a 16 ounce copper sleeve, or a 0.032 inch thick aluminum sleeve, each having an integral skirt or flange. Flashing sleeve shall be suitably formed, and the skirt or flange shall extend 8 inches or more from the pipe and shall be set over the roof or floor membrane in a troweled coating of bituminous cement. The flashing sleeve shall extend up the pipe a minimum of 2 inches above the highest flood level of the roof or a minimum of 10 inches above the roof, whichever is greater, or 10 inches above the floor. The annular space between the flashing sleeve and the bare pipe or between the flashing sleeve and the metal-jacket-covered insulation shall be sealed as indicated. At the Contractor's option, pipes up to and including 10 inches in diameter passing through roof or floor waterproofing membrane may be installed through a cast iron sleeve with caulking recess, anchor lugs, flashing clamp device, and pressure ring with brass bolts. Waterproofing membrane shall be clamped into place and sealant shall be placed in the caulking recess. ## 3.9.3 Mechanical Seal Assembly In lieu of a waterproofing clamping flange and caulking and sealing of annular space between pipe and sleeve or conduit and sleeve, a modular mechanical type sealing assembly may be installed. The seals shall consist of interlocking synthetic rubber links shaped to continuously fill the annular space between the pipe/conduit and sleeve with corrosion protected carbon steel bolts, nuts, and pressure plates. The links shall be loosely assembled with bolts to form a continuous rubber belt around the pipe with a pressure plate under each bolt head and each nut. After the seal assembly is properly positioned in the sleeve, tightening of the bolts shall cause the rubber sealing elements to expand and provide a watertight seal between the pipe/conduit and the sleeve. Each seal assembly shall be sized as recommended by the manufacturer to fit the pipe/conduit and sleeve involved. The Contractor electing to use the modular mechanical type seals shall provide sleeves of the proper diameters. ## 3.9.4 Counterflashing Alternate As an alternate to caulking and sealing the annular space between the pipe and flashing sleeve or metal-jacket-covered insulation and flashing sleeve, counterflashing may be by standard roof coupling for threaded pipe up to 6 inches in diameter; lead-flashing sleeve for dry vents and turning the sleeve down into the pipe to form a waterproof joint; or tack-welded or banded-metal rain shield round the pipe and sealing as indicated. ## 3.9.5 Waterproofing Clamping Flange Pipe passing through wall waterproofing membrane shall be sleeved as specified. In addition, a waterproofing clamping flange shall be installed as indicated. ## 3.9.6 Escutcheons Escutcheons shall be provided at all finished surfaces where exposed piping, bare or covered, passes through floors, walls, or ceilings, except in boiler, utility, or equipment rooms. Escutcheons shall be fastened securely to pipe sleeves or to extensions of sleeves without any part of sleeves being visible. Where sleeves project slightly from floors, special deeptype escutcheons shall be used. Escutcheons shall be chromium-plated iron or chromium-plated brass, either one-piece or split pattern, held in place by internal spring tension or setscrew. #### 3.10 ANCHORS Anchors shall be provided where necessary or indicated to localize expansion or prevent undue strain on piping. Anchors shall consist of heavy steel collars with lugs and bolts for clamping and attaching anchor braces, unless otherwise indicated. Anchor braces shall be installed using turnbuckles where required. Supports, anchors, or stays shall not be attached in places where construction will be damaged by installation operations or by the weight or expansion of the pipeline. #### 3.11 PIPE EXPANSION The expansion of supply and return pipes shall be provided for by changes in the direction of the run of pipe, by expansion loops, or by expansion joints as indicated. Low temperature water and steam expansion joints may be one of the types specified. ## 3.11.1 Expansion Loops Expansion loops shall provide adequate expansion of the main straight runs of the system within the stress limits specified in ASME B31.1. The loops shall be cold-sprung and installed where indicated. Pipe guides shall be provided as indicated. #### 3.12 VALVES AND EQUIPMENT ACCESSORIES ## 3.12.1 Valves and Equipment Valves shall be installed at the locations shown or specified, and where required for the proper functioning of the system as directed. Gate valves shall be used unless otherwise indicated, specified, or directed. Valves shall be installed with their stems horizontal to or above the main body of the valve. Valves used with ferrous piping shall have threaded or flanged ends and sweat-type connections for copper tubing. ## 3.12.2 Gravity Flow-Control Valve The valve to control the flow of water shall be installed in the supply main near the heat exchanger. The valve shall operate so that when the circulating pump starts, the increased pressure within the main will open the valve; when the pump stops, the valve will close. The valve shall be constructed with a cast iron body and shall be provided with a device whereby the valve can be opened manually to allow gravity circulation. The flow-control valve shall be designed for the intended purpose, and shall be installed as recommended by the manufacturer. ## 3.12.3 Thermometer Socket A thermometer well shall be provided in each return line for each circuit in multicircuit systems. #### 3.12.4 Air Vents Vents shall be installed where indicated, and on all high points and piping offsets where air can collect or pocket. Vent discharge lines shall be piped to floor or nearest drain. Vent inlet lines shall be provided with a ball valve. #### 3.13 Not Used #### 3.14 UNIT HEATERS Unit heaters shall be installed as indicated and in accordance with the manufacturer's instructions. #### 3.15 INSULATION Thickness of insulation materials for piping and equipment and application shall be in accordance with Section 15080 THERMAL INSULATION FOR MECHANICAL SYSTEMS. ## 3.16 TESTING AND CLEANING #### 3.16.1 Pressure Testing The Contractor shall notify the Contracting Officer 14 days before the tests are to be conducted. The tests shall be performed in the presence of the Contracting Officer. The Contractor shall furnish all instruments and personnel required for the tests. Electricity, steam, and water will be furnished by the Government. All test results shall be accepted before thermal insulation is installed. The entire low temperature heating system, including boilers, heating units and fittings, shall be hydrostatically
tested and proven tight under a pressure of 30 psig for a period of four hours. ## 3.16.2 Test of Backflow Prevention Assemblies Backflow prevention assemblies shall be tested in accordance with Section 15400 PLUMBING, GENERAL PURPOSE. ## 3.16.3 Cleaning After the hydrostatic and backflow prevention tests have been made and prior to the operating tests, the heat exchanger and piping shall be thoroughly cleaned by filling the system with a solution of 1 pound of caustic soda or 1 pound of trisodium phosphate per 50 gallons of water. Observe the proper safety precautions in the handling and use of these chemicals. The water shall be heated to approximately 150 degrees F, and the solution circulated in the system for a period of 48 hours, then drained and the system thoroughly flushed out with fresh water. Equipment shall be wiped clean, with all traces of oil, dust, dirt, or paint spots removed. The Contractor shall be responsible for maintaining the system in a clean condition until final acceptance. Bearings shall be lubricated with oil or grease as recommended by the manufacturer. ## 3.16.4 Water Treatment Testing ## 3.16.4.1 Water Quality Test The heating water shall be analyzed prior to the acceptance of the facility and a minimum of once a month for a period of one year by the water treatment company. The analysis shall include the following information recorded in accordance with ASTM D 596. ## 3.17 TESTING, ADJUSTING AND BALANCING Except as specified herein, testing, adjusting, and balancing shall be in accordance with Section 15990 TESTING, ADJUSTING, AND BALANCING OF HVAC SYSTEMS. #### 3.18 MANUFACTURER'S SERVICES Services of a manufacturer's representative who is experienced in the installation, adjustment, and operation of the equipment specified shall be provided. The representative shall supervise the installation, adjustment, and testing of the equipment. #### 3.19 FRAMED INSTRUCTIONS Framed instructions containing wiring and control diagrams under glass or in laminated plastic shall be posted where directed. Condensed operating instructions, prepared in typed form, shall be framed as specified above and posted beside the diagrams. The framed instructions shall be posted before acceptance testing of the system. #### 3.20 FIELD TRAINING A field training course shall be provided for designated operating and maintenance staff members. Training shall be provided for a total period of 16 hours of normal working time and shall start after the system is functionally complete but prior to final acceptance tests. Field training shall cover all of the items contained in the approved operation and maintenance manuals. END OF SECTION ## SECTION 15653 ## AIR-CONDITIONING SYSTEM (UNITARY TYPE) ## PART 1 GENERAL ## 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. ## AIR CONDITIONING AND REFRIGERATION INSTITUTE (ARI) | ARI ANSI/ARI 210/240 | (1994) Unitary Air-Conditioning and Air-Source Heat Pump Equipment | |--------------------------|---| | ARI 270 | (1995) Sound Rating of Outdoor Unitary
Equipment | | ARI ARI 310/380/CSA C744 | (1993) Packaged Terminal Air-Conditioners | | ARI ANSI/ARI 320 | (1993) Water-Source Heat Pumps | | ARI 340/360 | (1993) Commercial and Industrial Unitary Air-
Conditioning and Heat Pump Equipment | | ARI 350 | (1986) Sound Rating of Non-Ducted Indoor Air-
Conditioning Equipment | | ARI 370 | (1986) Sound Rating of Large Outdoor
Refrigerating and Air-Conditioning Equipment | | ARI ANSI/ARI 410 | (1991) Forced-Circulation Air-Cooling and Air-Heating Coils | | ARI 460 | (1994) Remote Mechanical-Draft Air-Cooled
Refrigerant Condensers | | ARI ANSI/ARI 490 | (1989) Remote Mechanical-Draft Evaporative
Refrigerant Condensers | | ARI 495 | (1993) Refrigerant Liquid Receivers | | ARI 700 | (1995) Specifications for Fluorocarbon and
Other Refrigerants | | ARI ANSI/ARI 710 | (1986) Liquid-Line Driers | ## REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 ARI ANSI/ARI 720 (1988) Refrigerant Access Valves and Hose Connectors ARI 750 (1994) Thermostatic Refrigerant Expansion Valves ARI 760 (1994) Solenoid Valves for Use with Volatile Refrigerants AIR DIFFUSION COUNCIL (ADC) ADC 1062:GRD (1984) Test Codes for Grilles, Registers and Diffusers AIR MOVEMENT AND CONTROL ASSOCIATION (AMCA) AMCA 500 (1994) Test Methods for Louvers, Dampers and Shutters AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI) ANSI A13.1 (1981; R 1993) Scheme for the Identification of Piping Systems ANSI S1.13 (1995) Methods for the Measurement of Sound Pressure Levels AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) ASTM A 47 (1990; R 1995) Ferritic Malleable Iron Castings ASTM A 47M (1990; R 1996) Ferritic Malleable Iron Castings (Metric) ASTM A 48 (1994a) Gray Iron Castings ASTM A 48M (1994a) Gray Iron Castings (Metric) ASTM A 53 (1997) Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless ASTM A 106 (1997) Seamless Carbon Steel Pipe for High- Temperature Service ASTM A 123 (1989a) Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products ASTM A 153 (1996) Zinc Coating (Hot-Dip) on Iron and Steel Hardware ASTM A 181/A 181M (1995b) Carbon Steel Forgings, for General- Purpose Piping | ASTM A 183 | (1983; R 1990) Carbon Steel Track Bolts and Nuts | |---|--| | ASTM A 193/A 193M | (1997) Alloy-Steel and Stainless Steel
Bolting Materials for High-Temperature
Service | | ASTM A 234/A 234M | (1997) Piping Fittings of Wrought Carbon
Steel and Alloy Steel for Moderate and High
Temperature Service | | ASTM A 307 | (1994) Carbon Steel Bolts and Studs, 60 000 PSI Tensile Strength | | ASTM A 334/A 334M | (1996) Seamless and Welded Carbon and Alloy-
Steel Tubes for Low-Temperature Service | | ASTM A 536 | (1984; R 1993) Ductile Iron Castings | | ASTM A 653/A 653M | (1996) Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process | | ASTM C 534 | (1994) Preformed Flexible Elastomeric
Cellular Thermal Insulation in Sheet and
Tubular Form | | ASTM C 916 | (1985; R 1996) Adhesives for Duct Thermal Insulation | | ASTM C 1071 | (1991) Thermal and Acoustical Insulation (Glass Fiber, Duct Lining Material) | | AMERICAN SOCIETY OF
ENGINEERS (ASHRAE) | HEATING, REFRIGERATING AND AIR-CONDITIONING | | ASHRAE 15 | (1994) Safety Code for Mechanical
Refrigeration | | ASHRAE 34 | (1992; Addenda a-j) Number Designation and
Safety Classification of Refrigerants | | ASHRAE 127 | (1988) Method of Testing for Rating Computer
and Data Processing Room Unitary Air-
Conditioners | | AMERICAN SOCIETY OF MECHANICAL ENGINEERS (ASME) | | | | | ASME B1.20.1 (Inch) (1983; R 1992) Pipe Threads, General Purpose | ASME B16.5 | (1996) Pipe Flanges and Flanged Fittings NPS 1/2 thru NPS 24 | |------------------------|--| | ASME B16.9 | (1993) Factory-Made Wrought Steel Buttwelding Fittings | | ASME B16.11 | (1996) Forged Fittings, Socket-Welding and Threaded | | ASME B16.21 | (1992) Nonmetallic Flat Gaskets for Pipe
Flanges | | ASME B16.22 | (1995) Wrought Copper and Copper Alloy Solder
Joint Pressure Fittings | | ASME B16.26 | (1988) Cast Copper Alloy Fittings for Flared
Copper Tubes | | ASME B16.39 | (1986; R 1994) Malleable Iron Threaded Pipe Unions Classes 150, 250, and 300 | | ASME B31.1 | (1995; B31.1a; B31.1b; B31.1c) Power Piping | | ASME B31.5 | (1992; B31.5a) Refrigeration Piping | | ASME B40.1 | (1991) Gauges - Pressure Indicating Dial Type - Elastic Element | | ASME BPV VIII Div 1 | (1998) Boiler and Pressure Vessel Code;
Section VIII, Pressure Vessels Division 1 -
Basic Coverage | | ASME BPV IX | (1998) Boiler and Pressure Vessel Code;
Section IX, Welding and Brazing
Qualifications | | ASME ANSI/ASME PTC 23 | (1986; Addenda 1992, R 1992) Atmospheric
Water Cooling Equipment | | MANUFACTURERS STANDARI | DIZATION SOCIETY OF THE VALVE AND FITTINGS | | MSS SP-25 | (1998) Standard Marking System for Valves,
Fittings, Flanges and Unions | | MSS SP-58 | (1993) Pipe Hangers and Supports - Materials,
Design and Manufacture | | MSS SP-67 | (1995) Butterfly Valves | #### 00029/11 # REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 | MSS SP-69 | (1996) Pipe Hangers and Supports - Selection and Application | | |---|--|--| | MSS SP-70 | (1990) Cast Iron Gate Valves, Flanged and
Threaded Ends | | | MSS SP-71 | (1997) Cast Iron Swing Check Valves, Flanges and Threaded Ends | | | MSS SP-72 | (1992) Ball Valves with Flanged or Butt-
Welding Ends for General Service | | | MSS SP-78 | (1987; R 1992) Cast Iron Plug Valves, Flanged and Threaded Ends | | | MSS SP-80 | (1997) Bronze Gate, Globe, Angle and Check
Valves | | | MSS SP-85 | (1994) Cast Iron Globe & Angle Valves,
Flanged and Threaded Ends | | | MSS SP-110 | (1996) Ball Valves Threaded, Socket-Welding,
Solder Joint, Grooved and Flared Ends | | | NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA) | | | | NEMA 250 | (1991) Enclosures for Electrical Equipment (1000 Volts Maximum) | | | NEMA ICS 6 | (1993) Industrial Control and Systems,
Enclosures | | | NEMA MG 1 | (1993; Rev 1; Rev 2; Rev 3) Motors and Generators | | | NEMA MG 2 | (1989) Safety Standard for Construction and
Guide for Selection, Installation, and Use of
Electric Motors and
Generators | | | NORTH AMERICAN INSULATION MANUFACTURERS ASSOCIATION (NAIMA) | | | | NAIMA AH115 | (1993) Fibrous Glass Duct Construction
Standards | | SHEET METAL AND AIR CONDITIONING CONTRACTORS NATIONAL ASSOCIATION (SMACNA) (1992) Fire, Smoke and Radiation Damper SMACNA-05 Installation Guide for HVAC Systems (1995) HVAC Duct Construction Standards -SMACNA-06 Metal and Flexible SMACNA-10 (1985) HVAC Air Duct Leakage Test Manual #### 1.2 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-01 Data Air-Conditioning System; GA. Manufacturer's standard catalog data, prior to the purchase or installation of a particular component, shall be highlighted to show brand name, model number, size, options, performance charts and curves, etc. in sufficient detail to demonstrate compliance with contract requirements. Data shall be submitted for each specified component. Data shall include manufacturer's recommended installation instructions and procedures. If vibration isolation is specified for a unit, vibration isolator literature shall be included containing catalog cuts and certification that the isolation characteristics of the isolators provided meet the manufacturer's recommendations. Spare Parts Data; FIO. Spare parts data for each different item of equipment specified, after approval of detail drawings and not later than 3 months prior to the date of beneficial occupancy. The data shall include a complete list of parts and supplies, with current unit prices and source of supply, a recommended spare parts list for 1 year of operation, and a list of the parts recommended by the manufacturer to be replaced on a routine basis. SD-04 Drawings Air-Conditioning System; FIO. Drawings shall provide adequate detail to demonstrate compliance with contract requirements. Drawings shall consist of: - (1) Equipment layouts which identify assembly and installation details. - (2) Piping layouts which identify valves and fittings. - (3) Plans and elevations which identify clearances required for maintenance and operation. 00029/11 REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 - (4) Wiring diagrams which identify each component individually and interconnected or interlocked relationships between components. - (5) Foundation drawings, bolt-setting information, and foundation bolts prior to concrete foundation construction for equipment indicated or required to have concrete foundations. - (6) Details, if piping and equipment are to be supported other than as indicated, which include loadings and type of frames, brackets, stanchions, or other supports. - (7) Automatic temperature control diagrams and control sequences. - (8) Installation details which includes the amount of factory set superheat and corresponding refrigerant pressure/temperature. SD-06 Instructions Framed Instructions; FIO. Framed instructions for posting, at least 2 weeks prior to construction completion. SD-07 Schedules Tests; FIO. A letter, at least 10 working days in advance of each tests, advising the Contracting Officer of the test. Individual letters shall be submitted for the refrigerant system, ductwork leak tests, and the system performance tests. Each letter shall identify the date, time, and location for each test. Demonstrations; GA. A letter, at least 14 working days prior to the date of the proposed training course, which identifies the date, time, and location for the training. SD-09 Reports Tests; GA. Six copies of each test containing the information described below in bound $8-1/2 \times 11$ inch booklets. Individual reports shall be submitted for the condenser water system, refrigerant system, ductwork leak tests, and the cooling tower tests. - (1) The date the tests were performed. - (2) A list of equipment used, with calibration certifications. - (3) Initial test summaries. - (4) Repairs/adjustments performed. - (5) Final test results. System Performance Tests; GA. Six copies of the report shall be provided in bound $8\text{-}1/2 \times 11$ inch booklets. The report shall document compliance with the specified performance criteria upon completion and testing of the system. The report shall indicate the number of days covered by the tests and any conclusions as to the adequacy of the system. The report shall also include the following information and shall be taken at least three different times at outside dry-bulb temperatures that are at least 5 degrees F apart: - (1) Date and outside weather conditions. - (2) The load on the system based on the following: - (a) The refrigerant used in the system. - (b) Condensing temperature and pressure. - (c) Suction temperature and pressure. - (d) Ambient, condensing and coolant temperatures - (e) Running current, voltage and proper phase sequence for each phase of all motors. - (3) The actual on-site setting of operating and safety controls. - (4) Thermostatic expansion valve superheat value as determined by field test - (5) High and low refrigerant temperature switch set-points - (6) Moisture content - (7) Capacity control set-points - (8) Field data and adjustments which affect unit performance and energy consumption. - (9) Field adjustments and settings which were not permanently marked as an integral part of a device. SD-13 Certificates Air-Conditioning System; FIO. Where the system, components, or equipment are specified to comply with requirements of ARI, ASHRAE, ASME, or UL, proof of such compliance shall be provided. The label or listing of the specified agency shall be acceptable evidence. In lieu of the label or listing, a written certificate from an approved, nationally recognized testing organization equipped to perform such services, stating that the items have been tested and conform to the requirements and testing methods of the specified agency may be submitted. When performance requirements of this project's drawings and specifications vary from standard ARI rating conditions, computer printouts, catalog, or other application data certified by ARI or a nationally recognized laboratory as described above shall be included. If ARI does not have a current certification program that encompasses such application data, the manufacturer may self certify that his application data complies with project performance requirements in accordance with the specified test standards. Service Organizations; FIO. A certified list of qualified permanent service organizations for support of the equipment which includes their addresses and qualifications. The service organizations shall be reasonably convenient to the equipment installation and be able to render satisfactory service to the equipment on a regular and emergency basis during the warranty period of the contract. SD-19 Operation and Maintenance Manuals Operation Manual; FIO. Six complete copies of an operation manual in bound $8-1/2 \times 11$ inch booklets listing step-by-step procedures required for system startup, operation, and shutdown. The booklets shall include the manufacturer's name, model number, and parts list. The manuals shall include the manufacturer's name, model number, service manual, and a brief description of all equipment and their basic operating features. Maintenance Manual; FIO. Six complete copies of maintenance manual in bound $8-1/2 \times 11$ inch booklets listing routine maintenance procedures, possible breakdowns and repairs, and a trouble shooting guide. The manuals shall include piping and equipment layouts and simplified wiring and control diagrams of the system as installed. ### 1.3 QUALIFICATIONS Piping shall be welded in accordance with the qualified procedures using performance qualified welders and welding operators. Procedures and welders shall be qualified in accordance with ASME BPV IX. Welding procedures qualified by others, and welders and welding operators qualified by another employer may be accepted as permitted by ASME B31.1. The Contracting Officer shall be notified 24 hours in advance of tests and the tests shall be performed at the work site if practical. The welder or welding operator shall apply his assigned symbol near each weld he makes as a permanent record. #### 1.4 DELIVERY, STORAGE, AND HANDLING Stored items shall be protected from the weather and contamination. Proper protection and care of all material before, during, and after installation shall be the Contractor's responsibility. Any materials found to be damaged shall be replaced at the Contractor's expense. During installation, piping and similar openings shall be capped to keep out dirt and other foreign matter. #### 1.5 PROJECT/SITE CONDITIONS #### 1.5.1 Verification of Dimensions The Contractor shall become familiar with all details of the work, verify dimensions in the field, and advise the Contracting Officer of any discrepancy before performing any work. #### 1.5.2 Drawings Because of the small scale of the drawings, it is not possible to indicate all offsets, fittings, and accessories that may be required. The Contractor shall carefully investigate the plumbing, fire protection, electrical, structural and finish conditions that would affect the work to be performed and arrange such work accordingly, furnishing required offsets, fittings, and accessories to meet such conditions. Equipment, ductwork, and piping arrangements shall fit into space allotted and allow adequate acceptable clearances for installation, replacement, entry, servicing, and maintenance. ## PART 2 PRODUCTS ### 2.1 STANDARD PRODUCTS Materials and equipment shall be standard products of a manufacturer regularly engaged in the manufacturing of such products, which are of a similar material, design and workmanship. The standard products shall have been in satisfactory commercial or industrial use for 2 years prior to bid opening. The 2
year use shall include applications of equipment and materials under similar circumstances and of similar size. The 2 years experience shall be satisfactorily completed by a product which has been sold or is offered for sale on the commercial market through advertisements, manufacturer's catalogs, or brochures. Products having less than a 2 year field service record shall be acceptable if a certified record of satisfactory field operation, for not less than 6000 hours exclusive of the manufacturer's factory tests, can be shown. Products shall be supported by a service organization. System components shall be environmentally suitable for the indicated locations. ## 2.2 NAMEPLATES Major equipment including compressors, condensers, fans, pumps and motors shall have the manufacturer's name, address, type or style, model or serial number, and catalog number on a plate secured to the item of equipment. Plates shall be durable and legible throughout equipment life and made of anodized aluminum. Plates shall be fixed in prominent locations with nonferrous screws or bolts. #### 2.3 ELECTRICAL WORK Electrical equipment, motors, motor efficiencies, and wiring shall be in accordance with Section 16415 ELECTRICAL WORK, INTERIOR. Electrical motor driven equipment specified shall be provided complete with motors, motor starters, and controls. Electrical characteristics shall be as shown and, unless otherwise indicated, all motors of 1 horsepower and above with open, dripproof, shall be high efficiency type. Field wiring shall be in accordance with manufacturer's instructions. Each motor shall conform to NEMA MG 1 and NEMA MG 2 and be of sufficient size to drive the equipment at the specified capacity without exceeding the nameplate rating of the motor. Motors shall be continuous duty with the enclosure specified. starters shall be provided complete with thermal overload protection and other appurtenances necessary for the motor control indicated. Motors shall be furnished with a magnetic across-the-line or reduced voltage type starter as required by the manufacturer. Motor duty requirements shall allow for maximum frequency start-stop operation and minimum encountered interval between start and stop. Motors shall be sized for the applicable loads. Motor torque shall be capable of accelerating the connected load within 20 seconds with 80 percent of the rated voltage maintained at motor terminals during one starting period. Motor bearings shall be fitted with grease supply fittings and grease relief to outside of enclosure. Manual or automatic control and protective or signal devices required for the operation specified and any control wiring required for controls and devices specified, but not shown, shall be provided. ## 2.4 MISCELLANEOUS MATERIALS #### 2.4.1 Gaskets Gaskets shall conform to ASTM F 104 - classification for compressed sheet with nitrile binder and acrylic fibers for maximum 700 degrees F service. ## 2.4.2 Bolts and Nuts Bolts and nuts, except as required for piping applications, shall be in accordance with ASTM A 307. The bolt head shall be marked to identify the manufacturer and the standard with which the bolt complies in accordance with ASTM A 307. ## 2.4.3 Pipe Hangers, Inserts, and Supports Pipe hangers, inserts, and supports shall conform to MSS SP-58 and MSS SP-69. #### 2.4.4 Escutcheons Escutcheons shall be chromium-plated iron or chromium-plated brass, either one piece or split pattern, held in place by internal spring tension or set screws. ## 2.4.5 Pressure and Vacuum Gauge Gauge shall conform to ASME B40.1, Class 1, 2, or 3, Style X, Type I or III as required, 4-1/2 inches in diameter with phenolic or metal case. Each gauge range shall be selected so that at normal operating pressure, the needle is within the middle-third of the range. ## 2.4.6 Temperature Gauges Industrial duty thermometers shall be provided for the required temperature range. Thermometers shall have Fahrenheit scale in 2 degree graduations scale on a white face. The pointer shall be adjustable. ## 2.4.6.1 Stem Cased-Glass Stem cased-glass case shall be polished stainless steel or cast aluminum, 9 inches long, with clear acrylic lens, and non-mercury filled glass tube. #### 2.4.6.2 Bimetallic Dial Bimetallic dial type case shall be not less than 3-1/2 inches, stainless steel, and shall be hermetically sealed with clear acrylic lens. Bimetallic element shall be silicone dampened and unit fitted with external calibrator adjustment. Accuracy shall be one percent of dial range. ## 2.4.6.3 Thermal Well Thermal well shall be identical size, 1/2 or 3/4 inch NPT connection, brass or stainless steel. Where test wells are indicated, provide captive plugfitted type 1/2 inch NPT connection suitable for use with either engraved stem or standard separable socket thermometer or thermostat. Extended neck thermal wells shall be of sufficient length to clear insulation thickness by 1 inch. ## 2.4.7 Unicellular Plastic Foam Unicellular plastic foam shall be in accordance with ASTM C 534, Form T, except that D-Factor shall not exceed 0.28 at 75 degrees F mean temperature. #### 2.4.8 Bird Screen Screen shall be in accordance with ASTM E 437, Type 1, Class 1, 2 by 2 mesh, 0.063 inch diameter aluminum wire or 0.031 inch diameter stainless steel wire ## 2.5 UNITARY EQUIPMENT, SPLIT SYSTEM (AHU-101) Unit shall be an air-cooled split system which employs a remote condensing unit, a separate indoor unit, and interconnecting refrigerant piping. Unit shall be the air-conditioning type conforming to applicable Underwriters Laboratories (UL) standards including UL 1995. Unit shall be rated in accordance with ARI ANSI/ARI 210/240. Unit shall be provided with necessary fans, air filters, internal dampers, mixing boxes, hot water heat, and cabinet construction as specified in paragraph "System Components". The remote unit shall be as specified in paragraph REMOTE CONDENSER OR CONDENSING UNIT. Evaporator or supply fans shall be forward curved, centrifugal belt driven type. Condenser or outdoor fans shall be the manufacturer's standard for the unit specified and may be either propeller or centrifugal scroll type. Fan and condenser motors shall have open dripproof enclosures. ## 2.5.1 Air-to-Refrigerant Coil Coils shall have copper or aluminum tubes of 3/8 inch minimum diameter with copper or aluminum fins that are mechanically bonded or soldered to the tubes. Coils shall be protected with a minimum 3 mil thick phenolic coating. Casing shall be galvanized steel or aluminum. Contact of dissimilar metals shall be avoided. Coils shall be tested in accordance with ASHRAE 15 at the factory and be suitable for the working pressure of the installed system. Each coil shall be dehydrated and sealed after testing and prior to evaluation and charging. Each unit shall be provided with a factory operating charge of refrigerant and oil or a holding charge. Unit shipped with a holding charge shall be field charged. Separate expansion devices shall be provided for each compressor circuit. ## 2.5.2 Compressor Compressor shall be scroll type capable of operating at partial load conditions. Compressor shall be capable of continuous operation down to the lowest step of unloading as specified. The compressor shall be provided with vibration isolators, thermal overloads, high and low pressure safety cutoffs and protection against short cycling. ## 2.5.3 Refrigeration Circuit Refrigerant-containing components shall comply with ASHRAE 15 and be factory tested, cleaned, dehydrated, charged, and sealed. Refrigerant charging valves and connections, and pumpdown valves shall be provided for each circuit. Filter-drier shall be provided in each liquid line and be reversible-flow type. #### 2.5.4 Unit Controls Unit shall be internally prewired with a 24 or 120 volt control circuit powered by an internal transformer. Terminal blocks shall be provided for power wiring and external control wiring. Unit shall have cutoffs for high and low pressure, supply fan failure, flooded head pressure control, and safety interlocks on all service panels. Unit shall be internally protected by fuses or a circuit breaker in accordance with UL 1995. Low cost cooling shall be made possible by means of a control circuit which will modulate dampers to provide 100 percent outside air while locking out compressors. ### 2.6 EQUIPMENT EFFICIENCY Unit shall have a cooling efficiency equal to SEER=10 and EER=9.5. ## 2.7 REMOTE CONDENSING UNIT Units with capacities less than 135,000 Btuh shall produce a maximum ARI sound rating of 8.4 bels when rated in accordance with ARI 270. Each remote condenser coil shall be fitted with a manual isolation valve and an access valve on the coil side. Saturated refrigerant condensing temperature shall not exceed 120 degrees F at 95 degrees F ambient. Fan and cabinet construction shall be provided as specified in paragraph "System Components". Fan and condenser motors shall have open dripproof enclosures. #### 2.7.1 Air-Cooled Condenser Unit shall be rated in accordance with ARI 460 and conform to the requirements of UL 1995. Unit shall be factory fabricated, tested, packaged, and self-contained. Unit shall be complete with casing, propeller or centrifugal type fans, heat rejection coils, connecting piping and wiring, and all necessary appurtenances. ## 2.7.1.1 Connections Interconnecting refrigeration piping, electrical power, and control wiring between the condensing unit and the indoor unit shall be provided as required and as indicated. Electrical and refrigeration piping terminal connections between condensing unit and evaporator units shall be provided. ## 2.7.1.2 Head Pressure Control and Liquid Subcooling Low ambient control for multi-circuited units serving more than one evaporator coil shall provide independent condenser pressure controls for each refrigerant circuit. Controls shall be set to produce a minimum of 95 degrees F saturated refrigerant condensing temperature. Unit
shall be provided with a liquid subcooling circuit which shall ensure proper liquid refrigerant flow to the expansion device over the specified application range of the condenser. Unit shall be provide with manufacturer's standard liquid subcooling. Subcooling circuit shall be liquid sealed. # 2.7.1.3 Condensing Coil Coils shall have copper or aluminum tubes of 3/8 inch minimum diameter with copper or aluminum fins that are mechanically bonded or soldered to the tubes. Coils shall be protected with a minimum 3 mil thick phenolic coating. Casing shall be galvanized steel or aluminum. Contact of dissimilar metals shall be avoided. Coils shall be tested in accordance with ASHRAE 15 at the factory and be suitable for the working pressure of the installed system. Each coil shall be dehydrated and sealed after testing and prior to evaluation and charging. Each unit shall be provided with a factory operating charge of refrigerant and oil or a holding charge. Unit shipped with a holding charge shall be field charged. Separate expansion devices shall be provided for each compressor circuit. #### 2.7.1.4 Unit Controls The control system shall be complete with required accessories for regulating condenser pressure by fan cycling, solid-state variable fan speed, modulating condenser coil or fan dampers, flooding the condenser, or a combination of the above. Unit mounted control panels or enclosures shall be constructed in accordance with applicable requirements of NFPA 70 and housed in NEMA ICS 6, Class 1 or 3A enclosures. Controls shall include control transformer, fan motor starters, time delay start-up, overload protective devices, interface with local and remote components, and intercomponent wiring to terminal block points. #### 2.8 SYSTEM COMPONENTS ## 2.8.1 Refrigerant and Oil Refrigerant shall be one of the fluorocarbon gases. Refrigerants shall have number designations and safety classifications in accordance with ASHRAE 34. Refrigerants shall meet the requirements of ARI 700 as a minimum. Refrigerants shall have an Ozone Depletion Potential (ODP) of less than or equal to 0.05. Contractor shall provide and install a complete charge of refrigerant for the installed system as recommended by the manufacturer. Except for factory sealed units, two complete charges of lubricating oil for each compressor crankcase shall be furnished. One charge shall be used during the system performance testing period. Following the satisfactory completion of the performance testing, the oil shall be drained and replaced with a second charge. Lubricating oil shall be of a type and grade recommended by the manufacturer for each compressor. Where color leak indicator dye is incorporated, charge shall be in accordance with manufacturer's recommendation. #### 2.8.2 Fans Fan wheel shafts shall be supported by either maintenance-accessible lubricated antifriction block-type bearings, or permanently lubricated ball bearings. Unit fans shall be selected to produce the cfm required at the fan total pressure. Motor starters, if applicable, shall be magnetic across-the-line type with an open dripproof enclosure. Thermal overload protection shall be of the manual or automatic-reset type. Fan wheels or propellers shall be constructed of aluminum or galvanized steel. Centrifugal fan wheel housings shall be of galvanized steel, and both centrifugal and propeller fan casings shall be constructed of aluminum or galvanized steel. Steel elements of fans, except fan shafts, shall be hotdipped galvanized after fabrication or fabricated of mill galvanized steel. Mill-galvanized steel surfaces and edges damaged or cut during fabrication by forming, punching, drilling, welding, or cutting shall be recoated with an approved zinc-rich compound. Fan wheels or propellers shall be statically and dynamically balanced. Belt-driven fans shall have adjustable sheaves to provide not less than 25 percent fan-speed adjustment. sheave size shall be selected so that the fan speed at the approximate midpoint of the sheave adjustment will produce the specified air quantity. Centrifugal scroll-type fans shall be provided with streamlined orifice inlet and V-belt drive. Each drive will be independent of any other drive. Propeller fans shall be direct-drive drive type with adjustable pitch blades. ## 2.8.3 Primary/Supplemental Heating #### 2.8.3.1 Hot Water Coil Coil shall conform to the provisions of ARI ANSI/ARI 410. Coil shall be fin-and-tube type constructed of seamless copper tubes and aluminum or copper fins mechanically bonded or soldered to tubes. Headers shall be constructed of cast iron, welded steel or copper. Coil shall be constructed to float within the casing to allow free expansion and contraction of tubing. Casing and tube support sheets shall not be lighter than 16 gauge galvanized steel formed to provide structural strength. When required, multiple tube supports shall be provided to prevent tube sag. Coil shall be circuited for suitable water velocity without excessive pressure drop and properly pitched for drainage where required or indicated. Each coil shall be tested at the factory under water at not less than 300 psi air pressure, tested hydrostatically after assembly of the unit and proved tight under a gauge pressure of 200 psi. Coil shall be suitable for use with water up to 250 degrees F. Coil shall allow complete coil drainage with a pitch of not less than 1/8 inch per foot slope to drain. ## 2.8.4 Air Filters Air filters shall be listed in accordance with requirements of UL 900, except high efficiency particulate air filters of 99.97 percent efficiency by the DOP Test Method shall be as listed under the label service and shall meet the requirements of UL 586. ## 2.12.4.1 Extended Surface Pleated Panel Filters Filters shall be 2 inch depth sectional type of the size indicated and shall have an average efficiency of 25 to 30 percent when tested in accordance with ASHRAE 52.1. Initial resistance at 500 feet per minute will not exceed 0.36 inches water gauge. Filters shall be UL Class 2. Media shall be nonwoven cotton and synthetic fiber mat. A wire support grid bonded to the media shall be attached to a moisture resistant fiberboard frame. Four edges of the filter media shall be bonded to the inside of the frame to prevent air bypass and increase rigidity. ## 2.12.4.2 Replaceable Media Filters Replaceable media filters shall be the dry-media type, of the size required to suit the application. Filtering media shall be not less than 2 inches thick fibrous glass media pad supported by a structural wire grid or woven wire mesh. Pad shall be enclosed in a holding frame of not less than 16 gauge galvanized steel, and equipped with quick-opening mechanism for changing filter media. The air flow capacity of the filter shall be based on net filter face velocity not exceeding 300 feet per minute, with initial resistance of 0.13 inches water gauge. Average efficiency shall be not less than 30 percent when tested in accordance with ASHRAE 52.1. #### 2.12.7 Cabinet Construction Casings for the specified unitary equipment shall be constructed of galvanized steel or aluminum sheet metal and galvanized or aluminum structural members. Minimum thickness of single wall exterior surfaces shall be 18 gauge galvanized steel. Casing shall be fitted with lifting provisions, access panels or doors, fan vibration isolators, electrical control panel, corrosion-resistant components, structural support members, insulated condensate drip pan and drain, and internal insulation in the cold section of the casing. Provisions to permit replacement of major unit components shall be incorporated. Penetrations of cabinet surfaces, including the floor, shall be sealed. Unit shall be fitted with a drain pan which extends under all areas where water may accumulate. Drain pan shall be fabricated from Type 300 stainless steel, galvanized steel with protective coating as required, or an approved plastic material. Pan insulation shall be water impervious. Extent and effectiveness of the insulation of unit air containment surfaces shall prevent, within limits of the specified insulation, heat transfer between the unit exterior and ambient air, heat transfer between the two conditioned air streams, and condensation on surfaces. Insulation shall conform to ASTM C 1071. Paint and finishes shall comply with the requirements specified in paragraph "Factory Coating". #### 2.12.7.1 Indoor Cabinet Indoor cabinets shall be suitable for the specified indoor service and enclose all unit components. ## 2.12.7.2 Outdoor Cabinet Outdoor cabinets shall be suitable for outdoor service with a weathertight, insulated and corrosion-protected structure. Cabinets constructed exclusively for indoor service which have been modified for outdoor service are not acceptable. ## 2.14 INSULATION ### 2.14.1 Field Installed Insulation Field installed insulation shall be as specified in Section 15080 THERMAL INSULATION FOR MECHANICAL SYSTEMS. ## 2.14.2 Factory Installed Insulation Factory applied insulation shall be as specified for the equipment to be insulated except that refrigerant suction lines shall be insulated with unicellular plastic foam. Insulation shall comply with the fire hazard rating specified in Section 15080 THERMAL INSULATION FOR MECHANICAL SYSTEMS. #### 2.15 TEMPERATURE CONTROLS Temperature controls shall be in accordance with Section 15951 DIRECT DIGITAL CONTROL FOR HVAC. #### 2.16 DUCTWORK COMPONENTS #### 2.16.1 Metal Ductwork Every aspect of metal ductwork construction, including fittings and components, shall comply with SMACNA-06 unless otherwise specified. Elbows shall be radius type with a centerline radius of 1-1/2 times the width or diameter of the duct where space permits. Otherwise, elbows having a minimum radius equal to the width or diameter of the duct or square elbows with factory fabricated turning vanes may be used. Static pressure Class 1/2, 1, and 2 inch w.g. ductwork shall meet the
requirements of Seal Class Sealants shall conform to fire hazard classification specified in Section 15080 THERMAL INSULATION FOR MECHANICAL SYSTEMS. Pressure sensitive tape shall not be used as a sealant. Spiral lock seam duct, and flat oval shall be made with duct sealant and locked with not less than 3 equally spaced drive screws or other approved methods indicated in SMACNA-06. The sealant shall be applied to the exposed male part of the fitting collar so that the sealer will be on the inside of the joint and fully protected by the metal of the duct fitting. One brush coat of the sealant shall be applied over the outside of the joint to at least 2 inch band width covering all screw heads and joint gap. Dents in the male portion of the slip fitting collar will not be acceptable. ## 2.16.1.1 Transitions Diverging air flow transitions shall be made with each side pitched out a maximum of 15 degrees, for an included angle of 30 degrees. Transitions for converging air flow shall be made with each side pitched in a maximum of 30 degrees, for an included angle of 60 degrees, or shall be as indicated. Factory-fabricated reducing fittings for systems using round duct sections when formed to the shape of the ASME short flow nozzle, need not comply with the maximum angles specified. ### 2.16.1.2 Metallic Flexible Duct Metallic type duct shall be single-ply galvanized steel, self supporting to 8 foot spans. Duct shall be of corrugated/interlocked, folded and knurled type seam construction, bendable without damage through 180 degrees with a throat radius equal to 1/2 duct diameter. Duct shall conform to UL 181 and shall be rated for positive or negative working pressure of 15 inches water gauge at 350 degrees F, 650 degrees F when duct is galvanized steel. #### 2.16.1.3 Insulated Nonmetallic Flexible Duct Runouts Flexible duct runouts shall be used only where indicated. Runouts shall not exceed 10 feet in length, shall be preinsulated, factory fabricated, and comply with NFPA 90A and UL 181. Either field or factory applied vapor barrier shall be provided. Where coil induction or high velocity units are supplied with vertical air inlets, a streamlined and vaned and mitered elbow transition piece shall be provided for connection to the flexible duct or hose. The last elbow to these units, other than the vertical air inlet type, shall be a die-stamped elbow and not a flexible connector. Insulated flexible connectors may be used as runouts. The insulation material surface shall not be exposed to the air stream. ## 2.16.1.4 General Service Duct Connectors A flexible duct connector approximately 6 inches in width shall be provided where sheet metal connections are made to fans or where ducts of dissimilar metals are connected. For round/oval ducts, the flexible material shall be secured by stainless steel or zinc-coated, iron clinch-type draw bands. For rectangular ducts, the flexible material locked to metal collars shall be installed using normal duct construction methods. The composite connector system shall comply with UL 214 and be classified as "flame-retarded fabrics" in UL Bld Mat Dir. #### 2.16.3 Ductwork Insulation Ductwork insulation and related materials shall conform to the requirements of Section 15080 THERMAL INSULATION FOR MECHANICAL SYSTEMS. ## 2.16.4 Ductwork Accessories ### 2.16.4.1 Duct Access Doors Access doors shall be provided in ductwork where indicated and at all air flow measuring devices, automatic dampers, coils, thermostats, and other apparatus requiring service and inspection in the duct system, and unless otherwise shown, shall conform to SMACNA-06. Access doors shall be provided upstream and downstream of air flow measuring primaries and heating and cooling coils. Doors shall be minimum 15 x 18 inches, unless otherwise shown. Where duct size will not accommodate this size door, the doors shall be made as large as practicable. Doors 24×24 inches or larger shall be provided with fasteners operable from both sides. Doors in insulated ducts shall be the insulated type. # 2.16.4.2 Splitters and Manual Balancing Dampers Splitters and manual balancing dampers shall be furnished with accessible operating mechanisms. Where operators occur in finished portions of the building, operators shall be chromium plated with all exposed edges rounded. Splitters shall be operated by quadrant operators or 3/16 inch rod brought through the side of the duct with locking setscrew and bushing. Two rods are required on splitters over 8 inches. Manual volume control dampers shall be operated by locking-type quadrant operators. Dampers and splitters shall be 2 gauges heavier than the duct in which installed. Unless otherwise indicated, multileaf dampers shall be opposed blade type with maximum blade width of 12 inches. Access doors or panels shall be provided for all concealed damper operators and locking setscrews. Unless otherwise indicated, the locking-type quadrant operators for dampers, when installed on ducts to be thermally insulated, shall be provided with stand-off mounting brackets, bases, or adapters to provide clearance between the duct surface and the operator not less than the thickness of the insulation. Stand-off mounting items shall be integral with the operator or standard accessory of the damper manufacturer. Volume dampers shall be provided where indicated. #### 2.16.4.3 Air Deflectors and Branch Connections Air deflectors shall be provided at all duct mounted supply outlets, at all takeoff or extension collars to supply outlets, at all duct branch takeoff connections, and at all 90 degree elbows, as well as at all locations as indicated on the drawings or shown in the Sheet Metal and Air Contractors National Association manuals. Air deflectors, except those installed in 90 degree elbows, shall be provided with an approved means of adjustment. Adjustment shall be made from easily accessible means inside the duct or from an adjustment with sturdy lock on the face of the duct. When installed on ducts to be thermally insulated, external adjustments shall be provided with stand-off mounting brackets, integral with the adjustment device, to provide clearance between the duct surface and the adjustment device not less than the thickness of the thermal insulation. Air deflectors shall be factory-fabricated units consisting of curved turning vanes or louver blades designed to provide uniform air distribution and change of direction with minimum turbulence or pressure loss. Air deflectors shall be factory or field assembled. Blade air deflectors, also called blade air extractors, shall be approved factory fabricated units consisting of equalizing grid and adjustable blade and lock. Adjustment shall be easily made from the face of the diffuser or by position adjustment and lock external to the duct. Stand-off brackets shall be provided on insulated ducts and are described herein before. Fixed air deflectors, also called turning vanes, shall be provided in all 90 degree elbows. Turning vanes shall be designed as shown in the Sheet Metal and Air Condition Contractors National Association manuals. #### 2.16.5 Duct Sleeves, Framed Prepared Openings, Closure Collars ## 2.16.5.1 Duct Sleeves Duct sleeves shall be provided for all round ducts 15 inchesin diameter or less passing through floors, walls, ceilings, or roof, and installed during construction of the floor, wall, ceiling, or roof. Round ducts larger than 15 inches in diameter and all square, rectangular, and oval ducts passing through floors, walls, ceilings, or roof shall be installed through framed prepared openings. The Contractor shall be responsible for the proper size and location of sleeves and prepared openings. Sleeves and framed openings are also required where grilles, registers, and diffusers are installed at the openings. Framed prepared openings shall be fabricated from 20 gauge galvanized steel, unless otherwise indicated. Where sleeves are installed in bearing walls or partitions, black steel pipe, ASTM A 53, Schedule 20 shall be used. Sleeve shall provide 1 inch clearance between the duct and the sleeve or 1 inch clearance between the insulation and the sleeve for insulated ducts. #### 2.16.5.2 Framed Prepared Openings Openings shall have 1 inch clearance between the duct and the opening or 1 inch clearance between the insulation and the opening for insulated ducts. #### 2.16.5.3 Closure Collars Collars shall be fabricated of galvanized sheet metal not less than 4 inches wide, unless otherwise indicated, and shall be installed on exposed ducts on each side of walls or floors where sleeves or prepared openings are provided. Collars shall be installed tight against surfaces. Collars shall fit snugly around the duct or insulation. Sharp edges of the collar around insulated duct shall be ground smooth to preclude tearing or puncturing the insulation covering or vapor barrier. Collars for round ducts 15 inches in diameter or less shall be fabricated from 20 gauge galvanized steel. Collars for round ducts larger than 15 inches and all square, and rectangular ducts shall be fabricated from 18 gauge galvanized steel. Collars shall be installed with fasteners on maximum 6 inch centers, except that not less than 4 fasteners shall be used. ## 2.16.6 Diffusers, Registers, and Grilles (CD-1, EG-1, EG-2) Units shall be factory-fabricated of steel, corrosion-resistant steel, or aluminum and shall distribute the specified quantity of air evenly over space intended without causing noticeable drafts, air movement faster than 50 fpm in occupied zone, or dead spots anywhere in the conditioned area. Outlets for diffusion, spread, throw, and noise level shall be as required for specified performance. Performance shall be certified in accordance with ADC 1062:GRD. Inlets and outlets shall be sound rated and certified in accordance with ADC 1062:GRD. Sound power level shall be as indicated. Diffusers and registers shall be provided with volume damper
with accessible operator, unless otherwise indicated; or if standard with the manufacturer, an automatically controlled device will be acceptable. Volume dampers shall be opposed blade type for all diffusers and registers, except linear slot diffusers. Linear slot diffusers shall be provided with round or elliptical balancing dampers. Where the inlet and outlet openings are located less than 7 feet above the floor, they shall be protected by a grille or screen in accordance with NFPA 90A. #### 2.16.6.1 Diffusers Diffuser types shall be as indicated. Ceiling mounted units shall be furnished with antismudge devices, unless the diffuser unit minimizes ceiling smudging through design features. Diffusers shall be provided with air deflectors of the type indicated. Air handling troffers or combination light and ceiling diffusers shall conform to the requirements of UL Elec Const Dir for the interchangeable use as cooled or heated air supply diffusers or return air units. Ceiling mounted units shall be installed with rims tight against ceiling. Sponge rubber gaskets shall be provided between ceiling and surface mounted diffusers for air leakage control. Suitable trim shall be provided for flush mounted diffusers. Duct collar connecting the duct to diffuser shall be airtight and shall not interfere with volume controller. Return or exhaust units shall be similar to supply diffusers. ## 2.16.6.2 Registers and Grilles Units shall be four-way directional-control type, except that return and exhaust registers may be fixed horizontal or vertical louver type similar in appearance to the supply register face. Registers shall be provided with sponge-rubber gasket between flanges and wall or ceiling. Wall supply registers shall be installed at least 6 inches below the ceiling unless otherwise indicated. Return and exhaust registers shall be located 6 inches above the floor unless otherwise indicated. Four-way directional control may be achieved by a grille face which can be rotated in 4 positions or by adjustment of horizontal and vertical vanes. Grilles shall be as specified for registers, without volume control damper. #### 2.16.7 Louvers Louvers shall be furnished for installation in exterior walls and connected to ductwork as indicated on the drawings. The louvers shall be as specified in Section 10210 #### 2.17 REFRIGERANT PIPING Refrigerant piping, valves, fittings, and accessories shall conform to the requirements of ASHRAE 15 and ASME B31.5, except as specified. ### 2.17.1 Copper Tubing Copper tubing shall conform to ASTM B 280 annealed or hard drawn as required. Copper tubing shall be soft annealed where bending is required and hard drawn where no bending is required. Soft annealed copper tubing shall not be used in sizes larger than 1-3/8 inches. Joints shall be brazed except that joints on lines 7/8 inchand smaller may be flared. ## 2.17.2 Joints and Fittings, Copper Tubing Copper tube joints and fittings shall be flare joint type with short-shank flare, or solder-joint pressure type. Joints and fittings for brazed joint shall be wrought-copper or forged-brass sweat fittings. Cast sweat-type joints and fittings shall not be allowed for brazed joints. ### 2.17.3 Valves Valves shall be pressure and temperature rated for contained refrigerant service and shall comply with ASME B31.5. Metals of construction shall be ferrous or copper based. Atmosphere exposed valve stems shall be stainless steel or corrosion resistant metal plated carbon steel. Valve body connections shall be brazed or welded socket, flanged or combination thereof. Threaded connections shall not be used, except in pilot pressure or gauge lines where maintenance disassembly is required and welded flanges cannot be used. Valves shall be suitable for or fitted with extended copper ends for brazing in-place without disassembly. Ferrous body valves shall be fitted with factory fabricated and brazed copper transitions. To minimize system pressure drops, where practicable, globe valves shall be angle body type, and straight line valves shall be full port ball type. Control valve inlets shall be fitted with integral or adapted strainer or filter where recommended or required by manufacturer. Valves shall be cleaned and sealed moisture-tight. #### 2.17.3.1 Refrigerant-Stop Valves Valves, in sizes through 5/8 inch, shall be handwheel operated, straight or angle, packless diaphragm globe type with back-seating stem, brazed ends, except where SAE flare or retained seal cap connections are required. sizes over 5/8 inch, valves shall be globe or angle type, wrench operated with ground-finish stems, or ball valves, packed especially for refrigerant service, back seated, and provided with seal caps. Refrigerant isolation and shut-off valves shall have retained or captive spindles and facilities for tightening or replacement of the gland packing under line pressure as applicable. Stop valves shall have back-seating plated steel stem, bolted bonnet in sizes 1-1/8 inches OD and larger, integral or flanged transition brazed socket. Valves in sizes through 2-1/2 inches shall be end-entry body assembly, full-port, floating ball type, with equalizing orifice fitted chrome plated ball, seats and seals of tetrafluoroethylene, chrome plated or stainless steel stem, and seal cap. In sizes 4 inch IPS and larger, and in smaller sizes where carbon steel piping is used, valve bodies shall be tongue and groove flanged and complete with mating flange, gaskets and bolting for socket or butt-weld connection. Purge, charge and receiver valves shall be of manufacturer's standard configuration. ### 2.17.3.2 Check Valves Valve shall be designed for service application, spring-loaded type where required, with resilient seat and with flanged body in sizes 1/2 inch and larger. Valve shall provide positive shut-off at 1-1/2 psi differential pressure. ## 2.17.3.3 Liquid Solenoid Valves Valves shall comply with ARI 760 and be suitable for continuous duty with applied voltages 15 percent under and 5 percent over nominal rated voltage at maximum and minimum encountered pressure and temperature service conditions. Valves shall be direct-acting or pilot-operating type, packless, except that packed stem, seal capped, manual lifting provisions shall be furnished. Solenoid coils shall be moisture-proof, UL approved, totally encapsulated or encapsulated and metal jacketed as required. Valves shall have safe working pressure of 400 psi and a maximum operating pressure differential of at least 200 psi at 85 percent rated voltage. Valves shall have an operating pressure differential suitable for the refrigerant used. # 2.17.3.4 Expansion Valves Expansion valves conform to requirements of ARI 750. Valve shall be of the diaphragm and spring type with internal or external equalizers, and bulb and capillary tubing. Valve shall be provided with an external superheat adjustment along with a seal cap. Internal equalizers may be utilized where flowing refrigerant pressure drop between outlet of the valve and inlet to the evaporator coil is negligible and pressure drop across the evaporator is less than the pressure difference corresponding to 2 degrees F of saturated suction temperature at evaporator conditions. Bulb charge shall be determined by the manufacturer for the application and such that liquid will remain in the bulb at all operating conditions. Gas limited liquid charged valves and other valve devices for limiting evaporator pressure shall not be used without a distributor or discharge tube or effective means to prevent loss of control when bulb becomes warmer than valve body. Pilot-operated valves shall have a characterized plug to provide required modulating control. A de-energized solenoid valve may be used in the pilot line to close the main valve in lieu of a solenoid valve in the main liquid line. An isolatable pressure gauge shall be provided in the pilot line, at the main valve. Automatic pressure reducing or constant pressure regulating expansion valves may be used only where indicated or for constant evaporator loads. # 2.17.3.5 Safety Relief Valve Valve shall be the two-way type. Single type valves shall be used only where indicated. Valve shall bear the ASME code symbol. Valve capacity shall be certified by the National Board of Boiler and Pressure Vessel Inspectors. Valve shall be of an automatically reseating design after activation. ## 2.17.3.6 Refrigerant Access Valves Refrigerant access valves and hose connections shall be in accordance with ARI ANSI/ARI 720. #### 2.17.4 Accessories #### 2.17.4.1 Filter Driers Driers shall conform to ARI ANSI/ARI 710. Sizes 5/8 inch and larger shall be the full flow, replaceable core type. Sizes 1/2 inch and smaller shall be the sealed type. Cores shall be of suitable desiccant that will not plug, cake, dust, channel, or break down, and shall remove water, acid, and foreign material from the refrigerant. Filter driers shall be constructed so that none of the desiccant will pass into the refrigerant lines. Minimum bursting pressure shall be 1,500 psi. ## 2.17.4.2 Sight Glass and Liquid Level Indicator - Assembly and Components: Assembly shall be pressure- and temperature-rated and constructed of materials suitable for the service. Glass shall be borosilicate type. Ferrous components subject to condensation shall be electro-galvanized. - b. Gauge Glass: Gauge glass shall include top and bottom isolation valves fitted with automatic checks, and packing followers; red- line or green-line gauge glass; elastomer or polymer packing to suit the service; and gauge glass guard. - c. Bull's-Eye and Inline Sight Glass Reflex Lens: Bull's-eye and inline sight glass reflex lens shall be provided for dead-end liquid service. For pipe line mounting, two plain lenses in one body suitable for backlighted viewing shall be provided. - d. Moisture Indicator: Indicator shall be a self-reversible action, moisture reactive, color changing media. Indicator shall be furnished
with full-color-printing tag containing color, moisture and temperature criteria. Unless otherwise indicated, the moisture indicator shall be an integral part of each corresponding sight glass. ## 2.17.4.3 Vibration Dampeners Dampeners shall be of the all-metallic bellows and woven-wire type. ## 2.17.4.4 Flexible Pipe Connectors Connector shall be pressure and temperature rated for the service in accordance with ASHRAE 15 and ASME B31.5. Connector shall be a composite of interior corrugated phosphor bronze or Type 300 Series Stainless steel, as required for fluid service, with exterior reinforcement of bronze, stainless steel or monel wire braid. Assembly shall be constructed with a safety factor of not less than 4 at 300 degrees F. Unless otherwise indicated, the length of a flexible connector shall be as recommended by the manufacturer for the service intended. #### 2.17.4.5 Strainers Strainers used in refrigerant service shall have brass or cast iron body, Y-or angle-pattern, cleanable, not less than 60-mesh noncorroding screen of an area to provide net free area not less than ten times the pipe diameter with pressure rating compatible with the refrigerant service. Screens shall be stainless steel or monel and reinforced spring-loaded where necessary for bypass-proof construction. ## 2.17.4.6 Brazing Materials Brazing materials for refrigerant piping shall be in accordance with AWS A5.8, Classification BCuP-5. ## 2.18 DRAIN AND MISCELLANEOUS PIPING Piping, fittings, valves and accessories for drain and miscellaneous services shall be in accordance with Section 15400 PLUMBING, GENERAL PURPOSE. #### 2.19 FABRICATION ## 2.19.1 Factory Coating Unless otherwise specified, equipment and component items, when fabricated from ferrous metal, shall be factory finished with the manufacturer's standard finish, except that items located outside of buildings shall have weather resistant finishes that will withstand [125] [500] hours exposure to the salt spray test specified in ASTM B 117 using a 25 percent sodium chloride solution. Immediately after completion of the test, the specimen shall show no signs of blistering, wrinkling, cracking, or loss of adhesion and no sign of rust creepage beyond 1/8 inch on either side of the scratch mark. Cut edges of galvanized surfaces where hot-dip galvanized sheet steel is used shall be coated with a zinc-rich coating conforming to ASTM D 520, Type I. ## 2.19.2 Field Painting Painting required for surfaces not otherwise specified, and finish painting of items only primed at the factory are specified in Section 09900PAINTING, GENERAL. #### 2.19.2.1 Color Coding Color coding for piping identification is specified in Section 09900PAINTING, GENERAL. ### 2.19.2.2 Color Coding Scheme A color coding scheme for locating hidden piping shall be in accordance with [Section 15400 PLUMBING, GENERAL PURPOSE] [Section 15405PLUMBING, HOSPITAL]. ## PART 3 EXECUTION #### 3.1 INSTALLATION Work shall be performed in accordance with the manufacturer's published diagrams, recommendations, and equipment warranty requirements. Where equipment is specified to conform to the requirements of ASME BPV VIII Div land ASME BPV IX, the design, fabrication, and installation of the system shall conform to ASME BPV VIII Div 1 and ASME BPV IX. ## 3.1.1 Equipment Refrigeration equipment and the installation thereof shall conform to ASHRAE 15. Necessary supports shall be provided for all equipment, appurtenances, and pipe as required, including frames or supports for compressors, pumps, cooling towers, condensers, and similar items. Compressors shall be isolated from the building structure. If mechanical vibration isolators are not provided, vibration absorbing foundations shall be provided. Each foundation shall include isolation units consisting of machine and floor or foundation fastenings, together with intermediate isolation material. Other floor-mounted equipment shall be set on not less than a 6 inch concrete pad doweled in place. Concrete foundations for floor mounted pumps shall have a mass equivalent to three times the weight of the components, pump, base plate, and motor to be supported. In lieu of concrete pad foundation, concrete pedestal block with isolators placed between the pedestal block and the floor may be provided. Concrete pedestal block shall be of mass not less than three times the combined pump, motor, and base weights. Isolators shall be selected and sized based on load-bearing requirements and the lowest frequency of vibration to be isolated. Lines connected to pumps mounted on pedestal blocks shall be provided with flexible connectors. Foundation drawings, bolt-setting information, and foundation bolts shall be furnished prior to concrete foundation construction for all equipment indicated or required to have concrete foundations. Concrete for foundations shall be as specified in Section 03300 CAST-IN-PLACE STRUCTURAL Equipment shall be properly leveled, aligned, and secured in place in accordance with manufacturer's instructions. #### 3.1.2 Building Surface Penetrations Sleeves in nonload bearing surfaces shall be galvanized sheet metal, conforming to ASTM A 653/A 653M, Coating Class G-90, 20 gauge. Sleeves in load bearing surfaces shall be uncoated carbon steel pipe, conforming to ASTM A 53, Standard weight. Sealants shall be applied to moisture and oil-free surfaces and elastomers to not less than 1/2 inch depth. Sleeves shall not be installed in structural members. ## 3.1.2.1 General Service Areas Each sleeve shall extend through its respective wall, floor, or roof, and shall be cut flush with each surface. Pipes passing through concrete or masonry wall or concrete floors or roofs shall be provided with pipe sleeves fitted into place at the time of construction. Sleeves shall be of such size as to provide a minimum of 1/4 inch all-around clearance between bare pipe and sleeves or between jacketed-insulation and sleeves. Except in pipe chases or interior walls, the annular space between pipe and sleeve or between jacket over-insulation and sleeve shall be sealed in accordance with Section 07900 JOINT SEALING. ## 3.1.2.2 Waterproof Penetrations Pipes passing through roof, wall, or floor waterproofing membrane shall be installed through a 17-ounce copper sleeve, or a 0.032 inch thick aluminum sleeve, each within an integral skirt or flange. Flashing sleeve shall be suitably formed, and skirt or flange shall extend not less than 8 inches from the pipe and be set over the roof or floor membrane in a troweled coating of bituminous cement. The flashing sleeve shall extend up the pipe a minimum of 2 inches above the roof or floor penetration. The annular space between the flashing sleeve and the bare pipe or between the flashing sleeve and the metal-jacket-covered insulation shall be sealed as indicated. Penetrations shall be sealed by either one of the following methods. a. Waterproofing Clamping Flange: Pipes up to and including 10 inches in diameter passing through roof, wall, or floor waterproofing membrane may be installed through a cast iron sleeve with caulking recess, anchor lugs, flashing clamp device, and pressure ring with brass bolts. Waterproofing membrane shall be clamped into place and sealant shall be placed in the caulking recess. Modular Mechanical Type Sealing Assembly: In lieu of waterproofing clamping flange and caulking and sealing of annular space between pipe and sleeve or conduit and sleeve, a modular mechanical type sealing assembly may be installed. Seals shall consist of interlocking synthetic rubber links shaped continuously fill the annular space between the pipe/conduit and sleeve with corrosion protected carbon steel bolts, nuts, and pressure plates. Links shall be loosely assembled with bolts to form a continuous rubber belt around the pipe with a pressure plate under each bolt head and each nut. After the seal assembly is properly positioned in the sleeve, tightening of the bolt shall cause the rubber sealing elements to expand and provide a watertight seal rubber sealing elements to expand and provide a watertight seal between the pipe/conduit seal between pipe/conduit and the sleeve. Each seal assembly shall be sized as recommended by the manufacturer to fit the pipe/conduit and sleeve The Contractor electing to use the modular mechanical type seals shall provide sleeves of the proper diameters. ## 3.1.2.3 Escutcheons Finished surfaces where exposed piping, bare or insulated, pass through floors, walls, or ceilings, except in boiler, utility, or equipment rooms, shall be provided with escutcheons. Where sleeves project slightly from floors, special deep-type escutcheons shall be used. Escutcheon shall be secured to pipe or pipe covering. #### 3.1.3 Access Panels Access panels shall be provided for all concealed valves vents, controls, and items requiring inspection or maintenance. Access panels shall be of sufficient size and located so that the concealed items may be serviced and maintained or completely removed and replaced. Access panels shall be as specified in Section 05500 MISCELLANEOUS METALS. ## 3.1.4 General Piping Installation #### 3.1.4.1 Brazed Joints Brazing shall be performed in accordance with AWS-01, except as modified herein. During brazing, the pipe and fittings shall be filled with a pressure regulated inert gas, such as nitrogen, to prevent the formation of scale. Before brazing copper joints, both the outside of the tube and the inside of the fitting shall be cleaned with a wire fitting brush until the entire joint surface is bright and clean. Brazing flux shall not be used. Surplus brazing material shall be removed at all joints. Steel tubing joints shall be made in accordance with the manufacturer's recommendations. Joints in steel tubing shall be painted with the same material as the baked-on coating within 8 hours after joints are made. Tubing shall be protected against oxidation during brazing by continuous purging of the inside of
the piping using nitrogen. Piping shall be supported prior to brazing and not be sprung or forced. #### 3.1.4.2 Threaded Joints Threaded joints shall be made with tapered threads and made tight with PTFE tape complying with ASTM D 3308 or equivalent thread-joint compound applied to the male threads only. Not more than three threads shall show after the joint is made. #### 3.1.4.3 Welded Joints Welded joints in steel refrigerant piping shall be fusion-welded. Changes in direction of piping shall be made with welded fittings only; mitering or notching pipe or other similar construction to form elbows or tees will not be permitted. Branch connections shall be made with welding tees or forged welding branch outlets. Steel pipe shall be thoroughly cleaned of all scale and foreign matter before the piping is assembled. During welding, the pipe and fittings shall be filled with a pressure regulated inert gas, such as nitrogen, to prevent the formation of scale. Beveling, alignment, heat treatment, and inspection of weld shall conform to ASME B31.1. Weld defects shall be removed and rewelded at no additional cost to the Government. Electrodes shall be stored and dried in accordance with AWS D1.1 or as recommended by the manufacturer. Electrodes that have been wetted or that have lost any of their coating shall not be used. ### 3.1.4.4 Flanged Joints Flanged joints shall be assembled square end tight with matched flanges, gaskets, and bolts. Gaskets shall be suitable for use with the refrigerants to be handled. When steel refrigerant piping is used, union or flange joints shall be provided in each line immediately preceding the connection to each piece of equipment requiring maintenance, such as compressors, coils, refrigeration equipment, control valves, and other similar items. ## 3.1.4.5 Flared Connections When flared connections are used, a suitable lubricant shall be used between the back of the flare and the nut in order to avoid tearing the flare while tightening the nut. ## 3.1.5.1 Directional Changes Changes in direction shall be made with fittings, except that bending of pipe 4 inches and smaller will be permitted, provided a pipe bender is used and wide weep bends are formed. The centerline radius of bends shall not be less than 6 diameters of the pipe. Bent pipe showing kinks, wrinkles, flattening, or other malformations will not be accepted. #### 3.1.5.2 Functional Requirements Horizontal supply mains shall pitch down in the direction of flow as indicated. The grade shall not be less than 1 inch in 40 feet. Reducing fittings shall be used for changes in pipe sizes. Open ends of pipelines and equipment shall be capped or plugged during installation to keep dirt or other foreign materials out of the system. Pipe not otherwise specified shall be uncoated. Connections to appliances shall be made with malleable iron unions for steel pipe 2-1/2 inches or less in diameter, and with flanges for pipe 3 inches or more in diameter. Connections between ferrous and copper piping shall be electrically isolated from each other with dielectric unions or flanges. Piping located in air plenums shall conform to NFPA 90A requirements. Pipe and fittings installed in inaccessible conduits or trenches under concrete floor slabs shall be welded. #### 3.1.5.3 Valves Isolation gate or ball valves shall be installed on each side of each piece of equipment, at the midpoint of all looped mains, and at any other points indicated or required for draining, isolating, or sectionalizing purpose. Isolation valves may be omitted where balancing cocks are installed to provide both balancing and isolation functions. Each valve except check valves shall be identified. Valves in horizontal lines shall be installed with stems horizontal or above. ## 3.1.5.4 Air Vents Air vents shall be provided at all high points, on all water coils, and where indicated to ensure adequate venting of the piping system. #### 3.1.5.5 Drains Drains shall be provided at all low points and where indicated to ensure complete drainage of the piping. Drains shall be accessible, and shall consist of nipples and caps [or plugged tees] unless otherwise indicated. ## 3.1.5.6 Flexible Pipe Connectors Preinsulated flexible pipe connectors shall be attached to other components in strict accordance with the latest printed instructions of the manufacturer to ensure a vapor tight joint. Hangers, when required to suspend the connectors, shall be of the type recommended by the flexible pipe connector manufacturer and shall be provided at the intervals recommended. ## 3.1.5.7 Flanges and Unions Except where copper tubing is used, union or flanged joints shall be provided in each line immediately preceding the connection to each piece of equipment or material requiring maintenance such as coils, pumps, control valves, and other similar items. #### 3.1.6 Refrigeration Piping Unless otherwise specified, pipe and fittings installation shall conform to requirements of ASME B31.5. Pipe shall be cut accurately to measurement established at the jobsite and worked into place without springing or forcing. Cutting or otherwise weakening of the building structure to facilitate piping installation will not be permitted without written approval. Pipes shall be cut square, shall have burrs removed by reaming, and shall be installed in a manner to permit free expansion and contraction without damage to joints or hangers. Filings, dust, or dirt shall be wiped from interior of pipe before connections are made. #### 3.1.6.1 Directional Changes Changes in direction shall be made with fittings, except that bending of pipe 4 inches and smaller will be permitted, provided a pipe bender is used and wide-sweep bends are formed. The centerline radius of bends shall not be less than 6 diameters of the pipe. Bent pipe showing kinks, wrinkles, or other malformations will not be accepted. #### 3.1.6.2 Functional Requirements Piping shall be installed 1/2 inch per 10 feet of pipe in the direction of flow to ensure adequate oil drainage. Open ends of refrigerant lines or equipment shall be properly capped or plugged during installation to keep moisture, dirt, or other foreign material out of the system. Piping shall remain capped until installation. Equipment piping shall be in accordance with the equipment manufacturer's recommendations and the contract drawings. ## 3.1.6.3 Manual Valves Stop valves shall be installed on each side of each piece of equipment such as compressors, condensers, evaporators, receivers, and other similar items in multiple-unit installation, to provide partial system isolation as required for maintenance or repair. Angle and globe valves shall be installed with stems horizontal unless otherwise indicated. Ball valves shall be installed with stems positioned to facilitate operation and maintenance. Isolating valves for pressure gauges and switches shall be external to thermal insulation. Safety switches shall not be fitted with isolation valves. Thermal wells for insertion thermometers and thermostats shall extend beyond thermal insulation surface not less than 1 inch. Filter dryers having access ports may be considered a point of isolation. Purge valves shall be provided at all points of systems where accumulated noncondensible gases would prevent proper system operation. Valves shall be furnished to match line size, unless otherwise indicated or approved. ## 3.1.6.4 Expansion Valves Expansion valves shall be installed with the thermostatic expansion valve bulb located on top of the suction line when the suction line is less than 2-1/8 inches in diameter and at the 4 o'clock or 8 o'clock position on lines larger than 2-1/8 inches. The bulb shall be securely fastened with two clamps. The bulb shall be insulated. The bulb shall installed in a horizontal portion of the suction line, if possible, with the pigtail on the bottom. If the bulb must be installed in a vertical line, the bulb tubing shall be facing up. ### 3.1.6.5 Valve Identification Each system valve, including those which are part of a factory assembly, shall be tagged. Tags shall be in alphanumeric sequence, progressing in direction of fluid flow. Tags shall be embossed, engraved, or stamped plastic or nonferrous metal of various shapes, sized approximately 1-3/8 inch diameter, or equivalent dimension, substantially attached to a component or immediately adjacent thereto. Tags shall be attached with nonferrous, heavy duty, bead or link chain, 14 gauge annealed wire, nylon cable bands or as approved. Tag numbers shall be referenced in Operation and Maintenance Manuals and system diagrams. #### 3.1.6.6 Vibration Dampers Vibration damper shall be provided in the suction and discharge lines on spring mounted compressors. Vibration dampers shall be installed parallel with the shaft of the compressor and be anchored firmly at the upstream end on the suction line and the downstream end in the discharge line. #### 3.1.6.7 Strainers Strainers shall be provided immediately ahead of solenoid valves and expansion devices and where indicated. Strainers may be an integral part of the expansion valve. ## 3.1.6.8 Filter Dryer A liquid line filter dryer shall be provided on each refrigerant circuit located such that all liquid refrigerant passes through a filter dryer. Dryers shall be sized in accordance with the manufacturers recommendations. A dryer shall be installed such that it can be isolated from the system, the isolated portion of the system evacuated, and the filter dryer replaced. Dryers shall be installed in the horizontal position except replaceable core filter dryers may be installed in the vertical position with the access flange on the bottom. #### 3.1.6.9 Sight Glass A moisture indicating sight glass shall be installed in all refrigerant circuits down stream of filter dryers and where indicated. Sight glass shall be full line size. ### 3.1.6.10 Flexible Connectors Flexible metallic connectors shall be installed perpendicular to
line of motion being isolated. Piping for equipment with bidirectional motion shall be fitted with two flexible connectors, in perpendicular planes. Reinforced elastomer flexible connectors shall be installed in accordance with manufacturer's instructions. Piping guides and restraints related to flexible connectors shall be provided as required. #### 3.1.7 Thermometers Thermometers located within 5 feet of floor may be rigid stem type. Where thermal well is located above 5 feet above floor, thermometer shall be universal adjustable angle type or remote element type to 7 feet above floor and remote element type where thermal well is 7 feet or more above floor. Thermometers shall be located in coolant supply and return or waste lines at each heat exchanger, condenser water lines entering and leaving the condenser, at each automatic temperature control device without an integral thermometer, refrigerant liquid line leaving receiver, refrigerant suction line at each evaporator or liquid cooler, and where indicated or required for proper operation of equipment. #### 3.1.8 Piping Supports Refrigerant pipe supports shall be in accordance with ASME B31.5. Hangers used to support piping 2 inches and larger shall be fabricated to permit adequate adjustment after erection while still supporting the load. Pipe guides and anchors shall be installed to keep pipes in accurate alignment, to direct the expansion movement, and to prevent buckling, swaying, and undue strain. Piping subjected to vertical movement, when operating temperatures exceed ambient temperatures, shall be supported by variable spring hangers and supports or by constant support hangers. ### 3.1.8.1 Seismic Requirements Piping and attached valves shall be supported and braced to resist seismic loads as specified under Section 13082 SEISMIC PROTECTION FOR ARCHITECTURAL, MECHANICAL, AND ELECTRICAL SYSTEMS AND EQUIPMENT (ZONE 2) and as indicated. Structural steel required for reinforcement to properly support piping, headers, and equipment but not shown shall be provided under this section. Material used for support shall be as specified under Section 05210 STRUCTURAL STEEL. #### 3.1.8.2 Structural Attachments Attachment to building structure concrete and masonry shall be by cast-in concrete inserts, built-in anchors, or masonry anchor devices. Inserts and anchors shall be applied with a safety factor not less than 5. Supports shall not be attached to metal decking. Masonry anchors for overhead applications shall be constructed of ferrous materials only. Material used for support shall be as specified under Section 05210 STRUCTURAL STEEL. # 3.1.9 Pipe Hangers, Inserts, and Supports Pipe hangers, inserts, and supports shall conform to MSS SP-58 and MSS SP-69, except as modified herein. Pipe hanger types 3, 5, 12, and 26 shall not be used. #### 3.1.9.1 Hangers Type 3 shall not be used on insulated piping. Type 24 may be used only on trapeze hanger systems or on fabricated frames. #### 3.1.9.2 Inserts Type 18 inserts shall be secured to concrete forms before concrete is placed. Continuous inserts which allow more adjustments may be used if they otherwise meet the requirements for Type 18 inserts. ## 3.1.9.3 C-Clamps Type 19 and 23 C-clamps shall be torqued per MSS SP-69 and have both locknuts and retaining devices, furnished by the manufacturer. Field-fabricated C-clamp bodies or retaining devices are not acceptable. #### 3.1.9.4 Angle Attachments Type 20 attachments used on angles and channels shall be furnished with an added malleable-iron heel plate or adapter. #### 3.1.9.5 Saddles and Shields Where Type 39 saddle or Type 40 shield are permitted for a particular pipe attachment application, the Type 39 saddle, connected to the pipe, shall be used on all pipe 4 inches and larger when the temperature of the medium is 60 degrees F or higher. Type 40 shields shall be used on all piping less than 4 inches and all piping 4 inches and larger carrying medium less than 60 degrees F. A high density insulation insert of cellular glass shall be used under the Type 40 shield for piping 2 inches and larger. ## 3.1.9.6 Horizontal Pipe Supports Horizontal pipe supports shall be spaced as specified in MSS SP-69 (not more than 10 feet centers) and a support shall be installed not over 1 foot from the pipe fitting joint at each change in direction of the piping. Pipe supports shall be spaced not over 5 feet apart at valves. [Pipe hanger loads suspended from steel joist with hanger loads between panel points in excess of 50 pounds shall have the excess hanger loads suspended from panel points.] ## 3.1.9.7 Vertical Pipe Supports Vertical pipe shall be supported at each floor, except at slab-on-grade, and at intervals of not more than 10 feet, not more than 8 feetfrom end of risers, and at vent terminations. ## 3.1.9.8 Pipe Guides Type 35 guides using, steel, reinforced polytetrafluoroethylene (PTFE) or graphite slides shall be provided where required to allow longitudinal pipe movement. Lateral restraints shall be provided as required. Slide materials shall be suitable for the system operating temperatures, atmospheric conditions, and bearing loads encountered. #### 3.1.9.9 Steel Slides Where steel slides do not require provisions for restraint of lateral movement, an alternate guide method may be used. On piping 4 inches and larger, a Type 39 saddle shall be used. On piping under 4 inches, a Type 40 protection shield may be attached to the pipe or insulation and freely rest on a steel slide plate. ## 3.1.9.10 Multiple Pipe Runs In the support of multiple pipe runs on a common base member, a clip or clamp shall be used where each pipe crosses the base support member. Spacing of the base support members shall not exceed the hanger and support spacing required for an individual pipe in the multiple pipe run. #### 3.1.10 Pipe Alignment Guides Pipe alignment guides shall be provided where indicated for expansion loops, offsets, and bends and as recommended by the manufacturer for expansion joints, not to exceed 5 feet on each side of each expansion joint, and in lines 4 inches or smaller not more than 2 feet on each side of the joint. ## 3.1.11 Pipe Anchors Anchors shall be provided wherever necessary or indicated to localize expansion or to prevent undue strain on piping. Anchors shall consist of heavy steel collars with lugs and bolts for clamping and attaching anchor braces, unless otherwise indicated. Anchor braces shall be installed in the most effective manner to secure the desired results using turnbuckles where required. Supports, anchors, or stays shall not be attached where they will injure the structure or adjacent construction during installation or by the weight of expansion of the pipeline. Where pipe and conduit penetrations of vapor barrier sealed surfaces occur, these items shall be anchored immediately adjacent to each penetrated surface, to provide essentially zero movement within penetration seal. Detailed drawings of pipe anchors shall be submitted for approval before installation. ### 3.1.12 Piping Identification Each piping system and direction of fluid flow shall be identified in accordance with applicable provisions of ANSI Al3.1 with color coded, water, moisture and broad-spectrum temperature resistant, plastic labels. #### 3.1.13 Metal Ductwork Installation shall be in accordance with SMACNA-06 unless otherwise indicated. Duct supports for sheet metal ductwork shall be in accordance with SMACNA-06, unless otherwise specified. Friction beam clamps indicated in SMACNA-06 will not be used. [Risers on high velocity ducts shall be anchored in the center of the vertical run to allow ends of riser to move due to thermal expansion.] Supports on the risers shall allow free vertical movement of the duct. Supports shall be attached only to structural framing members and concrete slabs. Supports shall not be anchored to metal decking unless a means is provided and approved for preventing the anchor from puncturing the metal decking. Where supports are required between structural framing members, suitable intermediate metal framing shall be provided. Where C-clamps are used, retainer clips shall be provided. ## 3.1.14 Acoustical Duct Lining Lining shall be applied in cut-to-size pieces attached to the interior of the duct with nonflammable, fire-resistant adhesive conforming to ASTM C 916, Type I, NFPA 90A, UL 723, and ASTM E 84. Top and bottom pieces shall lap the side pieces and shall be secured with welded pins, adhered clips of metal, nylon, or high impact plastic, and speed washers or welding cup-head pins installed in accordance with SMACNA-06. Welded pins, cup-head pins, or adhered clips shall not distort the duct, burn through, nor mar the finish or the surface of the duct. Pins and washers shall be flush with the surfaces of the duct liner and all breaks and punctures of the duct liner coating shall be sealed with the nonflammable, fire-resistand adhesive. Exposed edges of the liner at the duct ends and at other joints where the lining will be subject to erosion shall be coated with a heavy brush coat of the nonflammable, fire-resistant adhesive to prevent delamination of glass fibers. Duct liner may be applied to flat sheet metal prior to forming duct through the sheet metal brake. Lining at the top and bottom surfaces of the duct shall be additionally secured by welded pins or adhered clips as specified for cut-to-size pieces. Other methods indicated in SMACNA-06 to obtain proper installation of duct liners in sheet metal ducts, including adhesives and fasteners, will be acceptable. # 3.1.15 Field Applied Insulation Field applied insulation shall be as specified in Section 15080 THERMAL INSULATION FOR MECHANICAL SYSTEMS. ## 3.1.16 Factory Applied Insulation Refrigerant suction lines between an evaporator and compressors shall be insulated with not less than 3/4 inch thick unicellular plastic foam. #### 3.1.17 Framed Instructions Framed instructions shall be
framed under glass or laminated plastic and be posted where directed. Instructions shall include equipment layout, wiring and control diagrams, piping, valves and control sequences, and typed condensed operation instructions. The condensed operation instructions shall include preventative maintenance procedures, methods of checking the system for normal and safe operation, and procedures for safely starting and stopping the system. The instructions shall be posted before acceptance testing of the system. FAIRCHILD AFB, WA. PN GJKZ 99-0151 #### 3.2 TESTS Tests shall be conducted in the presence of the Contracting Officer. Utilities for testing shall be provided as specified in the SPECIAL CONTRACT REQUIREMENTS. Water and electricity required for the tests will be furnished by the Government. Any material, equipment, instruments, and personnel required for the test shall be provided by the Contractor. The services of a qualified technician shall be provided as required to perform all tests and procedures indicated herein. Field tests shall be coordinated with Section 15990 TESTING, ADJUSTING, AND BALANCING OF HVAC SYSTEMS. #### 3.2.1 Refrigerant System After all components of the refrigerant system have been installed and connected, the entire refrigeration system shall be subjected to a pneumatic test as described herein. ## 3.2.1.1 Preliminary Procedures Prior to pneumatic testing, equipment which has been factory tested and refrigerant charged as well as equipment which could be damaged or cause personnel injury by imposed test pressure, positive or negative, shall be isolated from the test pressure or removed from the system. Safety relief valves and rupture discs, where not part of factory sealed systems, shall be removed and openings capped or plugged. ## 3.2.1.2 Pneumatic Test Pressure control and excess pressure protection shall be provided at the source of test pressure. Valves shall be wide open, except those leading to the atmosphere. Test gas shall be dry nitrogen, with minus 70 degree F dewpoint and less than 5 ppm oil. Test pressure shall be applied in two stages before any refrigerant pipe is insulated or covered. First stage test shall be at 10 psi with every joint being tested with a thick soap or color indicating solution. Second stage tests shall raise the system to the minimum refrigerant leakage test pressure specified in ASHRAE 15 with a maximum test pressure 25 percent greater. Pressure above 100 psig shall be raised in 10 percent increments with a pressure acclimatizing period between increments. The initial test pressure shall be recorded along with the ambient temperature to which the system is exposed. Final test pressures of the second stage shall be maintained on the system for a minimum of 24 At the end of the 24 hour period, the system pressure will be recorded along with the ambient temperature to which the system is exposed. A correction factor of 0.3 psi will be allowed for each degree F change between test space initial and final ambient temperature, plus for increase and minus for a decrease. If the corrected system pressure is not exactly equal to the initial system test pressure, then the system shall be investigated for leaking joints. To repair leaks, the joint shall be taken apart, thoroughly cleaned, and reconstructed as a new joint. Joints repaired by caulking, remelting, or back-welding/brazing shall not be acceptable. Following repair, the entire system shall be retested using the pnuematic tests described above. The entire system shall be reassemblied once the pneumatic tests are satisfactorily completed. #### 3.2.1.3 Evacuation Test Following satisfactory completion of the pneumatic tests, the pressure shall be relieved and the entire system shall be evacuated to an absolute pressure of 300 micrometers. During evacuation of the system, the ambient temperature shall be higher than 35 degrees F. No more than one system shall be evacuated at one time by one vacuum pump. Once the desired vacuum has been reached, the vacuum line shall be closed and the system shall stand for 1 hour. If the pressure rises over 500 micrometers after the 1 hour period, then the system shall be evacuated again down to 300 micrometers and let set for another 1 hour period. The system shall not be charged until a vacuum of at least 500 micrometers is maintained for a period of 1 hour without the assistance of a vacuum line. If during the testing the pressure continues to rise, check the system for leaks, repair as required, and repeat the evacuation procedure. During evacuation, pressures shall be recorded by a thermocouple-type, electronic-type, or a calibrated-micrometer type gauge. ## 3.2.1.4 System Charging and Startup Test Following satisfactory completion of the evacuation tests, the system shall be charged with the required amount of refrigerant by raising pressure to normal operating pressure and in accordance with manufacturer's procedures. Following charging, the system shall operate with high-side and low-side pressures and corresponding refrigerant temperatures, at design or improved values. The entire system shall be tested for leaks. Fluorocarbon systems shall be tested with halide torch or electronic leak detectors. ## 3.2.1.5 Refrigerant Leakage If a refrigerant leak is discovered after the system has been charged, the leaking portion of the system shall immediately be isolated from the remainder of the system and the refrigerant pumped into the system receiver or other suitable container. Under no circumstances shall the refrigerant be discharged into the atmosphere. ## 3.2.1.6 Contractor's Responsibility The Contractor shall, at all times during the installation and testing of the refrigeration system, take steps to prevent the release of refrigerants into the atmosphere. The steps shall include, but not be limited to, procedures which will minimize the release of refrigerants to the atmosphere and the use of refrigerant recovery devices to remove refrigerant from the system and store the refrigerant for reuse or reclaim. At no time shall more than 3 ounces of refrigerant be released to the atmosphere in any one occurrence. Any system leaks within the first year shall be repaired in accordance with the requirements herein at no cost to the Government including material, labor, and refrigerant if the leak is the result of defective equipment, material, or installation. #### 3.2.2 Ductwork Leak Tests Ductwork leak test shall be performed for the entire air distribution system, including fans, coils, filters, etc. designated as static pressure Class 3 inch water gauge. Test procedure, apparatus, and report shall conform to SMACNA-10. The maximum allowable leakage rate is 5% CFM total. Ductwork leak test shall be completed with satisfactory results prior to applying insulation to ductwork exterior. ## 3.2.3 System Performance Tests After the foregoing tests have been completed and before each refrigeration system is accepted, tests to demonstrate the general operating characteristics of all equipment shall be conducted by an approved manufacturer's start-up representative experienced in system start-up and testing, at such times as directed. Tests shall cover a period of not less than 8 hours for each system and demonstrate that the entire system is functioning in accordance with the drawings and specifications. Corrections and adjustments shall be made as necessary and tests shall be re-conducted to demonstrate that the entire system is functioning as specified. Prior to acceptance, service valve seal caps and blanks over gauge points shall be installed and tightened. Any refrigerant lost during the system startup shall be replaced. If tests do not demonstrate satisfactory system performance, deficiencies shall be corrected and the system shall be retested. # 3.3 CLEANING AND ADJUSTING # 3.3.1 Piping Prior to testing, pipes shall be cleaned free of scale and thoroughly flushed of all foreign matter. A temporary bypass shall be provided for water coils to prevent flushing water from passing through coils. Strainers and valves shall be thoroughly cleaned. Prior to testing and balancing, air shall be removed from each water system through the use of the air vents. Temporary measures, such as piping the overflow from vents to a collecting vessel shall be taken to avoid water damage during the venting process. Air vents shall be plugged or capped after the system has been vented. #### 3.3.2 Ductwork Prior to testing, inside of ducts, plenums, and casing shall be thoroughly cleaned of all debris and blown free of small particles of rubbish and dust and then vacuum cleaned before installing outlet faces. Temporary filters shall be provided for fans that are operated during construction. New filters shall be installed after all construction dirt has been removed from the building and the ducts, plenum, casings, and other items specified have been vacuum cleaned. Fans shall be adjusted to the speed indicated by the manufacturer to meet specified conditions. ### 3.3.3 Equipment Equipment shall be wiped clean, with all traces of oil, dust, dirt, or paint spots removed. System shall be maintained in this clean condition until final acceptance. Bearings shall be lubricated with oil or grease as recommended by the manufacturer. Belts shall be tightened to proper tension. Control valves and other miscellaneous equipment requiring adjustment shall be adjusted to setting indicated or directed. #### 3.3.4 Testing, Adjusting, and Balancing Testing, adjusting, and balancing shall be as specified in Section 15990 TESTING, ADJUSTING AND BALANCING OF HVAC SYSTEMS. ## 3.4 DEMONSTRATIONS Contractor shall conduct a training course for the operating staff as designated by the Contracting Officer. The training period shall consist of a total 4 hours of normal working time and start after the system is functionally completed but prior to final acceptance tests. The field instructions shall cover all of
the items contained in the approved operation and maintenance manuals as well as demonstrations of routine maintenance operations. END OF SECTION SECTION 15895 AIR SUPPLY, DISTRIBUTION, VENTILATION, AND EXHAUST SYSTEM #### PART 1 GENERAL #### 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. #### AIR CONDITIONING CONTRACTORS OF AMERICA (ACCA) ACCA Manual 4 (1990) Installation Techniques for Perimeter Heating & Cooling; 11th Edition ## AIR MOVEMENT AND CONTROL ASSOCIATION (AMCA) AMCA ANSI/AMCA 210 (1985) Laboratory Methods of Testing Fans for Rating AMCA 300 (1996) Reverberant Room Method for Sound Testing of Fans ## AMERICAN BEARING MANUFACTURERS ASSOCIATION (ABEMA) ABEMA Std 9 (1990) Load Ratings and Fatigue Life for Ball Bearings ABEMA Std 11 (1990) Load Ratings and Fatigue Life for Roller Bearings # AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI) ANSI S12.32 (1990; R 1996) Precision Methods for the Determination of Sound Power Levels of Discrete-Frequency and Narrow-Band Noise Sources in Reverberation Rooms ## AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) ASTM A 47 (1990; R 1995) Ferritic Malleable Iron Castings ASTM A 47M (1990; R 1996) Ferritic Malleable Iron Castings (Metric) ASTM A 53 (1997) Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless ASTM A 106 (1997) Seamless Carbon Steel Pipe for High- Temperature Service ASTM A 123 (1989a) Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS (ASHRAE) ASHRAE 15 (1994) Safety Code for Mechanical Refrigeration ASHRAE 52.1 (1992) Gravimetric and Dust-Spot Procedures for Testing Air-Cleaning Devices Used in General Ventilation for Removing Particulate Matter ASHRAE ANSI/ASHRAE 68 (1986) Laboratory Method of Testing In-Duct Sound Power Measurement Procedures for Fans ASHRAE 70 (1991) Method of Testing for Rating the Performance of Air Outlets and Inlets COMMERCIAL ITEM DESCRIPTIONS (CID) CID A-A-1419 (Rev D) Filter Element, Air Conditioning (Viscous-Impingement and Dry Types, Replaceable) EXPANSION JOINT MANUFACTURERS ASSOCIATION (EJMA) EJMA-01 (1993) EJMA Standards NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA) NEMA MG 1 (1993; Rev 1; Rev 2; Rev 3) Motors and Generators NORTH AMERICAN INSULATION MANUFACTURERS ASSOCIATION (NAIMA) NAIMA AH115 (1993) Fibrous Glass Duct Construction Standards SHEET METAL AND AIR CONDITIONING CONTRACTORS' NATIONAL ASSOCIATION (SMACNA) SMACNA-01 (1975) Accepted Industry Practice for Industrial Duct Construction SMACNA-05 (1992) Fire, Smoke and Radiation Damper Installation Guide for HVAC Systems DACA67-00-R-0222 SECTION 15895 - 2 R0007 SMACNA-06 (1995) HVAC Duct Construction Standards - Metal and Flexible SMACNA-10 (1985) HVAC Air Duct Leakage Test Manual #### 1.2 COORDINATION OF TRADES Ductwork, piping offsets, fittings, and accessories shall be furnished as required to provide a complete installation and to eliminate interference with other construction. #### 1.3 DELIVERY AND STORAGE Equipment delivered and placed in storage shall be stored with protection from the weather, humidity and temperature variations, dirt and dust, or other contaminants. #### 1.4 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-01 Data Components and Equipment Data; GA. Manufacturer's catalog data shall be included with the detail drawings for the following items. The data shall be highlighted to show model, size, options, manufacturer's qualifications and experience, etc., that are intended for consideration. Data shall be adequate to demonstrate compliance with contract requirements for the following: - a. Piping Components - b. Ductwork Components - c. Air Systems Equipment - d. Air Handling Units - e. Custom Air Handling Unit Manufacturer's Certification of Qualifications See Section 15895, page 20, Paragraphs 2.10.2 and 2.10.3. SD-02 Drawings Air Supply, Distribution, Ventilation, and Exhaust Equipment; FIO. Drawings shall consist of equipment layout including assembly and installation details and electrical connection diagrams; ductwork layout showing the location of all supports and hangers, typical hanger details, gauge reinforcement, reinforcement spacing rigidity classification, and static pressure and seal classifications; and piping layout showing the location of all guides and anchors, the load imposed on each support or anchor, and typical support details. Drawings shall include any information required to demonstrate that the system has been coordinated and will properly function as a unit and shall show equipment relationship to other parts of the work, including clearances required for operation and maintenance. SD-03 Instructions Test Procedures; GA. Proposed test procedures for piping hydrostatic test, ductwork leak test, and performance tests of systems, at least 2 weeks prior to the start of related testing. System Diagrams; GA. Proposed diagrams, at least 2 weeks prior to start of related testing. System diagrams that show the layout of equipment, piping, and ductwork, and typed condensed operation manuals explaining preventative maintenance procedures, methods of checking the system for normal, safe operation, and procedures for safely starting and stopping the system shall be framed under glass or laminated plastic. After approval, these items shall be posted where directed. SD-04 Reports Test Reports; FIO. Test reports for the piping hydrostatic test, ductwork leak test, and performance tests in booklet form, upon completion of testing. Reports shall document phases of tests performed including initial test summary, repairs/adjustments made, and final test results. SD-05 Operation and Maintenance Manuals Air Supply, Distribution, Ventilation, and Exhaust Manuals; FIO. Six manuals listing step-by-step procedures required for system startup, operation, shutdown, and routine maintenance, at least 2 weeks prior to field training. The manuals shall include the manufacturer's name, model number, parts list, list of parts and tools that should be kept in stock by the owner for routine maintenance including the name of a local supplier, simplified wiring and controls diagrams, troubleshooting guide, and recommended service organization (including address and telephone number) for each item of equipment. Each service organization submitted shall be capable of providing 4 hour onsite response to a service call on an emergency basis. # 1.5 Manufacturer's Qualifications: Similar type products shall at a minimum, have been manufactured by the manufacturer for the last five (5) consecutive years and have fifty (50) successful similar operating type installations. Field fabricated units by the contractor are not acceptable. Required certified ratings as listed below shall be provided. Contractor shall submit under separate cover a <u>certified</u> (sworn affidavit) evidence of the air handling units manufacturer's qualifications at least two weeks before the official product submittal is made. The affidavit shall illustrate and evidence the time involved in the manufacturer of the AHU's of a similar type to that specified; and the exact locations where the installations were made, and the name of the final using customer. #### 1.6 Certifications: Manufacturer must provide certified ratings conforming to the latest edition of AMCA 210, 310, 500 and ARI 410 for coils. Manufacturers: The specification is written around Temtrol Equipment. Equivalent manufacturers are Pace and Miller Picking. Indication of these manufacturers is not intended as being limited to one manufacturer. An equivalent manufacturer may be submitted for approval. Manufacturers and materials specified are not intended to limit the selection of equal products from other manufacturers. ## PART 2 PRODUCTS #### 2.1 STANDARD PRODUCTS Components and equipment shall be standard products of a manufacturer regularly engaged in the manufacturing of products that are of a similar material, design and workmanship. The standard products shall have been in satisfactory commercial or industrial use for 2 years before bid opening. The 2-year experience shall include applications of components and equipment under similar circumstances and of similar size. The 2 years must be satisfactorily completed by a product which has been sold or is offered for sale on the commercial market through advertisements, manufacturers' catalogs, or brochures. Products having less than a 2-year field service record will be acceptable if a certified record of satisfactory field operation, for not less than 6000 hours exclusive of the manufacturer's factory tests, can be shown. The equipment items shall be supported by a service organization. ## 2.2 ASBESTOS PROHIBITION Asbestos and asbestos-containing products shall not be used. # 2.3 NAMEPLATES Equipment shall have a nameplate that identifies the manufacturer's name, address, type or style, model or serial number, and catalog number. ## 2.4 EQUIPMENT GUARDS AND ACCESS Belts, pulleys, chains, gears, couplings, projecting setscrews, keys, and other rotating parts exposed to personnel contact shall be fully enclosed or guarded according to OSHA requirements. High temperature equipment and piping exposed to contact by personnel or where it creates a potential fire hazard shall be properly guarded or covered with insulation of a type specified. #### 2.5 PIPING COMPONENTS ## 2.5.1 Steel Pipe See Section 15556 #### 2.5.2 Insulation Shop and field applied insulation shall be as specified in Section 15080 THERMAL INSULATION FOR MECHANICAL SYSTEMS. All supply and return ducts shall be insulated with not less than 1" exterior duct insulation. All outside air
intake ducts shall be provided with not less than 1" interior duct insulation. Ductwork sizes shall be increased from that shown to accommodate the insulation installation. ## 2.6 ELECTRICAL WORK Electrical motor-driven equipment specified shall be provided complete with motor, motor starter, and controls. Unless otherwise specified, electric equipment, including wiring and motor efficiencies, shall be according to Section 16415 ELECTRICAL WORK, INTERIOR. Electrical characteristics and enclosure type shall be as shown. Unless otherwise indicated, motors of 1 hp and above shall be high efficiency type. Motor starters shall be provided complete with thermal overload protection and other appurtenances necessary. Each motor shall be according to NEMA MG 1 and shall be of sufficient size to drive the equipment at the specified capacity without exceeding the nameplate rating of the motor. Manual or automatic control and protective or signal devices required for the operation specified, and any control wiring required for controls and devices, but not shown, shall be provided. #### 2.7 CONTROLS Controls shall be provided as specified in Section 15951 DIRECT DIGITAL CONTROL FOR HVAC. # 2.8 DUCTWORK COMPONENTS # 2.8.1 Metal Ductwork All aspects of metal ductwork construction, including all fittings and components, shall comply with SMACNA-06 unless otherwise specified. Elbows shall be radius type with a centerline radius of 1-1/2 times the width or diameter of the duct where space permits. Otherwise, elbows having a minimum radius equal to the width or diameter of the duct or square elbows with factory fabricated turning vanes may be used. Static pressure Class 1/2, 1, and 2 inch w.g. ductwork shall meet the requirements of Seal Class C. Class 3 through 10 inch shall meet the requirements of Seal Class A. Sealants shall conform to fire hazard classification specified in Section 15080 THERMAL INSULATION FOR MECHANICAL SYSTEMS. Pressure sensitive tape shall not be used as a sealant. #### 2.8.1.1 Transitions Diverging air flow transitions shall be made with each side pitched out a maximum of 15 degrees, for an included angle of 30 degrees. Transitions for converging air flow shall be made with each side pitched in a maximum of 30 degrees, for an included angle of 60 degrees, or shall be as indicated. Factory-fabricated reducing fittings for systems using round duct sections when formed to the shape of the ASME short flow nozzle, need not comply with the maximum angles specified. #### 2.8.1.2 Metallic Flexible Duct Metallic type duct shall be single-ply galvanized steel, self supporting to 8 foot spans. Duct shall be of corrugated/interlocked, folded and knurled type seam construction, bendable without damage through 180 degrees with a throat radius equal to 1/2 duct diameter. Duct shall conform to UL 181and shall be rated for positive or negative working pressure of 15 inches water gauge at 350 degrees F when duct is aluminum, and 650 degrees F when duct is galvanized steel. #### 2.8.1.3 Insulated Nonmetallic Flexible Duct Runouts Flexible duct runouts shall be used only where indicated. Runout length shall be as shown on the drawings, but shall in no case exceed 10 feet. Runouts shall be preinsulated, factory fabricated, and shall comply with NFPA 90A and UL 181. Either field or factory applied vapor barrier shall be provided. Where coil induction or high velocity units are supplied with vertical air inlets, a streamlined and vaned and mitered elbow transition piece shall be provided for connection to the flexible duct or hose. The last elbow to these units, other than the vertical air inlet type, shall be a die-stamped elbow and not a flexible connector. Insulated flexible connectors may be used as runouts. The insulated material and vapor barrier shall conform to the requirements of Section 15080 THERMAL INSULATION FOR MECHANICAL SYSTEMS. The insulation material surface shall not be exposed to the air stream. ## 2.8.1.4 General Service Duct Connectors A flexible duct connector approximately 6 inches in width shall be provided where sheet metal connections are made to fans or where ducts of dissimilar metals are connected. For round/oval ducts, the flexible material shall be secured by stainless steel or zinc-coated, iron clinch-type draw bands. For rectangular ducts, the flexible material locked to metal collars shall be installed using normal duct construction methods. The composite connector system shall comply with UL 214 and be classified as "flame-retarded fabrics" in UL Bld Mat Dir. #### 2.8.2 Ductwork Accessories ## 2.8.2.1 Duct Access Doors Access doors shall be provided in ductwork and plenums where indicated and at all air flow measuring primaries, automatic dampers, coils, thermostats, and other apparatus requiring service and inspection in the duct system, and unless otherwise shown, shall conform to SMACNA-06. Access doors shall be provided upstream and downstream of air flow measuring primaries and heating and cooling coils. Doors shall be minimum 15 x 18 inches, unless otherwise shown. Where duct size will not accommodate this size door, the doors shall be made as large as practicable. Doors 24 x 24 inches or larger shall be provided with fasteners operable from both sides. Doors in insulated ducts shall be the insulated type. ## 2.8.2.2 Splitters and Manual Balancing Dampers Splitters and manual balancing dampers shall be furnished with accessible operating mechanisms. Where operators occur in finished portions of the building, operators shall be chromium plated with all exposed edges rounded. Splitters shall be operated by quadrant operators or 3/16 inch rod brought through the side of the duct with locking setscrew and bushing. Two rods are required on splitters over 8 inches. Manual volume control dampers shall be operated by locking-type quadrant operators. Dampers and splitters shall be 2 gauges heavier than the duct in which installed. Unless otherwise indicated, multileaf dampers shall be opposed blade type with maximum blade width of 12 inches. Access doors or panels shall be provided for all concealed damper operators and locking setscrews. Unless otherwise indicated, the locking-type quadrant operators for dampers, when installed on ducts to be thermally insulated, shall be provided with stand-off mounting brackets, bases, or adapters to provide clearance between the duct surface and the operator not less than the thickness of the insulation. Stand-off mounting items shall be integral with the operator or standard accessory of the damper manufacturer. Volume dampers shall be provided where indicated. # 2.8.2.3 Air Deflectors and Branch Connections Air deflectors shall be provided at duct mounted supply outlets, at takeoff or extension collars to supply outlets, at duct branch takeoff connections, and at 90 degree elbows, as well as at locations as indicated on the drawings or otherwise specified. Conical branch connections or 45 degree entry connections may be used in lieu of deflectors or extractors for branch connections. All air deflectors, except those installed in 90 degree elbows, shall be provided with an approved means of adjustment. Adjustment shall be made from easily accessible means inside the duct or from an adjustment with sturdy lock on the face of the duct. When installed on ducts to be thermally insulated, external adjustments shall be provided with stand-off mounting brackets, integral with the adjustment device, to provide clearance between the duct surface and the adjustment device not less than the thickness of the thermal insulation. Air deflectors shall be factory-fabricated units consisting of curved turning vanes or louver blades designed to provide uniform air distribution and change of direction with minimum turbulence or pressure loss. Air deflectors shall be factory or field assembled. Blade air deflectors, also called blade air extractors, shall be approved factory fabricated units consisting of equalizing grid and adjustable blade and lock. Adjustment shall be easily made from the face of the diffuser or by position adjustment and lock external to the duct. Stand-off brackets shall be provided on insulated ducts and are described herein. Fixed air deflectors, also called turning vanes, shall be provided in 90 degree elbows. #### 2.8.3 Duct Sleeves, Framed Prepared Openings, Closure Collars ## 2.8.3.1 Duct Sleeves Duct sleeves shall be provided for round ducts 15 inches in diameter or less passing through floors, walls, ceilings, or roof, and installed during construction of the floor, wall, ceiling, or roof. Round ducts larger than 15 inches in diameter and square, rectangular, and oval ducts passing through floors, walls, ceilings, or roof shall be installed through framed prepared openings. The Contractor shall be responsible for the proper size and location of sleeves and prepared openings. Sleeves and framed openings are also required where grilles, registers, and diffusers are installed at the openings. Framed prepared openings shall be fabricated from 20 gauge galvanized steel, unless otherwise indicated. Where sleeves are installed in bearing walls or partitions, black steel pipe, ASTM A 53, Schedule 20 shall be used. Sleeve shall provide 1 inch clearance between the duct and the sleeve or 1 inch clearance between the insulation and the sleeve for insulated ducts. ## 2.8.3.2 Framed Prepared Openings Openings shall have 1 inch clearance between the duct and the opening or 1 inch clearance between the insulation and the opening for insulated ducts. #### 2.8.3.3 Closure Collars Collars shall be fabricated of galvanized sheet metal not less than 4 inches wide, unless otherwise indicated, and shall be installed on exposed ducts on each side of walls or floors where sleeves or prepared openings are provided. Collars shall be installed tight against surfaces. Collars shall fit snugly around the duct or insulation. Sharp edges of the collar around insulated duct
shall be ground smooth to preclude tearing or puncturing the insulation covering or vapor barrier. Collars for round ducts 15 inches in diameter or less shall be fabricated from 20 gauge galvanized steel. Collars for round ducts larger than 15 inches and square, and rectangular ducts shall be fabricated from 18 gauge galvanized steel. Collars shall be installed with fasteners on maximum 6 inch centers, except that not less than 4 fasteners shall be used. ### 2.8.4. Not Used #### 2.8.5 Drum Louvers, Registers, and Grilles Units shall be factory-fabricated of steel, corrosion-resistant steel, or aluminum and shall distribute the specified quantity of air evenly over space intended without causing noticeable drafts, air movement faster than 50 fpm in occupied zone, or dead spots anywhere in the conditioned area. Outlets for diffusion, spread, throw, and noise level shall be as required for specified performance. Performance shall be certified according to ASHRAE 70. Inlets and outlets shall be sound rated and certified according to ASHRAE 70. Sound power level shall be as indicated. Diffusers and registers shall be provided with volume damper with accessible operator, unless otherwise indicated; or if standard with the manufacturer, an automatically controlled device will be acceptable. Volume dampers shall be opposed blade type for all diffusers and registers, except linear slot diffusers. Linear slot diffusers shall be provided with round or elliptical balancing dampers. Where the inlet and outlet openings are located less than 7 feet above the floor, they shall be protected by a grille or screen according to NFPA 90A. #### 2.8.5.2 Exhaust Grilles Exhaust grilles shall be adjustable type horizontal (long dimension of grille) blades. Exhaust grilles shall be provided with sponge-rubber gasket between flanges and ceiling. Exhaust grilles shall be provided with opposed blade adjustable dampers located directly behind the grilles. Exhaust grilles to be steel frame, aluminum grille and white finish. #### 2.8.6 Louvers Louvers for installation in exterior walls which are associated with the air supply and distribution system shall be as specified in Section 07600 SHEET METALWORK, GENERAL. ## 2.8.7 Bird Screens and Frames Bird screens shall conform to ASTM E 437, Type I, Class 1, 1/2 by 1/2 mesh, 0.063 inch diameter aluminum wire or 0.031 inch diameter stainless steel wire. Frames shall be removable type or stainless steel or extruded aluminum. # 2.8.7 Fire Dampers Provide fire dampers constructed in accordance with SMACNA "Fire Damers and Heat Stop Guide'. Dampers shall be UL approved and labeled. Provide fire dampers of the type and sizes indicated. Construct casings of 11-ga. Galvanized steel with bonded red acrylic enamel finish. Provide fusible link rated at 160 to 165 degree F., unless otherwise indicated. Provide damper with positive lock-in-closed position. ## 2.9 AIR SYSTEMS EQUIPMENT #### 2.9.1 Fans Fans shall be tested and rated according to AMCA ANSI/AMCA 210. Fans may be connected to the motors either directly or indirectly with V-belt drive. Vbelt drives shall be designed for not less than 150 percent of the connected driving capacity. Motor sheaves shall be variable pitch for 15 hp and below and fixed pitch as defined by ARI Guideline D. Variable pitch sheaves shall be selected to drive the fan at a speed which will produce the specified capacity when set at the approximate midpoint of the sheave adjustment. When fixed pitch sheaves are furnished, a replaceable sheave shall be provided when needed to achieve system air balance. Motors for V-belt drives shall be provided with adjustable rails or bases. Removable metal guards shall be provided for all exposed V-belt drives, and speed-test openings shall be provided at the center of all rotating shafts. Fans shall be provided with personnel screens or guards on both suction and supply ends, except that the screens need not be provided, unless otherwise indicated, where ducts are connected to the fan. Fan and motor assemblies shall be provided with vibration-isolation supports or mountings as indicated. Vibration-isolation units shall be standard products with published loading ratings. ### 2.9.3 Air Filters Air filters shall be listed according to requirements of UL 900. #### 2.9.3.1 Extended Surface Pleated Panel Filters Filters shall be 2 inch depth, sectional, disposable type of the size indicated and shall have an average efficiency of 25 to 30 percent when tested according to ASHRAE 52.1. Initial resistance at 500 feet per minute shall not exceed 0.36 inches water gauge. Filters shall be UL Class 2. Media shall be nonwoven cotton and synthetic fiber mat. A wire support grid bonded to the media shall be attached to a moisture resistant fiberboard frame. All four edges of the filter media shall be bonded to the inside of the frame to prevent air bypass and increase rigidity. ## 2.9.3.2 Filter Gauges Filter gauges shall be dial type, diaphragm actuated draft and shall be provided for all filter stations, including those filters which are furnished as integral parts of factory fabricated air handling units. Gauges shall be at least 3-7/8 inches in diameter, shall have white dials with black figures, and shall be graduated in 0.01 inch, and shall have a minimum range of 1 inch beyond the specified final resistance for the filter bank on which each gauge is applied. Each gauge shall incorporate a screw operated zero adjustment and shall be furnished complete with two static pressure tips with integral compression fittings, two molded plastic vent valves, two 5 foot minimum lengths of 1/4 inch diameter aluminum tubing, and all hardware and accessories for gauge mounting. # 2.10 CUSTOM AIR HANDLING UNITS (EAHU-101, EAHU-101A, EAHU-108, AHU-108 ### 2.10.1 General: Factory fabricated air handling units shall be constructed of solid steel, formed outer panels secured to a welded tubular steel frame. Outer panels shall be removable without affecting the structural integrity of the unit. All units shall come complete with a welded structural steel base around the entire perimeter. All units shall be suitable for Class II design conditions. #### Unit Base/Framework: Unit base frame shall be rectangular structural tubing or structural channel and fitted with a 4 inch C-Channel cross support members. The base shall include A "Double Bottom" 4 inch thick floor. Base rails shall be fitted with lifting lugs at the corner of the unit or section (if demounted). The unit base floor shall be heavy duty walk-on floor made from 20 gauge G-90 galvanized/aluminized and 16 gauge galvanized steel liner. Unit frame shall be from 14 gauge carbon tubular steel, mig welded to form a unitized assembly for support of all internal components. Base and unit frame shall be painted with an industrial direct to metal (DTM)finish with built-in rust inhibitors. ### 2.10.2 Exterior Casing: The air handling unit casing shall be of the internally reinforced metal design. Panels shall be gasketed and secured to the tubular steel frame with 1/4" hex head, zinc plated fasteners and neoprene washers. Outer panels are to be removable without affecting the structural integrity of the unit. All exterior panels shall be constructed from 16 gauge G90 galvanized finished steel. # 2.10.3 Exterior Finish: The exterior shall be Painted with industrial air dried (alkyd) enamel. #### 2.10.4 Liners: The unit shall be 2" double wall construction and include a 20 gauge solid liner in the entire unit. Insulation is required. # 2.10.5 Access Doors: Unit shall be supplied with galvanized, 16 gauge G-90 double wall, hinged doors. Access doors are flush mounted with EPDM hollow rubber seals and fitted Ventlok handles. ## 2.10.6 Condensate Pan: Condensate drain pan shall be 16 gauge 304 stainless steel. All pans are to be insulated "Double Bottom" construction with welded corners. Drain pans are to be sloped for complete drainage with no standing water in the unit. Drain connections shall be standard 1 1/4" MPT connection. Drain pans shall be provided under all cooling coils. ## 2.10.7 Dampers/Louvers: Low leakage dampers shall have extruded aluminum airfoil blades, zinc plated tubular steel square shafting, heavy duty stainless steel bearings, santoprene rubber edge seals, stainless steel jamb seals, a 16 gauge galvanized steel frame and to include operating damper linkage. All dampers are to be opposed blade type unless otherwise noted. Dampers located in prefabricated mixing box shall be furnished by the AHU unit manufacturer. Actuators are to be furnished and mounted by the controls contractor. Louvers are required for O/A & E/A ductwork inlets and outlets for AHU units. Louvers are specified in Section 10210, Paragraph 2.2. Louver Schedule is shown on plans. #### 2.10.8 Fans: The fan shall be of the type scheduled on the drawings. Fan blades shall be airfoil equipped with 100,000 hours pillow block bearings. Fan shaft shall be turned, ground and polished solid steel rated at maximum RPM below critical speed. Aluminum rob ring shall be fitted between housing and shaft at all locations. Fan wheel and sheaves are keyed to the shaft. Fan wheels shall be fabricated of heavy gauge steel. Fan shall be IRD balanced at design RPM to a vibration velocity less than Or equal to .080 inches per second measured at each bearing pad prior to shipment with motor, sheaves, and belts in place. Fan shall be rated in accordance with AMCA 210 for performance and AMCA 300 for sound. #### 2.10.9 Motors: NEMA Design B T-FRAME motors are mounted on an adjustable base. The motors shall be tested to IEEE standard 112 test method B and NEMA MG 12.58.2 and 12.59 table 12-10. VP "Variable Pitch" drives sheaves shall be furnished on motors up to 10 HP and fixed pitch on 15 HP and above. V-Belt drives are selected at 150% motor nameplate horsepower. ## 2.10.10 Coils: All coil assemblies shall be leak tested under water at not less than 300
PSIG and PERFORMANCE is to be CERTIFIED under ARI Standard 410. Coils exceeding the range of ARI standard rating conditions will be as noted on a coil computer printout. Hot water heating coils shall be constructed of 1 1/8" seamless copper tubing mechanically expanded into fin collars. Fins shall be die formed plate type. Headers shall be seamless copper with die formed tube holes. Connections shall be male pipe thread copper. Standard construction shall be suitable for 250 psig maximum pressure. ### 2.10.11 Filters: Provide filters of the type indicated on the schedule. Factory fabricated filter sections shall be of the same construction and finish as the unit. Side service filter sections shall include hinged access doors on both sides of the unit. Provide front load filters as noted on the drawings. Filter boxes shall be fabricated to flange to the air unit. Internal tieoffs shall be provided by the air unit manufacturer as required to prevent air bypass around the filters. Pre-filters shall be 2" - 30%. Final filters, if shown to be required, shall be 12" deep rigid 95%. Provide filter gauges equivalent to Dwyer 2000. #### 2.10.12 Electrical: Single point power is required. Provide all internal power wiring. The units shall be wired and tested at the factory before shipment. Wiring shall comply with requirements of NFPA 70 and shall conform to all applicable UL standards. Each unit shall include factory installed magnetic motor starters (panel) and main power disconnect. # 2.10.13 FACTORY PAINTING Units which are not of galvanized construction according to ASTM A 123 or ASTM A 924/A 924M shall be factory painted with a corrosion resisting paint finish. Internal and external ferrous metal surfaces shall be cleaned, phosphatized and coated with a paint finish which has been tested according to ASTM B 117, ASTM D 1654, and ASTM D 3359. Evidence of satisfactory paint performance for a minimum of 125 hours for units to be installed indoors and 500 hours for units to be installed outdoors shall be submitted. Rating of failure at the scribe mark shall be not less than 6, average creepage not greater than 1/8 inch. Rating of the inscribed area shall not be less than 10, no failure. On units constructed of galvanized steel which have been welded, exterior surfaces of welds or welds that have burned through from the interior shall receive a final shop docket of zincrich protective paint according to ASTM D 520 Type I. #### PART 3 EXECUTION #### 3.1 INSTALLATION Work shall be installed as shown and according to the manufacturer's diagrams and recommendations. # 3.1.1 Piping Pipe and fitting installation shall conform to the requirements of ASME B31.1. Pipe shall be cut accurately to measurements established at the jobsite, and worked into place without springing or forcing, completely clearing all windows, doors, and other openings. Cutting or other weakening of the building structure to facilitate piping installation will not be permitted without written approval. Pipe or tubing shall be cut square, shall have burrs removed by reaming, and shall permit free expansion and contraction without causing damage to the building structure, pipe, joints, or hangers. Changes in direction shall be made with fittings, except that bending of pipe 4 inches and smaller will be permitted, provided a pipe bender is used and wide sweep bends are formed. The centerline radius of bends shall not be less than 6 diameters of the pipe. Bent pipe showing kinks, wrinkles, flattening, or other malformations will not be accepted. Horizontal supply mains shall pitch down in the direction of flow as indicated. The grade shall be not less than 1 inch in 40 feet. Reducing fittings shall be used for changes in pipe sizes. Open ends of pipelines and equipment shall be capped or plugged during installation to keep dirt or other foreign materials out of the system. Pipe not otherwise specified shall be uncoated. Connections to appliances shall be made with malleable iron unions for steel pipe 2-1/2 inch or less in diameter, and with flanges for pipe 3 inches and larger. Connections between ferrous and copper piping shall be electrically isolated from each other with dielectric unions or flanges. All piping located in air plenums shall conform to NFPA 90Arequirements. Pipe and fittings installed in inaccessible conduits or trenches under concrete floor slabs shall be welded. ## 3.1.1.1 Joints - a. Threaded Joints: Threaded joints shall be made with tapered threads and made tight with a stiff mixture of graphite and oil or polytetrafluoroethylene tape or equivalent thread joint compound or material, applied to the male threads only. - b. Soldered Joints: Joints in copper tubing shall be cut square with ends reamed, and all filings and dust wiped from interior of pipe. Joints shall be soldered with 95/5 solder or brazed with silver solder applied and drawn through the full fitting length. Care shall be taken to prevent annealing of tube or fittings when making connections. Joints 2-1/2 inch and larger shall be made with heat uniformly around the entire circumference of the joint with a multi-flame torch. Connections in floor slabs shall be brazed. Excess solder shall be wiped from joint before solder hardens. Solder flux shall be liquid or paste form, non-corrosive and conform to ASTM B 813. - c. Welded Joints: Welding shall be according to qualified procedures using qualified welders and welding operators. Procedures and welders shall be qualified according to ASME BPV IX. Welding procedures qualified by others and welders and welding operators qualified by another operator may be permitted by ASME B31.1. Structural members shall be welded according to Section 05120 STRUCTURAL STEEL. All welds shall be permanently identified by imprinting the welder's or welding operator's assigned symbol adjacent to the weld. Welding and nondestructive testing procedures are specified in Section 15052 WELDING PRESSURE PIPING. Welded joints shall be fusion welded unless otherwise required. Changes in direction of piping shall be made with welding fittings only; mitering or notching pipe to form elbows and tees or other similar type construction will not be permitted. Branch connections may be made with either welding tees or branch outlet fittings. Branch outlet fittings shall be forged, flared for improvement of flow where attached to the run, and reinforced against external strains. Beveling, alignment, heat treatment and inspection of weld shall conform to ASME B31.1. Weld defects shall be removed and repairs made to the weld, or the weld joints shall be entirely removed and rewelded. Electrodes shall be stored and dried according to AWS D1.1 or as recommended by the manufacturer. Electrodes that have been wetted or that have lost any of their coating shall not be used. ## 3.1.1.2 Not Used #### 3.1.1.3 Flanges and Unions Except where copper tubing is used, union or flanged joints shall be provided in each line immediately preceding the connection to each piece of equipment or material requiring maintenance such as coils, pumps, control valves, and other similar items. ### 3.1.2 Supports # 3.1.2.1 General Hangers used to support piping 2 inches and larger shall be fabricated to permit adequate adjustment after erection while still supporting the load. Pipe guides and anchors shall be installed to keep pipes in accurate alignment, to direct the expansion movement, and to prevent buckling, swaying, and undue strain. Piping subjected to vertical movement when operating temperatures exceed ambient temperatures shall be supported by variable spring hangers and supports or by constant support hangers. ## 3.1.2.2 Seismic Requirements (Pipe Supports and Structural Bracing) Piping and attached valves shall be supported and braced to resist seismic loads as specified under Section 13082 SEISMIC PROTECTION FOR ARCHITECTURAL MECHANICAL, AND ELECTRICAL SYSTEMS, AND EQUIPMENT (ZONE 2). Structural steel required for reinforcement to properly support piping, headers, and equipment but not shown shall be provided under this section. Material used for support shall be as specified under Section 05120 STRUCTURAL STEEL. 3.1.2.3 Pipe Hangers, Inserts and Supports See Section 15556 for pipe hangers. # 3.1.4.2 Escutcheons Escutcheons shall be provided at finished surfaces where exposed piping, bare or insulated, passes through floors, walls, or ceilings except in boiler, utility, or equipment rooms. Where sleeves project slightly from floors, special deep-type escutcheons shall be used. Escutcheons shall be secured to pipe or pipe covering. - 3.1.5 Not Used - 3.1.6 Not Used - 3.1.7 Not Used # 3.1.8 Equipment and Installation Frames and supports shall be provided for tanks, compressors, pumps, valves, air handling units, fans, coils, dampers, and other similar items requiring supports. Air handling units shall be floor mounted, as indicated. The method of anchoring and fastening shall be as detailed. Floor-mounted equipment, unless otherwise indicated, shall be set on not less than 6 inch concrete pads or curbs doweled in place. Concrete foundations for circulating pumps shall be heavy enough to minimize the intensity of the vibrations transmitted to the piping and the surrounding structure, as recommended in writing by the pump manufacturer. In lieu of a concrete pad foundation, a concrete pedestal block with isolators placed between the pedestal block and the floor may be provided. The concrete foundation or concrete pedestal block shall be of a mass not less than three times the weight of the components to be supported. Lines connected to the pump mounted on pedestal blocks shall be provided with flexible connectors. Foundation drawings, bolt-setting information, and foundation bolts shall be furnished prior to concrete foundation construction for all equipment indicated or required to have concrete foundations. Concrete for foundations shall be as specified in Section 03300
CAST-IN-PLACE STRUCTURAL CONCRETE. #### 3.1.9 Access Panels Access panels shall be provided for concealed valves, vents, controls, dampers, and items requiring inspection or maintenance. Access panels shall be of sufficient size and located so that the concealed items may be serviced and maintained or completely removed and replaced. Access panels shall be as specified in Section 05500 MISCELLANEOUS METALS. #### 3.1.10 Flexible Connectors Pre-insulated flexible connectors and flexible duct shall be attached to other components in accordance with the latest printed instructions of the manufacturer to ensure a vapor tight joint. Hangers, when required to suspend the connectors, shall be of the type recommended by the connector or duct manufacturer and shall be provided at the intervals recommended. ## 3.1.11 Sleeved and Framed Openings Space between the sleeved or framed opening and the duct or the duct insulation shall be packed as specified for non-fire rated penetrations in Section 07900 JOINT SEALING. ## 3.1.12 Metal Ductwork Installation shall be according to SMACNA-06 unless otherwise indicated. Duct supports for sheet metal ductwork shall be according to SMACNA-06, unless otherwise specified. Friction beam clamps indicated in SMACNA-06 shall not be used. Risers on high velocity ducts shall be anchored in the center of the vertical run to allow ends of riser to move due to thermal expansion. Supports on the risers shall allow free vertical movement of the duct. Supports shall be attached only to structural framing members and concrete slabs. Supports shall not be anchored to metal decking unless a means is provided and approved for preventing the anchor from puncturing the metal decking. Where supports are required between structural framing members, suitable intermediate metal framing shall be provided. Where C-clamps are used, retainer clips shall be provided. #### 3.1.13 Dust Control To prevent the accumulation of dust, debris and foreign material during construction, temporary dust control protection shall be provided. The distribution system (supply and return) shall be protected with temporary seal-offs at all inlets and outlets at the end of each day's work. Temporary protection shall remain in place until system is ready for startup. #### 3.1.14 Insulation Thickness and application of insulation materials for ductwork, piping, and equipment shall be according to Section 15080 THERMAL INSULATION FOR MECHANICAL SYSTEMS. #### 3.1.15 Duct Test Holes Holes with closures or threaded holes with plugs shall be provided in ducts and plenums where necessary for the use of pitot tube in balancing the air system. Extensions, complete with cap or plug, shall be provided where the ducts are insulated. ## 3.1.16 Power Transmission Components Adjustment V-belts and sheaves shall be tested for proper alignment and tension prior to operation and after 72 hours of operation at final speed. Belts on drive side shall be uniformly loaded, not bouncing. Alignment of direct driven couplings shall be to within 50 percent of manufacturer's maximum allowable range of misalignment. #### 3.2 FIELD PAINTING AND PIPING IDENTIFICATION Finish painting of items only primed at the factory or surfaces not specifically noted otherwise and identification for piping are specified in Section 09900 PAINTING, GENERAL. # 3.3 PIPING HYDROSTATIC TEST After cleaning, water piping shall be hydrostatically tested at a pressure equal to 150 percent of the total system operating pressure for period of time sufficient to inspect every joint in the system and in no case less than 2 hours. Leaks shall be repaired and piping retested until test is successful. No loss of pressure will be allowed. Leaks shall be repaired by re-welding or replacing pipe or fittings. Caulking of joints will not be permitted. Concealed and insulated piping shall be tested in place before covering or concealing. ### 3.4 DUCTWORK LEAK TEST Ductwork leak test shall be performed for the air distribution for ACU-1, including fan, coils, filters, etc. designated as static pressure Class 3 inch water gauge. Test procedure, apparatus, and report shall conform to SMACNA-10. The maximum allowable leakage rate is 5 percent cfm total. Ductwork leak test shall be completed with satisfactory results prior to applying insulation to ductwork exterior. #### 3.5 CLEANING AND ADJUSTING Pipes shall be cleaned free of scale and thoroughly flushed of foreign matter. A temporary bypass shall be provided for water coils to prevent flushing water from passing through coils. Strainers and valves shall be thoroughly cleaned. Prior to testing and balancing, air shall be removed from water systems by operating the air vents. Temporary measures, such as piping the overflow from vents to a collecting vessel shall be taken to avoid water damage during the venting process. Air vents shall be plugged or capped after the system has been vented. Equipment shall be wiped clean, with traces of oil, dust, dirt, or paint spots removed. Temporary filters shall be provided prior to startup of all fans that are operated during construction, and new filters shall be installed after all construction dirt has been removed from the building, and the ducts, plenums, casings, and other items specified have been vacuum cleaned. System shall be maintained in this clean condition until final acceptance. Bearings shall be properly lubricated with oil or grease as recommended by the manufacturer. Belts shall be tightened to proper tension. Control valves and other miscellaneous equipment requiring adjustment shall be adjusted to setting indicated or directed. Fans shall be adjusted to the speed indicated by the manufacturer to meet specified conditions. ## 3.6 TESTING, ADJUSTING, AND BALANCING Testing, adjusting, and balancing shall be as specified in Section 15990 TESTING, ADJUSTING AND BALANCING OF HVAC SYSTEMS. Testing, adjusting, and balancing shall begin only when the air supply and distribution, including controls, has been completed, with the exception of performance tests. #### 3.7 PERFORMANCE TESTS After testing, adjusting, and balancing has been completed as specified, each system shall be tested as a whole to see that all items perform as integral parts of the system and temperatures and conditions are evenly controlled throughout the building. Corrections and adjustments shall be made as necessary to produce the conditions indicated or specified. Capacity tests and general operating tests shall be conducted by an experienced engineer. Tests shall cover a period of not less than 2 days for each system and shall demonstrate that the entire system is functioning according to the specifications. Coincidental chart recordings shall be made at points indicated on the drawings for the duration of the time period and shall record the temperature at space thermostats or space sensors, and the ambient temperature and humidity in a shaded and weather protected area. # 3.8 FIELD TRAINING The Contractor shall conduct a training course for operating and maintenance personnel as designated by the Contracting Officer. Training shall be provided for a period of 8 hours of normal working time and shall start after the system is functionally complete but prior to the performance tests. The field instruction shall cover all of the items contained in the approved Operating and Maintenance Instructions. END OF SECTION SECTION 15951 ## DIRECT DIGITAL CONTROL FOR HVAC ## PART 1 GENERAL #### 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. ### AIR MOVEMENT AND CONTROL ASSOCIATION (AMCA) AMCA 500 (1994) Test Methods for Louvers, Dampers and Shutters #### AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI) ANSI C12.1 (1995) Code for Electricity Metering ## AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | ASTM A 269 | (1996) Seamless and Welded Austenitic
Stainless Steel Tubing for General Service | |-------------|---| | ASTM B 88 | (1996) Seamless Copper Water Tube | | ASTM B 88M | (1996) Seamless Copper Water Tube (Metric) | | ASTM D 635 | (1996) Rate of Burning and/or Extent and Time of Burning of Self-Supporting Plastics in a Horizontal Position | | ASTM D 1693 | (1995) Environmental Stress-Cracking of
Ethylene Plastics | AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS (ASHRAE) ## AMERICAN SOCIETY OF MECHANICAL ENGINEERS (ASME) | ASME B16.34 | (1996) | Valves | - | Flanged, | Threaded, | and | |-------------|---------|--------|---|----------|-----------|-----| | | Welding | End | | | | | ASME B40.1 (1991) Gauges - Pressure Indicating Dial Type - Elastic Element ASME BPV VIII Div I (1998) Boiler and Pressure Vessel Code; Section VIII, Pressure Vessels Division 1 -Basic Coverage DACA67-00-R-0222 SECTION 15951 Page 1 of 59 #### ELECTRONIC INDUSTRIES ASSOCIATION (EIA) EIA ANSI/EIA/TIA 232-E (1991) Interface Between Data Technical Equipment and Data Circuit-Terminating Equipment Employing Serial Binary Data Interchange ## INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE) IEEE C62.41 (1991; R 1995) Surge Voltages in Low-Voltage AC Power Circuits IEEE Std 142 (1991) IEEE Recommended Practice for Grounding of Industrial and Commercial Power Systems ## INSTRUMENT SOCIETY OF AMERICA (ISA) ISA S7.0.01 (1975; R 1981) Quality Standard for Instrument Air ## NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA) NEMA 250 (1991) Enclosures for Electrical Equipment (1000 Volts Maximum) NEMA ICS 1 (1993) Industrial Control and Systems NEMA ST 1 (1988) Specialty Transformers (Exept General-Purpose Type) #### NATIONAL FIRE PROTECTION ASSOCIATION (NFPA) NFPA 70 (1996; Errata 96-4) National Electrical Code NFPA 90A (1996) Installation of Air Conditioning and Ventilating Systems ###
UNDERWRITERS LABORATORIES (UL) UL 94 (1996; Rev thru Jul 1997) Tests for Flammability of Plastic Materials for Parts in Devices and Appliances UL 268A (1993; Rev thru May 1997) Smoke Detectors for Duct Application UL 508 (1993; Rev thru Oct 1997) Industrial Control Equipment UL 555S (1996) Leakage Rated Dampers for Use in Smoke Control Systems # 1.2 GENERAL REQUIREMENTS The direct digital control (DDC) shall be a complete system suitable for the heating, ventilating and air-conditioning (HVAC) system. The DDC shall be provided by Invensys Environmental Controls. No substitutions of other systems or manufacturer's are permitted. This is a proprietary specification because of the need for standardization of the control systems on the Fairchild Airforce Base because of maintenance and operational issues. ## 1.2.1 Nameplates, Lens Caps, and Tags Nameplates and lens caps bearing legends as shown and tags bearing device-unique identifiers as shown shall have engraved or stamped characters. A plastic or metal tag shall be mechanically attached directly to each device or attached by a metal chain or wire. Each airflow measurement station shall have a tag showing flow rate range for signal output range, duct size, and identifier as shown. #### 1.2.2 Verification of Dimensions After becoming familiar with all details of the work, the Contractor shall verify all dimensions in the field, and shall advise the Contracting Officer of any discrepancy before performing any work. # 1.2.3 Drawings Because of the small scale of the drawings, it is not possible to indicate all offsets, fittings, and accessories that may be required. The Contractor shall carefully investigate the mechanical, electrical, and finish conditions that could affect the work to be performed, shall arrange such work accordingly, and shall furnish all work necessary to meet such conditions. # 1.2.4 Power-Line Surge Protection Equipment connected to ac circuits shall be protected from power-line surges. Equipment protection shall meet the requirements of IEEE C62.41. Fuses shall not be used for surge protection. ### 1.2.5 Surge Protection for Transmitter and Control Wiring DDC system control-panel equipment shall be protected against surges induced on control and transmitter wiring installed outside and as shown. The equipment protection shall be tested in the normal mode and in the common mode, using the following two waveforms: a. A 10-microsecond by 1,000-microsecond waveform with a peak voltage of 1,500 volts and a peak current of 60 amperes. DACA67-00-R-0222 SECTION 15951 Page 3 of 59 b. An eight microsecond by 20-microsecond waveform with a peak voltage of 1,000 volts and a peak current of 500 amperes. #### 1.2.6 System Overall Reliability Requirement The system shall be configured and installed to yield a mean time between failure (MTBF) of at least 40,000 hours. Each DDC controller shall be designed, configured, installed and programmed to provide for stand alone operation with minimal performance degradation on failure of other system components to which it is connected or with which it communicates. #### 1.2.7 DDC System Network Accessibility Where the systems to be controlled by the DDC system are located in multiple mechanical rooms, each mechanical room shall have at least one communication port for the portable workstation/tester. DDC controllers shall be located in the same room as the equipment being controlled or in an adjacent space which has direct access to the equipment room. #### System Accuracy and Display 1.2.8 The system shall maintain an end-to-end accuracy for one year from sensor to operator's console display for the applications specified and shall display the value as specified. Each temperature shall be displayed and printed to nearest 0.1 degree F. ## 1.2.8.1 Space Temperature Space temperature with a range of 50 to 85 degrees F plus or minus 0.75 degree F for conditioned space; 30 to 130 degrees F plus or minus 1 degree F for unconditioned space. #### 1.2.8.2 Duct Temperature Duct temperature with a range of 40 to 140 degrees F plus or minus 2 degrees F. # 1.2.8.3 Outside Air Temperature Outside air (OA) temperature with a range of minus 30 to plus 130 degrees F plus or minus 2 degrees F; with a subrange of 30 to 100 degrees F plus or minus 1 degree F. #### 1.2.8.4 Water Temperature Water temperature with a range of 30 to 100 degrees F plus or minus 0.75 degree F; the range of 100 to 250 degrees F plus or minus 2 degrees F; and water temperatures for the purpose of performing Btu calculations using differential temperatures to plus or minus 0.5 degree F using matched sensors. #### 1.2.8.5 Differential Pressure Differential pressure with a range for the specific application plus or minus 2.0 percent of range (display and print to nearest psi.) #### 1.2.8.6 Flow Flow with a range for the specific application plus or minus 3.0 percent of range, and flows for the purpose of thermal calculations to plus or minus 2.0 percent of actual flow (display and print to nearest unit, such as gallons per minute). #### 1.2.8.7 KWh and kW Demand KWh and kW demand with a range for the specific application plus or minus 1.0 percent of reading (display and print to nearest kWh or kW). #### Analog Value Input 1.2.8.10 An analog value input to the system's equipment via an AI with a maximum error of 0.50 percent of range, not including the sensor or transmitter error. This accuracy shall be maintained over the specified environmental conditions. #### 1.3 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-01 Data Equipment Compliance Booklet; GA. The HVAC Control System Equipment Compliance Booklet (ECB) shall be in booklet form and indexed, with numbered tabs separating the information on each device. It shall consist of, but not be limited to, data sheets and catalog cuts which document compliance of all devices and components with the specifications. The ECB shall be indexed in alphabetical order by the unique identifiers. Devices and components which do not have unique identifiers shall follow the devices and components with unique identifiers and shall be indexed in alphabetical order according to their functional The ECB shall include a Bill of Materials for each HVAC Control System. The Bill of Materials shall function as the Table of Contents for the ECB and shall include the device's unique identifier, device function, manufacturer, model/part/catalog number used for ordering, and tab number where the device information is located in the ECB. The ECB shall be submitted along with Submittal SD-04, Drawings. SD-04 Drawings HVAC Control System; FIO. Drawings shall be on 11" x 17" sheets in an approved form and arrangement, or electronic drawings on a compact disk. The drawings shall use the same abbreviations, symbols, nomenclature and identifiers shown. Each control system element on a drawing shall have a unique identifier as shown. HVAC Control System Drawings shall be delivered together as a complete submittal. Deviations must be approved by the Contracting Officer. Drawings shall be submitted along with Submittal SD-01, Data. a. HVAC Control System Drawings shall include the following: Drawing Index, HVAC Control System Legend. Sheet One: Sheet Two: Valve Schedule, Damper Schedule. Sheet Three: Control System Schematic and Equipment Schedule. Sheet Four: Sequence of Operation and Data Terminal Strip Layout. Sheet Five: Control Loop Wiring Diagrams. Sheet Six: Motor Starter and Relay Wiring Diagram. Sheet Seven: Communication Network and Block Diagram. Sheet Eight: DDC Panel Installation and Block Diagram. (Repeat Sheets Three through Six for each AHU System.) - The HVAC Control System Drawing Index shall show the name and number of the building, military site, State or other similar designation, and Country. The Drawing Index shall list HVAC Control System Drawings, including the drawing number, sheet number, drawing title, and computer filename when used. The HVAC Control System Legend shall show generic symbols and the name of devices shown on the HVAC Control System Drawings. - The valve schedule shall include each valve's unique identifier, size, flow coefficient Cv, pressure drop at specified flow rate, spring range, positive positioner range, actuator size, close-off pressure data, dimensions, and access and clearance requirements data. Valve schedules may be submitted in advance but shall be included in the complete submittal. - d. The damper schedule shall contain each damper's and each actuator's identifier, nominal and actual sizes, orientation of axis and frame, direction of blade rotation, spring ranges, operation rate, positive positioner ranges, locations of actuators and damper end switches, arrangement of sections in multi-section dampers, and methods of connecting dampers, actuators, and linkages. The Damper Schedule shall include the maximum leakage rate at the operating static-pressure differential. The Damper Schedule shall contain actuator selection data supported by calculations of the torque required to move and seal the dampers, access and clearance requirements. Damper schedules may be submitted in advance but shall be included in the complete submittal. - e. The HVAC control system schematics shall be in the form shown, and shall show all control and mechanical devices associated with the HVAC system. A system schematic drawing shall be submitted for each HVAC system. - The HVAC control system equipment Schedule shall be in the form shown. All devices shown on the drawings having unique identifiers shall be referenced in the equipment schedule. Information to be included in the equipment schedule shall be the control loop, device unique identifier, device function, setpoint, input range, and additional important parameters (i.e.,
output range). An equipment schedule shall be submitted for each HVAC system. - The HVAC control system sequence of operation shall reflect the language and format of this specification, and shall refer to the devices by their unique identifiers as shown. No operational deviations from specified sequences will be permitted without prior written approval of the Contracting Officer. Sequences of operation shall be submitted for each HVAC control system including each type of terminal unit control system. - h. The HVAC control system wiring diagrams shall be functional wiring diagrams which show the interconnection of conductors and cables to HVAC control panel terminal blocks and to the identified terminals of devices, starters and package equipment. The wiring diagrams shall show necessary jumpers and ground connections. The wiring diagrams shall show the labels of all conductors. Sources of power required for HVAC control systems and for packaged equipment control systems shall be identified back to the panel board circuit breaker number, HVAC system control panel, magnetic starter, or packaged equipment control circuit. Each power supply and transformer not integral to a controller, starter, or packaged equipment shall be shown. The connected volt-ampere load and the power supply volt-ampere rating shall be shown. Wiring diagrams shall be submitted for each HVAC control system. SD-08 Statements Commissioning Procedures; GA. Six copies of the HVAC control system commissioning procedures, in booklet form and indexed, 60 days prior to the scheduled start of commissioning. Commissioning procedures shall be provided for each HVAC control system, and for each type of terminal unit control system. The Commissioning procedures shall reflect the format and language of this specification, and refer to devices by their unique identifiers as shown. The Commissioning procedures shall be specific for each HVAC system, and shall give detailed step-by-step procedures for commissioning of the system. - The Commissioning procedures shall include detailed, product specific set-up procedures, configuration procedures, adjustment procedures, and calibration procedures for each device. Where the detailed product specific commissioning procedures are included in manufacturer supplied manuals, reference may be made in the HVAC control system commissioning procedures to the manuals. - An HVAC control system commissioning procedures equipment list shall be included that lists the equipment to be used to accomplish commissioning. The list shall include manufacturer name, model number, equipment function, the date of the latest calibration, and the results of the latest calibration. Performance Verification Test Procedures; GA. Six copies of the HVAC Control System Performance Verification Test Procedures, in booklet form and indexed, 60 days before the Contractor's scheduled test dates. The performance verification test procedures shall refer to the devices by their unique identifiers as shown, shall explain, step-by-step, the actions and expected results that will demonstrate that the HVAC control system performs in accordance with the sequences of operation, and other contract documents. An HVAC control system performance verification test equipment list shall be included that lists the equipment to be used during performance verification testing. The list shall include manufacturer name, model number, equipment function, the date of the latest calibration, and the results of the latest calibration. Training Course Materials; GA. An outline for the HVAC control system training course with a proposed time schedule. Approval of the planned training schedule shall be obtained from the Government at least 60 days prior to the start of the training. copies of HVAC control system training course material 30 days prior to the scheduled start of the training course. The training course material shall include the operation manual, maintenance and repair manual, and paper copies of overheads used in the course. SD-09 Reports Commissioning Report; GA. Six copies of the HVAC Control System Commissioning Report, in booklet form and indexed, within 30 days after completion of the system commissioning. The commissioning report shall include data collected during the HVAC control system commissioning procedures and shall follow the format of the commissioning procedures. The commissioning report shall include all configuration checksheets with final values listed for all parameters, setpoints, P, I, D setting constants, calibration data for all devices, results of adjustments, and results of testing. Performance Verification Test Report; GA. Six copies of the HVAC Control System Performance Verification Test Report, in booklet form and indexed, within 30 days after completion of the test. The HVAC control system performance verification test report shall include data collected during the HVAC control system performance verification test. The original copies of all data gathered during the performance verification test shall be turned over to the Government after Government approval of the test results. SD-18 Records Service Organizations; FIO. Six copies of a list of service organizations qualified to service the HVAC control system. The list shall include the service organization name, address, technical point of contact and telephone number, and contractual point of contact and telephone number. SD-19 Operation and Maintenance Manuals Operation Manual; GA. Maintenance and Repair Manual; GA. Six copies of the HVAC Control System Operation Manual and HVAC Control System Maintenance and Repair Manual, for each HVAC control system, 30 days before the date scheduled for the training course. #### 1.4 DELIVERY AND STORAGE Products shall be stored with protection from the weather, humidity and temperature variations, dirt and dust, and other contaminants, within the storage condition limits published by the equipment manufacturer. Dampers shall be stored so that seal integrity, blade alignment and frame alignment are maintained. #### 1.5 OPERATION MANUAL An HVAC control system operation manual in indexed booklet form shall be provided for each HVAC control system. The operation manual shall include the HVAC control system sequence of operation, and procedures for the HVAC system start-up, operation and shut-down. The operation manual shall include as-built HVAC control system detail drawings. The operation manual shall include the as-built configuration checksheets, the procedures for changing HVAC control system setpoints, and the procedures for placing HVAC system controllers in the manual control mode. - a. The procedures for changing HVAC control system setpoints shall describe the step-by-step procedures required to change the process variable setpoints, the alarm setpoints, the bias settings, and setpoint reset schedules. - b. The procedures for placing HVAC system controllers in the manual control mode shall describe step-by-step procedures required to obtain manual control of each controlled device and to manually adjust their positions. ## 1.6 MAINTENANCE AND REPAIR MANUAL An HVAC control system maintenance and repair manual in indexed booklet form in hardback binders shall be provided for each HVAC control system. The maintenance and repair manual shall include the routine maintenance checklist, a recommended repair methods list, a list of recommended maintenance and repair tools, the qualified service organization list, the as-built commissioning procedures and report, the as-built performance DACA67-00-R-0222 SECTION 15951 Page 9 of 59 verification test procedures and report, and the as-built equipment data booklet. - a. The routine maintenance checklist shall be arranged in a columnar The first column shall list all devices listed in the equipment compliance booklet, the second column shall state the maintenance activity or state no maintenance required, the third column shall state the frequency of the maintenance activity, and the fourth column for additional comments or reference. - b. The recommended repair methods list shall be arranged in a columnar format and shall list all devices in the equipment data compliance booklet and state the guidance on recommended repair methods, either field repair, factory repair, or whole-item replacement. - The as-built equipment data booklet shall include the equipment compliance booklet and manufacturer supplied user manuals and information. - If the operation manual and the maintenance and repair manual are provided in a common volume, they shall be clearly differentiated and separately indexed. #### 1.7 MAINTENANCE AND SERVICE Services, materials and equipment shall be provided as necessary to maintain the entire system in an operational state as specified for a period of one year after successful completion and acceptance of the Performance Verification Test. Impacts on facility operations shall be minimized. # 1.7.1 Description of Work The adjustment and repair of the system shall include the manufacturer's required adjustments of computer equipment, software updates, transmission equipment and instrumentation and control devices. ## 1.7.2 Personnel Service personnel shall be qualified to accomplish work promptly and satisfactorily. The Government shall be advised in writing of the name of the designated service representative, and of any changes in personnel. #### 1.7.3 Scheduled Inspections Two inspections shall be performed at six-month intervals (or less if required by the manufacturer), and all work required shall be performed. Inspections shall be scheduled in June and December. These inspections shall include: - a. Visual checks and operational tests of equipment. - b. Fan checks and filter changes for control system equipment. - c. Clean control system equipment including interior and exterior surfaces. - d. Check and calibrate each field device. Check and calibrate 50 percent of the
total analog points during the first inspection. Check and calibrate the remaining 50 percent of the analog points during the second major inspection. Certify analog test instrumentation accuracy to be twice that of the device being calibrated. Randomly check at least 25 percent of all digital points for proper operation during the first inspection. Randomly check at least 25 percent of the remaining digital points during the second inspection. - e. Run system software diagnostics and correct diagnosed problems. - f. Resolve any previous outstanding problems. #### 1.7.4 Scheduled Work This work shall be performed during regular working hours, Monday through Friday, excluding legal holidays. ## 1.7.5 Emergency Service The Government will initiate service calls when the system is not functioning properly. Qualified personnel shall be available to provide service to the system. A telephone number where the service supervisor can be reached at all times shall be provided. Service personnel shall be at the site within 24 hours after receiving a request for service. The control system shall be restored to proper operating condition within three calendar days after receiving a request for service. ## 1.7.6 Operation Scheduled adjustments and repairs shall include verification of the control system operation as demonstrated by the applicable tests of the performance verification test. # 1.7.7 Records and Logs Dated records and logs shall be kept of each task, with cumulative records for each major component, and for the complete system chronologically. A continuous log shall be maintained for all devices. The log shall contain initial analog span and zero calibration values and digital points. Complete logs shall be kept and shall be available for inspection onsite, demonstrating that planned and systematic adjustments and repairs have been accomplished for the control system. ## 1.7.8 Work Requests Each service call request shall be recorded as received and shall include the serial number identifying the component involved, its location, date and time the call was received, nature of trouble, names of the service DACA67-00-R-0222 SECTION 15951 Page 11 of 59 personnel assigned to the task, instructions describing what has to be done, the amount and nature of the materials to be used, the time and date work started, and the time and date of completion. A record of the work performed shall be submitted within 5 days after work is accomplished. #### 1.7.9 System Modifications Recommendations for system modification shall be submitted in writing. No system modifications, including operating parameters and control settings, shall be made without prior approval of the Government. Any modifications made to the system shall be incorporated into the operations and maintenance manuals, and other documentation affected. #### 1.7.10 Software Updates to the software shall be provided for system, operating and application software, and operation in the system shall be verified. Updates shall be incorporated into operations and maintenance manuals, and software documentation. There shall be at least one scheduled update near the end of the first year's warranty period, at which time the latest released version of the Contractor's software shall be installed and validated. #### 1.8 FACTORY TESTING The Contractor shall assemble the factory test DDC system as specified and shall perform test to demonstrate that the performance of the system satisfies the requirements of this specification. Model numbers of equipment tested shall be identical to those to be delivered to the site. Original copies of data produced, including results of each test procedure during factory testing shall be delivered to the Government at the conclusion of testing, prior to Government approval of the test. The test results documentation shall be arranged so that commands, responses, and data acquired are correlated in a manner which will allow for logical interpretation of the data. ## 1.8.1 Factory Test Setup The factory test setup shall include the following: - a. Central workstation/tester. - b. Printer. - c. DDC test set. - d. Portable workstation/tester. - e. Communication links of each type and speed including MODEMs. - f. Dial-up MODEM. q. Software. ## PART 2 PRODUCTS ## 2.1 GENERAL EQUIPMENT REQUIREMENTS The DDC system shall be fully compatible with the existing Fairchild AFB Invensys/Robertshaw Central System. Units of the same type of equipment shall be products of a single manufacturer. Each major component of equipment shall have the manufacturer's name and address, and the model and serial number in a conspicuous place. Materials and equipment shall be standard products of a manufacturer regularly engaged in the manufacturing of such products, which are of a similar material, design and workmanship. The standard products shall have been in a satisfactory commercial or industrial use for two years prior to use on this project. The two years' use shall include applications of equipment and materials under similar circumstances and of similar size. The two years' experience shall be satisfactorily completed by a product which has been sold or is offered for sale on the commercial market through advertisements, manufacturers' catalogs, or brochures. Products having less than a two-year field service record will be acceptable if a certified record of satisfactory field operation, for not less than 6,000 hours exclusive of the manufacturer's factory tests, can be shown. The equipment items shall be supported by a service organization. Items of the same type and purpose shall be identical, including equipment, assemblies, parts and components. Automatic temperature controls shall be direct digital controls that will provide the required sequence of operation. # 2.1.1 Electrical and Electronic Devices Electrical, electronic, and electropneumatic devices not located within a DDC panel shall have a NEMA ICS 1 enclosure in accordance with NEMA 250 unless otherwise shown. #### 2.1.2 Standard Signals Except for air distribution terminal unit control equipment, the output of all analog transmitters and the analog input and output of all DDC controllers shall be 4-to-20 mAdc signals. The signal shall originate from current-sourcing devices and shall be received by current-sinking devices. #### 2.1.3 Ambient Temperature Limits DDC panels shall have ambient condition ratings of 35 to 120 degrees F and 10 to 95 percent relative humidity, noncondensing. Devices installed outdoors shall operate within limit ratings of minus 35 to plus 150 degrees Instrumentation and control elements shall be rated for continuous operation under the ambient environmental temperature, pressure, humidity, and vibration conditions specified or normally encountered for the installed location. ### 2.1.4 Year 2000 Compliance All equipment and software shall be Year 2000 compliant and shall be able to accurately process date/time data (including, but not limited to, calculating, comparing, and sequencing) from, into, and between the twentieth and twenty-first centuries, including leap year calculations, when used in accordance with the product documentation provided by the contractor, provided that all products (e.g. hardware, software, firmware) used in combination with other information technology, shall accurately process date/time data if other information technology properly exchanges date/time data with it. #### 2.2 TUBING ## 2.2.1 Copper Copper tubing shall conform to ASTM B 88, ASTM B 88M and shall have sweat fittings and valves. #### 2.2.2 Stainless Steel Stainless steel tubing shall conform to ASTM A 269 and shall have stainless steel compression fittings. #### 2.2.3 Plastic Plastic tubing shall have barbed fittings and valves. Plastic tubing shall have the burning characteristics of linear low-density polyethylene tubing, shall be self-extinguishing when tested in accordance with ASTM D 635, shall have UL 94 V-2 flammability classification, and shall withstand stress cracking when tested in accordance with ASTM D 1693. Plastic-tubing bundles shall be provided with Mylar barrier and flame-retardant polyethylene jacket. #### 2.3 WIRING # 2.3.1 Terminal Blocks Terminal blocks shall be insulated, modular, feed-through, clamp style with recessed captive screw-type clamping mechanism, shall be suitable for rail mounting, and shall have end plates and partition plates for separation or shall have enclosed sides. ### 2.3.2 Control Wiring for 24-Volt Circuits Control wiring for 24-volt circuits shall be 18 AWG minimum, stranded copper and shall be rated for 300-volt service. ## 2.3.3 Wiring for 120-Volt Circuits Wiring for 120-volt circuits shall be 18 AWG minimum, stranded copper and shall be rated for 600-volt service. DACA67-00-R-0222 SECTION 15951 Page 14 of 59 # 2.3.4 Instrumentation Cable Instrumentation cable shall be 18 AWG, stranded copper, single- or multiple-twisted, minimum 2 inch lay of twist, 100 percent shielded pairs, and shall have a 300-volt insulation. Each pair shall have a 20 AWG tinned-copper drain wire and individual overall pair insulation. Cables shall have an overall aluminum-polyester or tinned-copper cable-shield tape, overall 20 AWG tinned-copper cable drain wire, and overall cable insulation. #### 2.3.5 Transformers Step down transformers shall be utilized where control equipment operates at lower than line circuit voltage. Transformers, other than transformers in bridge circuits, shall have primaries wound for the voltage available and secondaries wound for the correct control circuit voltage. Transformer shall be sized so that the connected load is 80 percent of the rated capacity or less. Transformers shall conform to UL 508 and NEMA ST 1. #### 2.4 ACTUATORS Actuators shall be electric or electronic as shown and shall be provided with mounting and connecting hardware. Actuators shall fail to their spring-return positions on signal or power failure. The
actuator stroke shall be limited in the direction of power stroke by an adjustable stop. Actuators shall have a visible position indicator. Actuators shall smoothly open or close the devices to which they are applied and shall have a full stroke response time of 60 seconds or less. Electric actuators shall have an oil-immersed gear train. Electric or electronic actuators operating in series shall have an auxiliary actuator driver. Electric or electronic actuators used in sequencing applications shall have an adjustable operating range and start point. #### 2.4.1 Valve Actuators Valve actuators shall be selected to provide a minimum of 125 percent of the motive power necessary to operate the valve over its full range of operation. #### 2.5 AUTOMATIC CONTROL VALVES Valves shall have stainless-steel stems and stuffing boxes with extended necks to clear the piping insulation. Unless otherwise stated, valves shall have globe style bodies. Valve bodies shall be designed for not less than 125 psig working pressure or 150 percent of the system operating pressure, whichever is greater. Valve leakage rating shall be 0.01 percent of rated Cv. Unless otherwise specified, bodies for valves 1-1/2 inches and smaller shall be brass or bronze, with threaded or union ends; bodies for 2 inch valves shall have threaded ends; and bodies for valves 2 to 3 inches shall be of brass, bronze or iron. Bodies for valves 2-1/2 inches and larger shall be provided with flanged-end connections. Valve Cv shall be within 100 to 125 percent of the Cv shown. #### 2.5.1 Butterfly Valve Assembly Butterfly valves shall be threaded lug type suitable for dead-end service and modulation to the fully-closed position, with carbon-steel bodies and noncorrosive discs, stainless steel shafts supported by bearings, and EPDM seats suitable for temperatures from minus 20 to plus 250 degrees F. Valves shall have a manual means of operation independent of the actuator. rated Cv for butterfly valves shall be the value Cv at 70% open (60 degrees open). # 2.5.2 Two-Way Valves Two-way modulating valves shall have equal-percentage characteristics. #### 2.5.3 Three-Way Valves Three-way valves shall provide linear flow control with constant total flow throughout full plug travel. #### 2.5.4 Duct-Coil and Terminal-Unit-Coil Valves Control valves with either flare-type or solder-type ends shall be provided for duct or terminal-unit coils. Flare nuts shall be furnished for each flare-type end valve. # 2.5.5 Valves for Chilled-Water, Condenser-Water, and Glycol Service Internal valve trim shall be bronze except that valve stems may be type 316 stainless steel. Valve Cv shall be within 100 to 125 percent of the Cv shown. Valves 4 inches and larger shall be butterfly. # 2.5.6 Valves for Hot-Water and Dual Temperature Service For hot water service below 250 degrees F and dual-temperature service, internal trim (including seats, seat rings, modulating plugs, and springs) of valves controlling water hotter than 210 degrees F shall be Type 316 stainless steel. Internal trim for valves controlling water 210 degrees F or less shall be brass or bronze. Nonmetallic parts of hot-water control valves shall be suitable for a minimum continuous operating temperature of 250 degrees F or 50 degrees F above the system design temperature, whichever is higher. Valves 4 inches and larger shall be butterfly valves. # 2.5.7 Valves for Steam Service Bodies for valves 4 inches and larger shall be iron. Internal valve trim shall be Type 316 stainless steel. Valve Cv shall be not less than shown nor greater than the Cv of the manufacturer's next larger size. #### 2.6 DAMPERS # 2.6.1 Damper Assembly A single damper section shall have blades no longer than 48 inches and shall be no higher than 72 inches. Maximum damper blade width shall be 8 inches. Larger sizes shall be made from a combination of sections. Dampers shall be steel, or other materials where shown. Flat blades shall be made rigid by folding the edges. Blade-operating linkages shall be within the frame so that blade-connecting devices within the same damper section shall not be located directly in the air stream. Damper axles shall be 0.5 inch minimum, stainless steel rods supported in the damper frame by stainless steel bearings. Blades mounted vertically shall be supported by thrust bearings. Pressure drop through dampers shall not exceed 0.04 inch water gauge at 1,000 feet per minute in the wide-open position. Frames shall not be less than 2 inches in width. Dampers shall be tested in accordance with AMCA 500. #### 2.6.2 Operating Links Operating links external to dampers, such as crankarms, connecting rods, and line shafting for transmitting motion from damper actuators to dampers, shall withstand a load equal to at least twice the maximum required damperoperating force. Rod lengths shall be adjustable. Links shall be brass, bronze, zinc-coated steel, or stainless steel. Working parts of joints and clevises shall be brass, bronze, or stainless steel. Adjustments of crankarms shall control the open and closed positions of dampers. 2.6.3 Damper Types shall be as specified here unless specified elswhere. Return air dampers, Relief air dampers, and Outside air dampers shall be opposed blade type. # 2.6.3.1 Outside Air, Return Air, and Relief Air Dampers Outside air, return air and relief air dampers shall be provided where Blades shall have interlocking edges and shall be provided with compressible seals at points of contact. The channel frames of the dampers shall be provided with jamb seals to minimize air leakage. Dampers shall not leak in excess of 20 cfm per square foot at 4 inches water gauge static pressure when closed. Seals shall be suitable for an operating temperature range of minus 40 to plus 200 degrees F. Dampers shall be rated at not less than 2,000 feet per minute air velocity. #### 2.6.3.2 Mechanical and Electrical Space Ventilation Dampers Mechanical and electrical space ventilation dampers shall be as shown. Dampers shall not leak in excess of 80 cfm square foot at 4 inches water gauge static pressure when closed. Dampers shall be rated at not less than 1,500 feet per minute air velocity. #### 2.6.4 Damper End Switches Each end switch shall be a hermetically sealed switch with a trip lever and over-travel mechanism. The switch enclosure shall be suitable for mounting on the duct exterior and shall permit setting the position of the trip lever that actuates the switch. The trip lever shall be aligned with the damper blade. #### 2.7 SMOKE DETECTORS Duct smoke detectors shall be provided in supply and return air ducts in accordance with NFPA 90A. Duct smoke detectors shall conform to the requirements of UL 268A. Duct smoke detectors shall have perforated sampling tubes extended into the air duct. Detector circuitry shall be mounted in a metallic enclosure exterior to the duct. Detectors shall have manual reset. Detectors shall be rated for air velocities that include air flows between 500 and 4000 fpm. Detectors shall be powered from the HVAC Detectors shall have two sets of normally open alarm control panel. contacts and two sets of normally closed alarm contacts. Detectors shall be connected to the building fire alarm panel for alarm initiation. A remote annunciation lamp and accessible remote reset switch shall be provided for duct detectors that are mounted eight feet or more above the finished floor and for detectors that are not readily visible. Remote lamps and switches as well as the affected fan units shall be properly identified in etched rigid plastic placards. # 2.8 INSTRUMENTATION #### 2.8.1 Measurements Transmitters shall be calibrated to provide the following measurements, over the indicated ranges, for an output of 4 to 20 mAdc: - a. Conditioned space temperature, from 50 to 85 degrees F. - b. Duct temperature, from 40 to 140 degrees F. - c. Heating hot-water temperature, from 100 to 250 degrees F. - d. Condenser-water temperature, from 30 to 130 degrees F. - e. Outside-air temperature, from minus 30 to 130 degrees F. - f. Differential pressure, from 0 to 2.0 inches water gauge. # 2.8.2 Temperature Instruments # 2.8.2.1 Resistance Temperature Detectors (RTD) Temperature sensors shall be 100 ohms 3- or 4-wire RTD. Each RTD shall be platinum with a tolerance of plus or minus 0.1 percent at 32 degrees F, and DACA67-00-R-0222 SECTION 15951 Page 18 of 59 shall be encapsulated in epoxy, series 300 stainless steel, anodized aluminum, or copper. Each RTD shall be furnished with an RTD transmitter as specified, integrally mounted unless otherwise shown. # 2.8.2.2 Continuous Averaging RTD Continuous averaging RTDs shall have a tolerance of plus or minus 1.0 degree F at the reference temperature, and shall be of sufficient length to ensure that the resistance represents an average over the cross section in which it is installed. The sensing element shall have a bendable copper sheath. Each averaging RTD shall be furnished with an RTD transmitter to match the resistance range of the averaging RTD. #### 2.8.2.3 RTD Transmitter The RTD transmitter shall match the resistance range of the RTD. transmitter shall be a two-wire, loop powered device. The transmitter shall produce a linear 4-to-20 mAdc output corresponding to the required temperature measurement. The output error shall not exceed 0.1 percent of the calibrated measurement. #### 2.8.3 Differential Pressure Instruments The instrument shall be a pressure transmitter with an integral sensing element. The instrument over pressure rating shall be 300 percent of the operating pressure. The sensor/transmitter assembly accuracy shall be plus or minus two percent of full scale. The transmitter shall be a two-wire, loop-powered device. The transmitter shall produce a linear 4-to-20 mAdc output corresponding to the required pressure measurement. #### 2.8.4 Thermowells Thermowells shall be Series 300 stainless steel with threaded brass plug and chain, 2 inch lagging neck
and extension type well. Inside diameter and insertion length shall be as required for the application. #### 2.8.5 Sunshields Sunshields for outside air temperature sensing elements shall prevent the sun from directly striking the temperature sensing elements. The sunshields shall be provided with adequate ventilation so that the sensing element responds to the ambient temperature of the surroundings. The top of each sunshield shall have a galvanized metal rainshield projecting over the face of the sunshield. The sunshields shall be painted white. # 2.9 THERMOSTATS Thermostat ranges shall be selected so that the setpoint is adjustable without tools between plus or minus 10 degrees F of the setpoint shown. Thermostats shall be electronic or electric. # 2.9.1 Nonmodulating Room Thermostats Contacts shall be single-pole double-throw (SPDT), hermetically sealed, and wired to identified terminals. Maximum differential shall be 5 degrees F. Room thermostats shall be enclosed with separate locking covers (guards). # 2.9.2 Microprocessor Based Room Thermostats Microprocessor based thermostats shall have built-in keypads for scheduling of day and night temperature settings. Access to the scheduling mode shall be by a password control code. When out of the scheduling mode, thermostats shall have continuous display of time, with AM and PM indicator, continuous display of day of week, and either continuous display of room temperature with display of temperature setpoint on demand, or continuous display of temperature setpoint with display of room temperature on demand. In the programmable mode, the display shall be used for interrogating time program ON-OFF setpoints for all seven days of the week. The time program shall allow two separate temperature setback intervals per day. The thermostats shall have a means for temporary and manual override of the program schedule, with automatic program restoration on the following day. Thermostats shall have a replaceable battery to maintain the timing and maintain the schedule in memory for one year in the event of a power outage. Maximum differential shall be 2 degrees F. When used for heat pump applications, the thermostat shall have an emergency heat switch. # 2.9.3 Modulating Room Thermostats Modulating room thermostats shall have either one output signal, two output signals operating in unison, or two output signals operating in sequence, as required for the application. Each thermostat shall have an adjustable throttling range of 4 to 8 degrees F for each output. Room thermostats shall be enclosed with separate locking covers (guards). # 2.9.4 Nonmodulating Capillary Thermostats and Aquastats Each thermostat shall have a capillary length of at least 5 feet, shall have adjustable direct-reading scales for both setpoint and differential, and shall have a differential adjustable from 6 to 16 degrees F. Aquastats shall be of the strap on type, with 10 degrees F fixed differential. #### 2.9.5 Freezestats Freezestats shall be manual reset, low temperature safety thermostats, with ${\tt NO}$ and ${\tt NC}$ contacts and a 20 foot element which shall respond to the coldest 18 inch segment. # 2.9.6 Modulating Capillary Thermostats Each thermostat shall have either one output signal, two output signals operating in unison, or two output signals operating in sequence, as required for the application. Thermostats shall have adjustable throttling ranges of 4 to 8 degrees F for each output. DACA67-00-R-0222 #### 2.9.7 Fan-Coil Unit Room Thermostats Fan-coil unit room thermostats in personnel living spaces shall be of the low voltage type with locking covers, and shall be wall mounted not less than 60 inches above the floor, unless otherwise shown. Electrical rating shall not exceed 2.5 amperes at 30 volts ac. Housing shall be corrosion resisting metal or molded plastic. Transformer and fan relay shall be provided for the proper operation of each thermostatic control system as necessary to suit the design of the control system using the thermostats specified below. Either separate heating thermostats and separate cooling thermostats or dual element heating cooling thermostats may be provided. Motor speed switches shall be provided for three-speed fan control. # 2.9.7.1 Heating Thermostat Fan-coil heating thermostats shall be provided with fixed heat anticipation and shall have a single-pole, single-throw (SPST) switch hermetically sealed and actuated by a bimetallic or bellows type element. Thermostats shall be provided with external temperature setting devices with a factory set maximum of [72] [68] degrees F. Heating thermostats shall have an adjustable range of at least 13 degrees below [72] [68] degrees F. #### 2.9.7.2 Cooling Thermostat Fan-coil cooling thermostats shall be provided with fixed cooling anticipation heater and shall have a single-pole, single-throw (SPST) switch hermetically sealed and actuated by a bimetallic or bellows type element. Thermostats shall be provided with external temperature setting devices with a factory set minimum of 78 degrees F. Cooling thermostats shall have an adjustable range of at least 7 degrees above 78 degrees F. # 2.9.7.3 Combination Thermostat Fan coil unit combination heating-cooling thermostats shall be provided with separate temperature sensing elements for each system, and shall have a single-pole, single-throw (SPST) switch, hermetically sealed and actuated by a bimetallic or bellows type element. Each element shall operate switches to provide single stage control for heating and cooling. Heating and cooling circuits shall be electrically isolated from each other. Scales and ranges shall be as specified for individual thermostats. Thermostats shall contain, or a subbase shall be provided which contains, selector switches for Heat-Off-Cool. A changeover controller providing automatic summerwinter changeover for thermostats by sensing the supplied fluid temperature shall be provided. A limited range heating-cooling dead band thermostat shall control cooling when temperature is above the upper setpoint and heating when temperature is below the lower setpoint and shall have a dead band, with no heating or cooling, when temperature is between the setpoints. Setpoint adjustment shall be concealed. #### 2.10 INDICATING DEVICES #### 2.10.1 Thermometers # 2.10.1.1 Piping System Thermometers Piping system thermometers shall have brass, malleable iron or aluminum alloy case and frame, clear protective face, permanently stabilized glass tube with indicating-fluid column, white face, black numbers, and a 9 inch Thermometers for piping systems shall have rigid stems with straight, angular, or inclined pattern. #### 2.10.1.2 Piping System Thermometer Stems Thermometer stems shall have expansion heads as required to prevent breakage at extreme temperatures. On rigid-stem thermometers, the space between bulb and stem shall be filled with a heat-transfer medium. #### Nonaveraging Air-Duct Thermometers Air-duct thermometers shall have perforated stem guards and 45-degree adjustable duct flanges with locking mechanism. # 2.10.1.4 Averaging Air-Duct Thermometers Averaging thermometers shall have a 3-1/2 inch (nominal) dial, with black legend on white background, and pointer traveling through a 270-degree arc. # 2.10.1.5 Accuracy Thermometers shall have an accuracy of plus or minus one percent of scale range. Thermometers shall have a range suitable for the application. #### 2.10.2 Pressure Gauges Gauges shall be 2 inch (nominal) size, back connected, suitable for field or panel mounting as required, shall have black legend on white background, and shall have a pointer traveling through a 270-degree arc. Accuracy shall be plus or minus three percent of scale range. Gauges shall meet requirements of ASME B40.1. # 2.10.2.1 Pneumatic Actuator Gauges Gauges for indicating signal output to pneumatic actuators shall have an outer scale of 3 to 15 psig in 1 psig graduations. # 2.10.2.2 Hydronic System Gauges Gauges for hydronic system applications shall have ranges and graduations as shown. # 2.10.3 Low Differential Pressure Gauges Gauges for low differential pressure measurements shall be a minimum of 3.5 inch (nominal) size with two sets of pressure taps, and shall have a diaphragm-actuated pointer, white dial with black figures, and pointer zero adjustment. Gauges shall have ranges and graduations as shown. Accuracy shall be plus or minus two percent of scale range. #### 2.11 CONTROL DEVICES AND ACCESSORIES # 2.11.1 Relays Control relay contacts shall have utilization category and ratings selected for the application, with a minimum of two sets of contacts (two normally open, two normally closed) enclosed in a dustproof enclosure. Relays shall be rated for a minimum life of one million operations. Operating time shall be 20 milliseconds or less. Relays shall be equipped with coil transient suppression devices to limit transients to 150 percent of rated coil voltage. Time delay relays shall be 2PDT with eight-pin connectors, dust cover, and a matching rail-mounted socket. Adjustable timing range shall be 0 to 5 minutes. Power consumption shall not be greater than three watts. #### 2.11.2 Current to Pneumatic (IP) Transducers The transducers shall be two-wire current-to-pressure transmitters that convert a 4-to-20 mAdc input signal to a 3 to 15 psig, or a 15 to 3 psig, pneumatic output, with a conversion accuracy of plus or minus two percent of full scale, including linearity and hysteresis. Input impedance shall not exceed 250 ohms. Air consumption shall not be greater than 0.25 scfm. # 2.11.3 Joule or Watthour Meters Watthour meters shall be in accordance with ANSI C12.1 and have pulse initiators for remote monitoring of Watthour consumption. Pulse initiator shall consist of form C contacts with a current rating not to exceed two amperes and voltage not to exceed 500 V, with combinations of VA not to exceed 100 VA, and a life rating of one billion operations.
Meter sockets shall be in accordance with ANSI C12.1. # 2.11.4 Joule or Watthour Meters with Demand Register Meters shall be in accordance with ANSI C12.1 and shall have pulse initiators for remote monitoring of Watthour consumption and instantaneous demand. Pulse initiators shall consist of form C contacts with a current rating not to exceed two amperes and voltage not to exceed 500 V, with combinations of VA not to exceed 100 VA, and a life rating of one billion operations. Meter sockets shall be in accordance with ANSI C12.1 #### 2.11.5 Joule or Watthour Transducers Watthour transducers shall have an accuracy of plus or minus 0.25 percent for kW and kWh outputs from full lag to full lead power factor. Input DACA67-00-R-0222 SECTION 15951 Page 23 of 59 ranges for kW and kWh transducers shall be selectable without requiring the changing of current or potential transformers. The output shall be 4 to 20 $\,$ mAdc. # 2.11.6 Current Sensing Relays Current sensing relays shall provide a normally-open contact rated at a minimum of 50 volts peak and 1/2 ampere or 25 VA, noninductive. There shall be a single hole for passage of current carrying conductors. The devices shall be sized for operation at 50 percent rated current based on the connected load. Voltage isolation shall be a minimum of 600 volts. #### 2.11.7 Power-Line Conditioners (PLC) Power line conditioners shall be furnished for each DDC panel. The PLCs shall provide both voltage regulation and noise rejection. The PLCs shall be of the ferro-resonant design, with no moving parts and no tap switching, while electrically isolating the secondary from the power-line side. The PLCs shall be sized for 125 percent of the actual connected kVA load. Characteristics of the PLC shall be as follows: - a. At 85 percent load, the output voltage shall not deviate by more than plus or minus one percent of nominal when the input voltage fluctuates between minus 20 percent to plus 10 percent of nominal. - b. During load changes of zero to full load, the output voltage shall not deviate by more than plus or minus three percent of nominal voltage. Full correction of load switching disturbances shall be accomplished within five cycles, and 95 percent correction shall be accomplished within two cycles of the onset of the disturbance. - c. Total harmonic distortion shall not exceed 3-1/2 percent at full load. ### 2.12 DIRECT DIGITAL CONTROL (DDC) HARDWARE All functions, constraints, data base parameters, operator developed programs and any other data shall be downloadable from a portable workstation/tester [or the central workstation/tester] to network control panels, RIU's, universal programmable controllers, and unitary controllers. Download shall be accomplished through both the primary network and the local DDC portable workstation/tester port. #### 2.12.1 Network Control Panel Network control panels shall be microcomputer-based with sufficient memory provided to perform all specified and shown network control panel functions and operations, including spare capacity for all spares and its I/O functions specified. Each network control panel and remote I/O units (RIU) shall have a minimum of 10% of its I/O functions as spare capacity but not less than 2 of each type used in each. The type of spares shall be in the same proportion as the implemented I/O functions on the panel, but in no DACA67-00-R-0222 SECTION 15951 Page 24 of 59 case shall there be less than two spare points of each type. The panel I/O functions shall be furnished complete, with no changes or additions necessary to support implementation of spare functions. Output relays associated with digital signals shall be considered part of the I/O function, whether physically mounted in the enclosure or separately mounted. Implementation of spare points shall necessitate only providing the additional field sensor or control device, field wiring including connection to the system, and point definition assignment by the operator using the central workstation/tester or portable workstation/tester. The panel shall contain all necessary I/O functions to connect to field sensors and control I/O function operation shall be fully supervised to detect I/O function failures. Network control panels shall operate in an independent stand-alone mode, which is defined as all network control panel operations performed by the network control panel without any continuing input from other Direct digital controls or portable workstation/tester. The network control panel shall be capable of controlling a mix of at least 32 RIUs, unitary controllers, and universal programmable controllers. #### 2.12.1.1 Integral Features The network control panel shall include: - a. Main power switch. - b. Power on indicator. - c. Portable workstation/tester port, connector, and if necessary power supply. - d. Manufacturers control network port. - e. On-Off-Auto switches for each DO which controls a device. These switches shall be mounted in the field panel, with the exception of motors, for which the switch shall be mounted at the motor control center. On-Off-Auto switches are not required for DO associated with a status or alarm such as pilot lights. The status of these switches shall be available to the panel for further processing. - f. Minimum-Maximum-Auto switches, or Auto-Manual switches with manual output override, for each AO. The status of these shall be available to the panel for further processing. - g. An intrusion detection device, connected as an alarm. # 2.12.1.2 Communication Interfaces The following communication capabilities shall function simultaneously. a. Manufacturers Control Network. Manufacturers control network communications interfaces for each data transmission systems (DTS) circuit between network control panels and RIUs, unitary controllers, and universal programmable controllers, shall be provided. Communication interfaces shall DACA67-00-R-0222 SECTION 15951 Page 25 of 59 be provided between each network control panel and associated I/O functions. The DTS will provide for transmission speeds necessary to comply with performance requirements specified. DTS equipment shall be installed in the network control panel enclosure. - b. Portable Workstation/Tester Port. A communications port for interfacing to a portable workstation/tester shall be provided. Network control panel workstation/tester port other than RS-232, shall be converted to RS-232, including cabling and power supply, and shall be permanently installed in the panel. - c. Primary Network Port. The network control panel shall either have a built in primary network Port or be capable of accepting a primary network port expansion card for future networking to a base wide utility monitoring and control system (UMCS). The primary network port expansion card shall be either Ethernet (IEEE802.3) or ARCNET. # 2.12.1.3 Memory and Real Time Clock (RTC) Backup The network control panel memory and real time clock functions shall continue to operate for a minimum of 72 hours in the event of a power failure. If rechargeable batteries are provided, automatic charging of batteries shall be provided. Whenever a either a permanent workstation/tester or portable workstation/tester is monitoring the network control panel, a low battery alarm message shall be sent to it. # 2.12.1.4 Duplex Outlet A single phase, 120 Vac electrical service outlet for use with test equipment shall be furnished either inside or within 6 feet of the network control panel enclosure. # 2.12.1.5 Locking Enclosures Locking type mounting cabinets with common keying shall be furnished for each network control panel. # 2.12.1.6 Failure Mode Upon failure of the network control panel, either due to failure of the network control panel hardware or of the manufacturers control network, the network control panel shall revert to the failure mode as shown. - a. Manufacturers Control Network Failure: Upon failure of the manufacturers control network, the network control panel shall operate in an independent stand-alone mode. - b. Network Control Panel Hardware Failure: Upon failure of the network control panel hardware, the network control panel shall cease operation and stop communications with other network control panels, RIUs, unitary controllers and universal programmable controllers connected to the affected network control panel. The affected network control panel shall respond to this failure as specified and shown. #### 2.12.2 RIU The RIU shall be functionally a part of the network control panel as specified, but may be remotely located from the network control panel and communicate over a dedicated communication circuit. When remotely located, the I/O functions shall be subject to the same requirements as for the network control panel hardware. RIUs shall be used to connect remote inputs and outputs to a network control panel and shall contain all necessary I/O functions to connect to field sensors and control devices. RIU operation shall be fully supervised by the network control panel to detect failures. Each RIU shall have a minimum of 10 % of its I/O functions as spare The type of spares shall be in the same proportion as the implemented I/O functions on the RIU, but in no case shall there be less than two spare points of each type. The RIU shall be furnished complete, with no changes or additions necessary to support implementation of spare functions. Output relays associated with digital signals shall be considered part of the I/O function, whether physically mounted in the enclosure or separately mounted. Implementation of spare points by others shall require only providing the additional field sensor or control device, field wiring including connection to the system, and point definition assignment by the operator. The RIU shall either report the status of all connected points on each scan, or report the status of all points which have changed state or value since the previous scan. #### 2.12.2.1
Integral Features The RIU shall include: - a. Main power switch. - b. Power on indicator. - c. Portable workstation/tester port, connector, and if necessary power supply. - d. Manufacturers control network port. - e. On-Off-Auto switches for each DO which controls a device. These switches shall be mounted in the RIU, with the exception of motors, for which the switch shall be mounted at the motor control center. On-Off-Auto switches are not required for DO associated with a status or alarm such as pilot lights. The status of these switches shall be available to the RIU for further processing. - f. Minimum-Maximum-Auto switches, or Auto-Manual switches with manual output override, for each AO. The status of these shall be available to the panel for further processing. - g. An intrusion detection device, connected as an alarm. DACA67-00-R-0222 SECTION 15951 Page 27 of 59 # 2.12.2.2 Duplex Outlet A single phase, 120 Vac electrical service outlet for use with test equipment shall be furnished either inside or within 6 feet of the RIU. #### 2.12.2.3 Locking Enclosures Locking type mounting cabinets with common keying shall be furnished for each RIU. # 2.12.2.4 Failure Mode Upon failure of the RIU, either due to failure of the RIU hardware or of the DTS, the RIU shall revert to the failure mode shown. #### 2.12.3 Universal Programmable Controller (UPC) The universal programmable controller shall be a microprocessor based controller designed and programmed to control and monitor systems as shown. Resident programs shall be contained in reprogramable nonvolatile memory. Each universal programmable controller shall contain necessary power supplies, transformers, memory, I/O functions and communications interfaces necessary to perform its required functions and to provide control and monitoring of connected equipment and devices. It shall contain all necessary I/O functions to connect to field sensors and controls. I/O operation shall be fully supervised to detect I/O function failures. It shall provide for operation as a device connected to the system via the manufacturers control network. # 2.12.3.1 Integral Features The universal programmable controller shall include as a minimum: - a. Main power switch. - b. Power on indicator. - c. Portable workstation/tester port, connector, and if necessary power supply. - d. Manufacturers control network port. - e. I/O functions - (1) 8 DI - (2) 4 DO - (3) 8 AI - (4) 4 AO DACA67-00-R-0222 SECTION 15951 Page 28 of 59 #### (5) 1 PA - f. On-Off-Auto switches for each DO which controls a device. These switches shall be mounted in the universal programmable controller, with the exception of motors, for which the switch shall be mounted at the motor control center. On-Off-Auto switches are not required for DO associated with a status or alarm such as pilot lights. The status of these switches shall be available to the panel for further processing. - g. Minimum-Maximum-Auto switches, or Auto-Manual switches with manual output override, for each AO. The status of these shall be available to the panel for further processing. #### 2.12.3.2 Communication Interfaces The UPC shall have the following communication capabilities which shall function simultaneously. - a. Manufacturers Control Network. The manufacturers control network communications interface for a data transmission systems (DTS) circuit between the UPC and a network control panels shall be provided. The DTS will provide for transmission speeds necessary to comply with performance requirements specified. DTS equipment shall be installed in the UPC Panel enclosure. - Portable Workstation/Tester Port. A communications port for interfacing to a portable workstation/tester shall be provided. A UPC workstation/tester port other than RS-232, shall be converted to RS-232, including cabling and power supply, and shall be permanently installed in the panel. # 2.12.3.3 Memory and RTC Backup The UPC memory and real time clock functions shall continue to operate for a minimum of 72 hours in the event of a power failure. If rechargeable batteries are provided, automatic charging of batteries shall be provided. Whenever a either a permanent workstation/tester or workstation/tester is monitoring the network control panel, a low battery alarm message shall be sent to it. # 2.12.3.4 Specific Requirements Each universal programmable controller shall be accessible for purposes of application selection, control parameters, set point adjustment, and monitoring from any DDC controller connected to the same manufacturers control network as the universal programmable controller. This shall be using a portable workstation/tester connected to a portable workstation/tester port either directly or via modem. #### 2.12.3.5 Locking Enclosures Locking type mounting cabinets with common keying shall be furnished for each enclosure. #### 2.12.3.6 Failure Mode Upon failure of the universal programmable controller, it shall revert to the failure mode of operation as shown. #### 2.12.4 Unitary Controller The unitary controller shall be a microprocessor based, stand-alone, dedicated purpose controller, communicating with the network control panel, designed and programmed to control heat pumps or fan coil units as shown. Each unitary controller shall contain resident programs in nonvolatile memory for each specific application implemented. Each unitary controller shall contain necessary power supplies, transformers, memory, I/O functions and communications interfaces necessary to perform its required functions and to provide control and monitoring of connected equipment and devices. It shall contain all necessary I/O functions to connect to field sensors and controls. I/O operation shall be fully supervised to detect I/O function failures and shall provide for operation as a device connected to the network control panel via the manufacturers control network. # 2.12.4.1 Integral Features The unitary controller shall include: - a. Main power switch. - b. Power on indicator. - c. Portable workstation/tester port, connector, and power supply. - d. Manufacturers control network port. - e. All I/O functions required to implement the requirements as shown. - f. On-Off-Auto switches for each DO which controls a device. These switches shall be mounted in the field panel, with the exception of motors, for which the switch shall be mounted at the motor control center. On-Off-Auto switches are not required for DO associated with a status or alarm such The status of these switches shall be available to the as pilot lights. panel for further processing. - g. Minimum-Maximum-Auto switches, or Auto-Manual switches with manual output override, for each AO. The status of these shall be available to the panel for further processing. #### 2.12.4.2 Communication Interfaces The unitary controller shall have the following communication capabilities which shall function simultaneously. - a. Manufacturers Control Network. The manufacturers control network communications interface for a data transmission systems (DTS) circuit between the unitary controller and a network control panel shall be provided. The DTS will provide for transmission speeds necessary to comply with performance requirements specified. DTS equipment shall be installed in the unitary control panel enclosure. - b. Portable Workstation/Tester Port. A communications port for interfacing to a portable workstation/tester shall be provided. A unitary controller workstation/tester port other than RS-232, shall be converted to RS-232, including cabling and power supply, and shall be permanently installed in the panel. For unitary controller applications where the controller is not mounted in an enclosure, such as for fan-coil units or VAV terminal units, a portable conversion device for an RS-232 connection to the portable workstation/tester may be provided. #### 2.12.4.3 Failure Mode Upon failure of the unitary controller, it shall revert to the failure mode of operation as shown. # 2.12.4 I/O Functions # 2.12.4.1 DDC Hardware I/O Functions ${\ \ \, }$ I/O Functions shall be provided as part of the DDC system and shall be in accordance with the following: - a. The analog input (AI) function shall monitor each analog input, perform A-to-D conversion, and hold the digital value in a buffer for interrogation. The A-to-D conversion shall have a minimum resolution of 10 bits plus sign. Signal conditioning shall be provided for each analog input. Analog inputs shall be individually calibrated for zero and span, in hardware or in software. The AI shall incorporate common mode noise rejection of 50 dB from 0 to 100 Hz for differential inputs, and normal mode noise rejection of 20 dB at 60 Hz from a source impedance of 10,000 ohms. Input ranges shall be within the range of 4-to-20 mAdc. - b. The analog output (AO) function shall accept digital data, perform D-to-A conversion, and output a signal within the range of 4-to-20 mAdc. D-to-A conversion shall have a minimum resolution of eight bits plus sign. Analog outputs shall be individually calibrated for zero and span. Short circuit protection on voltage outputs and open circuit protection on current outputs shall be provided. [[An individual gradual switch for manual override of each analog output and means of physically securing access to these switches shall be provided. Each AO shall have a three-position switch for selection of the DDC control signal, no control, or a locally DACA67-00-R-0222 SECTION 15951 Page 31 of 59 generated control signal for connection to the controlled device. Feedback shall be provided to the system as to the status of the output (manual control or automatic). - c. The digital input (DI) function shall accept on-off, open-close, or other change of state (two state data) indications. Isolation and protection against an applied steady-state voltage up to 180 Vac peak shall be provided. - d. The digital output (DO) function shall provide contact closures for
momentary and maintained operation of output devices. Closures shall have a minimum duration of 0.1 second. DO relays shall have an initial breakdown voltage between contacts and coil of at least 500 V peak. Electromagnetic interference suppression shall be furnished on all output lines to limit transients to nondamaging levels. Protection against an applied steady-state voltage up to 180 Vac peak shall be provided. Minimum contact rating shall be one ampere at 24 Vac. - e. The pulse accumulator function shall have the same characteristics as the DI. In addition, a buffer shall be provided to totalize pulses and allow for interrogation by the DDC system. The pulse accumulator shall accept rates up to 20 pulses per second. The totalized value shall be reset to zero upon operator's command. - f. Signal conditioning for sensors shall be provided as specified. - g. The binary coded decimal (BCD) function: The BCD function shall have the same characteristics as the DI, except that, in addition, a buffer shall be provided to totalize inputs and allow for interrogation by the network control panel. The BCD function shall have 16-channel optically isolated buffered inputs to read four digit numbers. The BCD function shall accumulate inputs at rates up to 10 inputs per second. #### 2.12.4.2 Failure Mode Upon failure of the I/O function, including data transmission failure, logic power supply failure, DDC processor malfunction, software failure, interposing relay power failure, or any other failure which prevents stand alone operation of any DDC normally capable of stand alone operation, connected outputs shall be forced to the failure mode shown. # 2.12.5 Portable Workstation/Tester A portable workstation/tester shall be provided and shall be able to connect to any DDC hardware. The portable workstation/tester shall consist of a portable computer with a nominal 10 inch active color matrix liquid crystal display, capable of displaying up to 256 colors at a minimum resolution of 640 X 480 pixels, an external VGA monitor port, 32 bit microprocessor operating at a minimum of 100 MHZ. The portable workstation/tester shall have, as a minimum, a 1200 MB hard drive, 16 megabytes of memory, integral pointing device, serial and parallel ports, color VGA video port for an external color monitor, 3.5 inch floppy disk drive, modem, PCMCIA type 3 DACA67-00-R-0222 SECTION 15951 Page 32 of 59 slot, rechargeable battery, battery charger and 120 Vac power supply. It shall include carrying case, extra battery, charger and a compatible network adapter. The workstation/tester shall: - a. Run DDC diagnostics. - b. Load all DDC memory resident programs and information, including parameters and constraints. - c. Display any AI, DI, AO, DO, or PA point in engineering units for analog points or status for digital points. - d. Control any AO or DO. - e. Provide an operator interface, contingent on password level, allowing the operator to use full English language words and acronyms, or an object oriented graphical user interface. - f. Display database parameters. - g. Modify database parameters. - h. Accept DDC software and information for subsequent loading into a specific DDC. Provide all necessary software and hardware required to support this function, including an EIA ANSI/EIA/TIA 232-E port. - i. Disable/enable each DDC. - j. Perform all workstation functions as specified. # 2.12.6 Data Terminal Cabinet (DTC) The DTC shall be an independent metallic enclosure not physically part of The DTC shall be sized to the network control panel/RIU as shown. accommodate the number of I/O functions required for each network control panel/RIU, including installed spares, plus 10% expansion for each type of The DTC shall be divided into analog input and I/O function provided. output groups and digital input and output groups. The DTC shall be provided with double sided screw type terminal strips. One side of the terminal strip shall be used for termination of field wiring from instrumentation-mentation and controls. The other side shall be used to connect the DTC to the network control panel/RIU. Terminal strips shall have individual terminal identification numbers. The DTC shall be a locking type mounting enclosure, with common keying and door switch wired to an input for intrusion alarm annunciation at the central station. DTC keying shall be identical to network control panel/RIU keying. # 2.13 DDC SOFTWARE All DDC software described in this specification shall be furnished as part of the complete DDC System. #### 2.13.1 Operating System Each DDC shall contain an operating system that controls and schedules that DDC's activities in real time. The DDC shall maintain a point database in its memory that includes all parameters, constraints, and the latest value or status of all points connected to that DDC. The execution of DDC application programs shall utilize the data in memory resident files. operating system shall include a real time clock function that maintains the seconds, minutes, hours, date and month, including day of the week. Each DDC real time clock shall be automatically synchronized with the network control panel real time clock at least once per day to plus or minus 10 seconds. When the network control panel is connected to a central workstation/tester, the network control panel RTC shall be updated by the central workstation/tester RTC. The time synchronization shall be accomplished without operator intervention and without requiring system shutdown. The operating system shall allow loading of software, data files data entry, and diagnostics from the central workstation/tester both locally through the central workstation/tester port and remotely through a network control panel and the manufacturers control network. # 2.13.1.1 Startup The DDC shall have startup software that causes automatic commencement of operation without human intervention, including startup of all connected I/O functions. A DDC restart program based on detection of power failure at the DDC shall be included in the DDC software. Upon restoration of power to the DDC, the program shall restart equipment and restore loads to the state at time of power failure, or to the state as commanded by time programs or other overriding programs. The restart program shall include start time delays between successive commands to prevent demand surges or overload The startup software shall initiate operation of self-test diagnostic routines. Upon failure of the DDC, if the database and application software are no longer resident or if the clock cannot be read, the DDC shall not restart and systems shall remain in the failure mode indicated until the necessary repairs are made. If the database and application programs are resident, the DDC shall resume operation after an adjustable time delay of from 0 to 600 seconds. The startup sequence for each DDC shall include a unique time delay setting for each control output when system operation is initiated. #### 2.13.1.2 Operating Mode Each DDC shall control and monitor functions as specified, independent of communications with other DDC. This software shall perform all DDC functions and DDC resident application programs as specified using data obtained from I/O functions and based upon the DDC real time clock function. When communications circuits between the DDC are operable, the DDC shall obtain real time clock updates and any required global data values transmitted from other network control panels. The DDC software shall execute commands after performing constraints checks in the DDC. Status and analog values, including alarms and other data shall be transmitted from other network control panels when communications circuits are operable. If communications are not available, each DDC shall function in stand-alone mode and operational data, including the latest status and value of each point and results of calculations, normally transmitted from other network control panels shall be stored for later transmission to the network control panel. Storage for the latest 256 values shall be provided at each network control panel. Each DDC shall accept software downloaded from the network control panel. Constraints shall reside at the DDC. #### 2.13.1.3 Failure Mode Upon failure for any reason, each DDC shall perform an orderly shutdown and force all DDC outputs to a predetermined (failure mode) state, consistent with the failure modes shown and the associated control device. # 2.13.2 Functions The Contractor shall provide software necessary to accomplish the following functions, as appropriate, fully implemented and operational, within each network control panel, RIU, unitary controller and universal programmable controller. - a. Scanning of inputs. - b. Control of outputs. - c. Reporting of analog changes outside a selectable differential. - d. Reporting of unauthorized digital status. - e. Reporting of alarms automatically to network control panel. - f. Reporting of I/O status to network control panel upon request. - g. Maintenance of real time, updated by the network control panel at least once a day. - h. Communication with the network control panel. - i. Execution of DDC resident application programs. - j. Averaging or filtering of AIs. - k. Constraints checks (prior to command issuance). - 1. Diagnostics. - m. Portable workstation/tester operation as specified. - n. Reset of PA by operator based on time and value. #### 2.13.2.1 Analog Monitoring The system shall measure and transmit analog values including calculated analog points. An analog change in value is defined as a change exceeding a preset differential value as specified. The record transmitted for each analog value shall include a readily identifiable flag which indicates the abnormal status of the value when it deviates from operator selectable upper and lower analog limits. Analog values shall be expressed in proper engineering units with sign. Engineering units conversions
shall be provided for each measurement. Each engineering units conversion set shall include range, span, and conversion equation. A vocabulary of engineering unit descriptors shall be provided, using at least three alphanumeric characters to identify information in the system. The system shall support 255 different engineering units. # 2.13.2.2 Logic (Virtual) Points Logic (virtual) points shall be software points entered in the point database which are not directly associated with a physical I/O function. Logic (virtual) points shall be analog or digital points created by calculation from any combination of digital and analog points, or other data having the properties of real points, including alarms, without the associated hardware. Logic (virtual) points shall be defined or calculated and entered into the database by the Contractor. The calculated analog point shall have point identification in the same format as any other analog point. The calculated point shall be used in any program where the real value is not obtainable directly. Constants used in calculations shall be changeable on-line by the operator. Calculated point values shall be current for use by the system within 10 seconds of the time of any input changes. #### 2.13.2.3 State Variables If an analog point represents more than two (up to eight) specific states, each state shall be nameable. For example, a level sensor shall be displayed at its measured engineering units plus a state variable with named usable in programs or for display such as low alarm/low/normal/high/high alarm. # 2.13.2.4 Analog Totalization Any analog point shall be operator assignable to the totalization program. Up to eight analog values shall be totalized within a selectable time period. At the end of the period, the totals shall be stored. Totalization shall then restart from zero for the next time period. The program shall keep track of the peak and total value measured during the current period and for the previous period. The operator shall be able to set or reset each totalized value individually. The time period shall be able to be operator defined, modified or deleted on-line. # 2.13.2.5 Energy Totalization The system shall calculate the heat energy in Btus, for each energy source consumed by the mechanical systems specified, totalize the calculated Btus, the instantaneous rate in Btus per hour, and store totals in thousands of Btus (MBtu). The Btus calculated shall be totalized for an adjustable time The time period shall be defined uniquely for each Btu totalization. #### 2.13.2.6 Trending Any analog or calculated point shall be operator assignable to the trend program. Up to eight points shall be sampled at individually assigned intervals, selectable between one minute and two hours. A minimum of the most recent 128 samples of each trended point shall be stored. The sample intervals shall be able to be defined, modified, or deleted on-line. #### 2.13.3 I/O Point Database/Parameter Definition Each I/O point shall be defined in a database residing in the DDC. definition shall include all physical parameters associated with each point. Each point shall be defined and entered into the database by the Contractor, including as applicable: - a. Name. - b. Device or sensor type (i.e., sensor, control relay, motors). - c. Point identification number. - d. Unit. - e. Building number. - f. Area. - q. Island. - h. DDC number and channel address. - i. KW (running). - j. KW (starting). - k. Sensor range. - 1. Controller range. - m. Sensor span. - n. Controller span. - o. Engineering units conversion (scale factor). - p. Setpoint (analog). - q. High reasonableness value (analog). - r. Low reasonableness value (analog). - s. High alarm limit differential (return to normal). - t. Low alarm limit differential (return to normal). - u. High alarm limit (analog). - v. Low alarm limit (analog). - w. Alarm disable time period upon startup or change of setpoint. - x. Analog change differential (for reporting). - y. Alarm class and associated primary message text. - z. High accumulator limit (pulse). - aa. Status description. - bb. Run time target. - cc. Failure mode as specified and shown. - dd. Constraints as specified. #### 2.13.4 Alarm Processing Each DDC shall have alarm processing software for AI, DI, and PA alarms for all real and virtual points connected to that DDC. # 2.13.4.1 Digital Alarms Definition Digital alarms are those abnormal conditions indicated by DIs as specified and shown. # 2.13.4.2 Analog Alarms Definition Analog alarms are those conditions higher or lower than a defined value, as measured by an AI. Analog readings shall be compared to predefined high and low limits, and alarmed each time a value enters or returns from a limit condition. Unique high and low limits shall be assigned to each analog point in the system. Analog alarm limits shall be stored in the DDC database. Each analog alarm limit shall have an associated unique limit differential specifying the amount by which a variable must return into the proper operating range before being annunciated as a return-to-normal-state. DACA67-00-R-0222 SECTION 15951 Page 38 of 59 All limits and differentials shall be entered on-line by the operator in limits of the measured variable, without interruption or loss of monitoring of the point concerned. The program shall automatically change the high or low limits or both, of any analog point, based on time scheduled operations as specified, allowing for a time interval before the alarm limit becomes effective. In CPA applications, key the limit to a finite deviation traveling with the setpoint. The system shall automatically suppress analog alarm reporting associated with a digital point when that digital point is turned off. # 2.13.4.3 Pulse Accumulator Alarms Definition Pulse accumulator alarms are those conditions calculated from totalized values of accumulator inputs or PA input rates that are outside defined limits as specified and shown. PA totalized values shall be compared to predefined limits and alarmed each time a value enters a limit condition. Unique limits shall be assigned to each PA point in the system. Limits shall be stored in the DDC database. # 2.13.5 Constraints # 2.13.5.1 Equipment Constraints Definitions Each control point in the database shall have DDC resident constraints defined and entered by the Contractor, including as applicable: - a. Maximum starts (cycles) per hour. - b. Minimum off time. - c. Minimum on time. - d. High limit (value in engineering units). - e. Low limit (value in engineering units). # 2.13.5.2 Constraints Checks Control devices connected to the system shall have the DDC memory resident constraints checked before each command is issued to insure that no equipment damage will result from improper operation. Each command shall be executed by the DDC only after all constraints checks have been passed. Each command point shall have unique constraints assigned. High and low "reasonableness" values or one differential "rate-of-change" value shall be assigned to each AI. Values outside the reasonableness limits shall be rejected and an alarm message sent to the network control panel or portable workstation/tester. Status changes and analog point values shall be reported to the workstation upon operator request, such as for reports, alphanumeric displays, graphic displays, and application programs. Each individual point shall be capable of being selectively disabled by the operator from a workstation/tester. Disabling a point shall prohibit monitoring and automatic control of that point. ### 2.13.6 Diagnostics Each DDC shall have self-test diagnostic routines implemented in firmware. The tests shall include routines that exercise memory. Diagnostic software shall be usable in conjunction with the central workstation/tester and portable workstation/tester. The software shall display messages in English to inform the tester's operator of diagnosed problems. # 2.13.7 Summer-Winter Operation Monitoring The system shall provide software to automatically change the operating parameters, monitoring of alarm limits, and start-stop schedules for each mechanical system from summer to winter and vice-versa. The software shall provide automatic commands to applications programs to coordinate proper summer or winter operation. Change over setpoints shall be operator selectable and settable. #### 2.13.8 Control Sequences and Control Loops Sufficient memory shall be provided to implement the requirements specified and shown for each DDC. Specific functions to be implemented are defined in individual system control sequences and database tables shown in the drawings, and shall include, as applicable, the following: - a. PI Control: This function shall provide proportional control and proportional plus integral control. - b. Two Position Control: This function shall provide control for a two state device by comparing a set point against a process variable and an established deadband. - c. Floating Point Control: This function shall exercise control when an error signal exceeds a selected deadband, and shall maintain control until the error is within the deadband limits. - d. Signal Selection: This function shall allow the selection of the highest or lowest analog value from a group of analog values as the basis of control. The function shall include the ability to cascade analog values so that large numbers of inputs can be reduced to one or two outputs. - e. Signal Averaging: This function shall allow the mathematical calculation of the average analog value from a group of analog values as the basis of control. The function shall include the ability to "weight" the individual analog values so that the function output can be biased as necessary to achieve proper control. - f. Reset Function: This function shall develop an AO based on up to two AIs and one operator specified reset schedule. - g. Cooling/Heating Operation Program: Software
shall be provided to change, either automatically or on operator command, the operating DACA67-00-R-0222 SECTION 15951 Page 40 of 59 parameters, monitoring of alarm limits, and start-stop schedules for each mechanical system where such a change from cooling to heating and vice versa is meaningful. The software shall provide commands to application programs to coordinate cooling or heating mode operation. Software shall automatically switch facilities from cooling to heating, and vice versa, based on schedules or temperatures. All HVAC equipment and systems shall be assigned to the program. #### 2.13.9 Command Priorities A scheme of priority levels shall be provided to prevent interaction of a command of low priority with a command of higher priority. The system shall require the latest highest priority command addressed to a single point to be stored for a period of time longer than the longest time constraint in the on and off states, insuring that the correct command shall be issued when the time constraint is no longer in effect or report the rejected Override commands entered by the operator shall have higher priority than those emanating from applications programs. # 2.13.10 Resident Application Software The Contractor shall provide resident applications programs to achieve the sequences of operation, parameters, constraints, and interlocks necessary to provide control of the systems connected to the DDC system. Application programs shall be resident and shall execute in the DDC, and shall coordinate with each other, to insure that no conflicts or contentions remain unresolved. The Contractor shall coordinate the application programs specified with the equipment and controls operation, and other specified requirements. A scheme of priority levels shall be provided to prevent interaction of a command of low priority with a command of higher priority. The system shall require the latest highest priority command addressed to a single point to be stored for a period of time longer than the longest time constraint in the ON and OFF states, insuring that the correct command shall be issued when the time constraint is no longer in effect or the rejected command shall be reported. Override commands entered by the operator shall have higher priority than those emanating from application programs. # 2.13.10.1 Program Inputs and Outputs The Contractor shall select the appropriate program inputs listed for each application program to calculate the required program outputs. Where the specific program inputs are not available, a "default" value or virtual point appropriate for the equipment being controlled and the proposed sequence of operation shall be provided to replace the missing input, thus allowing the application program to operate. Als to application programs shall have an operator adjustable deadband to preclude short cycling or hunting. Program outputs shall be real analog or digital outputs or logic (virtual) points as required to provide the specified functions. Contractor shall select the appropriate input and output signals to satisfy the requirements for control of systems as shown. #### 2.13.10.2 DDC General Conditions The Contractor shall provide software required to achieve the sequences of operation, parameters, constraints, and interlocks shown. software shall be resident in the DDC in addition to any other required software. In the event of a DDC failure, the controlled equipment shall continue to function in the failure mode shown. # 2.13.10.3 Scheduled Start/Stop Program This program shall start and stop equipment based on a time of day schedule for each day of the week, and on a holiday schedule. To eliminate power surges, an operator adjustable time delay shall be provided between consecutive start commands. # a. Program Inputs: - (1) Day of week/holiday. - (2) Time of day. - (3) Cooling and heating high-low alarm limits. - (4) Cooling and heating start-stop schedules. - (5) Cooling or heating mode of operation. - (6) Equipment status. - (7) Equipment constraints. - (8) Consecutive start time delay. - b. Program Outputs: Start/stop signal. # 2.13.10.4 Optimum Start/Stop Program This program shall start and stop equipment as specified for the scheduled start/stop program, but shall include a sliding schedule based on indoor and outdoor air conditions. The program shall take into account the thermal characteristics of the structure, and indoor and outdoor air conditions, using prediction software to determine the minimum time of HVAC system operation needed to satisfy space environmental requirements at the start of the occupied cycle, and determine the earliest time for stopping equipment at the day's end without exceeding space environmental requirements. An adaptive control algorithm shall be utilized to automatically adjust the constants used in the program. # a. Program Inputs: (1) Day of week/holiday. - (2) Time of day. - (3) Cooling or heating mode of operation. - (4) Equipment status. - (5) Cooling and heating building occupancy schedules. - (6) Space temperature. - (7) Building heating constant (operator adjustable and automatically optimized). - (8) Building cooling constant (operator adjustable and automatically optimized). - (9) OA temperature. - (10) Required space temperature at occupancy (heating). - (11) Required space temperature at occupancy (cooling). - (12) Equipment constraints. - (13) Cooling and heating high-low alarm limits. - b. Program Outputs: Start/stop signal. # 2.13.10.5 Day-Night Setback Program The software shall limit the rise or drop of space temperature (or specified fluid temperature) during unoccupied hours. Whenever the space temperature (or specified fluid temperature) is above (or below for heating) the operator assigned temperature limit, the system shall be turned on until the temperature is within the assigned temperature limit. - a. Program Inputs: - (1) Day of week. - (2) Time of day. - (3) Cooling or heating mode of operation. - (4) Cooling and heating occupancy schedules. - (5) Equipment status. - (6) Space temperature (or specified fluid temperature). - (7) Minimum space temperature (or specified fluid temperature) during unoccupied periods. DACA67-00-R-0222 SECTION 15951 Page 43 of 59 - Maximum space temperature (or specified fluid temperature) during unoccupied periods. - (9) Equipment constraints. - b. Program Outputs: Start/stop signal. # 2.13.10.6 Ventilation/Recirculation and Flush Programs The software shall reduce the HVAC system thermal load for two modes of operation and provide for flushing of the building as follows: - a. Ventilation mode: In this mode, the system shall precool the space prior to building occupancy. When the outside air temperature is lower than the space temperature, the outside air damper and exhaust air damper shall open to their maximum positions and the return air damper shall close to its minimum position. - b. Recirculation mode: In this mode, the system shall preheat the space prior to building occupancy. When the outside air temperature is lower than the space temperature, the outside air damper and the exhaust air damper shall close to their minimum positions and the return air damper shall open to its maximum position. - c. Flush mode: The software shall use the HVAC supply system to provide 100% outside air for ventilation purpose and flush building spaces. The network control panel shall modulate the control valves to maintain the air supply temperature setpoints while the flush program is in effect. The flush mode shall be manually initiated and have the highest priority (it shall override all other programs). The outside air damper and the exhaust air damper shall be closed at other times during unoccupied periods, except for economizer operation during day/night setback periods. For systems without mechanical cooling, this program shall, in addition to the above requirements, act as an economizer. The outside, return, and exhaust air dampers shall be modulated to maintain the required mixed air temperature When this program is released, the outside and exhaust air dampers shall return to their minimum positions, and the return air damper shall return to its maximum position. - d. Program Inputs: - (1) Day of week. - (2) Time of day. - (3) Cooling or heating mode of operation. - (4) Equipment status. - (5) Cooling and heating occupancy schedules. - (6) OA dry bulb temperature. - (7) Space temperature. - (8) Equipment constraints. - e. Program Output: Damper actuator control signal. # 2.13.10.7 Heating and Ventilating Unit Program The software shall control hot water/steam coil valve position to maintain space/supply air temperatures for heating and ventilating units. This program shall be coordinated with the ventilation-recirculation program for damper control and the scheduled or optimum start-stop program for fan control. #### a. Program Inputs - (1) Space temperature. - (2) Space temperature setpoint. - (3) Supply air temperature. - (4) Supply air temperature setpoint. # b. Program Outputs - (1) Heating or steam coil valve actuator control signal. - (2) Damper actuator control signal. # 2.13.10.8 Hot Water OA Reset Program The software shall reset the hot water temperature supplied by the converter in accordance with the OA temperature or other specified independent variable. The hot water supply temperature shall be reset downward or upward from a fixed temperature proportionally, as a function of OA temperature or other specified independent variable. # a. Program Inputs - (1) Reset schedule. - (2) OA dry bulb temperature or other specified independent variable. - (3) Hot water supply temperature. - (4) Maximum hot water supply temperature. - (5) Minimum hot water supply temperature. - (6) Equipment constraints. # 2.13.10.9 Hot Water Distribution Program The software shall control the hot water distribution temperature to individual building zones. The zone hot water distribution temperature
shall be reset downward or upward from a fixed temperature proportionally as a function of OA temperature or other specified independent variable by DACA67-00-R-0222 SECTION 15951 Page 45 of 59 modulating the respective zone mixing valve. The zone pump shall be stopped when the OA temperature exceeds the specified setpoint. When parallel pumps are used, the software shall alternate pump operation and shall start the standby pump (after a time delay) upon failure of the operating pump. #### a. Program Inputs - (1) Zone hot water distribution temperature. - (2) Reset schedule. - (3) OA dry bulb temperature or other specified independent variable. - (4) Maximum zone hot water distribution temperature. - (5) Zone pump status. - (6) Equipment constraints. # b. Program Outputs - (1) Zone mixing valve control. - (2) Zone pump start/stop signal(s). #### PART 3 EXECUTION #### 3.1 GENERAL INSTALLATION CRITERIA # 3.1.1 HVAC Control System The HVAC control system shall be completely installed and ready for operation. Dielectric isolation shall be provided where dissimilar metals are used for connection and support. Penetrations through and mounting holes in the building exterior shall be made watertight. The HVAC control system installation shall provide clearance for control system maintenance by maintaining access space between coils, access space to mixed-air plenums, and other access space required to calibrate, remove, repair, or replace control system devices. The control system installation shall not interfere with the clearance requirements for mechanical and electrical system maintenance. # 3.1.2 Software Installation Software shall be loaded for an operational system, including databases for all points, operational parameters, and system, command, and application The Contractor shall provide original and backup copies of software. source, excluding the general purpose operating systems and utility programs furnished by computer manufacturers and the non-job-specific proprietary code furnished by the system manufacturer, and object modules for software on each type of media utilized, within 30 days of formal Government acceptance. In addition, a copy of individual floppy disks of software for each DDC panel shall be provided. #### 3.1.3 Device Mounting Criteria Devices mounted in or on piping or ductwork, on building surfaces, in mechanical/electrical spaces, or in occupied space ceilings shall be installed in accordance with manufacturer's recommendations and as shown. Control devices to be installed in piping and ductwork shall be provided with required gaskets, flanges, thermal compounds, insulation, piping, fittings, and manual valves for shutoff, equalization, purging, and calibration. Strap-on temperature sensing elements shall not be used except as specified. #### 3.1.4 Wiring Criteria Wiring external to control panels, including low-voltage wiring, shall be installed in metallic raceways. Wiring shall be installed without splices between control devices and DDC panels. Instrumentation grounding shall be installed as necessary to prevent ground loops, noise, and surges from adversely affecting operation of the system. Ground rods installed by the contractor shall be tested as specified in IEEE Std 142. conductor wires shall be tagged at both ends, with the identifier shown on the shop drawings. Electrical work shall be as specified in Section 16415 ELECTRICAL WORK, INTERIOR and as shown. #### 3.2 CONTROL SYSTEM INSTALLATION #### 3.2.1 Damper Actuators Actuators shall not be mounted in the air stream. Multiple actuators operating a common damper shall be connected to a common drive shaft. Actuators shall be installed so that their action shall seal the damper to the extent required to maintain leakage at or below the specified rate and shall move the blades smoothly. #### 3.2.2 Local Gauges for Actuators Pneumatic actuators shall have an accessible and visible receiver gauge installed in the tubing lines at the actuator as shown. #### 3.2.3 Room Instrument Mounting Room instruments shall be mounted so that their sensing elements are 5 feet above the finished floor unless otherwise shown. Temperature setpoint device shall be recess mounted. # 3.2.4 Freezestats For each 20 square feet of coil face area, or fraction thereof, a freezestat shall be provided to sense the temperature at the location shown. Manual reset freezestats shall be installed in approved, accessible locations where they can be reset easily. The freezestat sensing element shall be installed in a serpentine pattern. #### 3.2.5 Averaging Temperature Sensing Elements Sensing elements shall have a total element minimum length equal to 1 linear foot per square foot of duct cross-sectional area. #### Foundations and Housekeeping Pads Foundations and housekeeping pads shall be provided for the HVAC control system air compressors. #### Duct Static Pressure Sensing Elements and Transmitters 3.2.7 The duct static pressure sensing element and transmitter sensing point shall be located at 75% to 100% of the distance between the first and last air terminal units. #### 3.2.8 Indication Devices Installed in Piping and Liquid Systems Gauges in piping systems subject to pulsation shall have snubbers. for steam service shall have pigtail fittings with cock. Thermometers and temperature sensing elements installed in liquid systems shall be installed in thermowells. #### 3.2.9 Tubing #### 3.2.9.1 Control System Installation The control system shall be installed so that pneumatic lines are not exposed to outside air temperatures. All tubes and tube bundles exposed to view shall be installed neatly in lines parallel to the lines of the Tubing between panels and actuators in mechanical/electrical spaces shall be routed so that the lines are easily traceable. #### 3.2.9.2 Pneumatic Lines In Mechanical/Electrical Spaces In mechanical/electrical spaces, pneumatic lines shall be plastic tubing or copper tubing. Horizontal and vertical runs of plastic tubes or soft copper tubes shall be installed in raceways dedicated to tubing. raceways and tubing not installed in raceways shall be supported every 6 feet for horizontal runs and every 8 feet for vertical runs. # 3.2.9.3 Pneumatic Lines External To Mechanical/Electrical Spaces Tubing external to mechanical/electrical spaces, when run in plenum ceilings, shall be soft copper with sweat fittings. Tubing not in plenum spaces shall be soft copper with sweat fittings or shall be plastic tubing in raceways dedicated to tubing. Raceways and tubing not in raceways shall be supported every 8 feet. #### 3.2.9.4 Connection to Liquid and Steam Lines Tubing for connection of sensing elements and transmitters to liquid and steam lines shall be [copper] [Series 300 stainless steel] with [brass compression] [stainless-steel compression] fittings. #### 3.2.9.5 Connection to Ductwork Tubing for connection of sensing elements and transmitters to ductwork shall be plastic tubing. # 3.2.9.6 Tubing in Concrete Tubing in concrete shall be installed in rigid conduit. Tubing in walls containing insulation, fill, or other packing materials shall be installed in raceways dedicated to tubing. #### 3.2.9.7 Final Connection to Actuators Final connections to actuators shall be plastic tubing 12 inches long and unsupported at the actuator. #### 3.3 CONTROL SEQUENCES OF OPERATION # 3.3.1 General Requirements - HVAC Systems These requirements shall apply to all primary HVAC systems unless modified herein or on the drawings. The sequences describe the actions of the control system for one direction of change in the HVAC process analog variable, such as temperature, humidity or pressure. The reverse sequence shall occur when the direction of change is reversed. #### 3.3.1.1 Supply Fan Operating HVAC system outside air, return air, and relief air dampers shall function as described for specific modes of operation. Interlocked exhaust fans shall be stopped in the unoccupied and ventilation delay modes and their dampers shall be closed. Cooling coil control valves and cooling coil circulating pumps shall function as described for the specific modes of operation unless their control is assumed by the freeze protection system. Heating coil valves shall be under control. # 3.3.1.2 Supply Fan Not Operating When an HVAC system is stopped, all interlocked fans shall stop, the outside air and relief air dampers shall close, the return air damper shall open, and cooling coil valves for coils located indoors shall close to the coil. Heating coil valves shall remain under control. #### 3.3.1.3 Hydronic Heating - Distribution Pump Operating Hydronic heat-exchanger valves shall be under control. DACA67-00-R-0222 SECTION 15951 Page 49 of 59 3.3.1.4 Hydronic Heating - Distribution Pump Not Operating Hydronic heat-exchanger valves shall close. 3.3.2 Central Plant Hydronic Heating with Steam/Hot Water Converter #### 3.3.2.1 All Modes The DDC system shall accept a signal from a sunshielded outside air temperature sensing element and transmitter located as shown. The DDC system shall start and stop pump at the outside air temperatures shown. DDC system shall reset the hydronic heating supply temperature setpoint in a linear schedule based on the outside air temperature as shown. The DDC system shall accept a signal from a temperature sensing element and transmitter located in the hydronic heating supply line and the DDC system output shall modulate the converter steam control valve to maintain the reset schedule setpoint in the hydronic heating supply line. # 3.3.2.2 Occupied Mode When the system time schedule places the system in the occupied mode, a space temperature sensing element and transmitter located as shown shall signal the DDC system, which shall maintain the space temperature setpoint by modulating the secondary hydronic system zone valve. # 3.3.2.3 Unoccupied Mode When the system is in the unoccupied mode, the space temperature setpoint shall be as shown. -
3.3.3 Heating and Ventilating Unit - 3.3.3.1 Occupied, Unoccupied, and Ventilation Delay Operating Modes Ventilation delay mode timing shall start prior to the occupied mode timing. The DDC system shall prevent the outside air damper from opening. At the time shown, the DDC system shall place the system in the occupied mode. At the expiration of the ventilation delay mode timing period, the DDC system shall allow the outside air damper to open. At the time shown, the DDC system shall place the control system in the unoccupied mode of operation. - 3.3.3.2 Outside Air, Return Air, and Relief Air Dampers - a. Occupied Mode The outside air, return air, and relief air dampers shall be under space temperature and economizer control. - b. Unoccupied and Ventilation Delay Modes The dampers shall return to their normal positions. #### 3.3.3.3 Supply Fan Control - a. Occupied and Ventilation Delay Modes Supply fan shall start, and shall operate continuously. - b. Unoccupied Mode The supply fan shall cycle according to the night setback schedule. The fan shall start and stop at the setpoints as shown. #### 3.3.3.4 Filter The DDC panel shall monitor the differential pressure switch across the filter and shall provide an alarm when the pressure drop exceeds the setpoint. #### 3.3.3.5 Space Temperature Control A space temperature sensing element and transmitter operating through the DDC system shall first gradually shut off the heating coil valve. After the heating coil valve is fully closed, the DDC system shall then gradually operate the outside air damper to admit outside air beyond the minimum quantity to maintain the setpoint as shown. # 3.3.3.6 Emergency Fan Shutdown All Modes - Smoke Detectors in the supply air shall stop the supply fan and initiate a smoke alarm if smoke is detected at either location. Restarting the supply fan shall require manual reset at the smoke detector. #### Single Zone with Hydronic Heating Coils No Return Fan 3.3.4 # 3.3.4.1 Occupied, Unoccupied, and Ventilation Delay Modes of Operation Ventilation delay mode timing shall start prior to the occupied mode timing. The DDC system shall prevent the outside air damper from opening. At the time shown, the DDC system shall place the system in the occupied mode. At the expiration of the ventilation delay mode timing period, the DDC system shall allow the outside air damper to open. At the time shown, the DDC system shall place the control system in the unoccupied mode of operation. # 3.3.4.2 Outside Air, Return Air, and Relief Air Dampers - a. Occupied Mode The outside air, return air, and relief air dampers shall be under space temperature and economizer control. - b. Unoccupied Mode - The dampers shall return to their normal positions. - c. Ventilation Delay Mode The dampers shall return to their normal positions, except when under economizer control. # 3.3.4.3 Supply Fan Control - a. Occupied and Ventilation Delay Modes Supply fan shall start, and shall operate continuously. - b. Unoccupied Mode The supply fan shall cycle according to the night setback schedule. The fan shall start and stop at the setpoints. #### 3.3.4.4 Filter A differential pressure switch across the filter shall initiate a filter alarm when the pressure drop across the filter reaches the setpoint. #### 3.3.4.5 Not used #### 3.3.4.6 Economizer Control The DDC system shall accept the signal of an outside air temperature sensing element and transmitter and the signal of a return air temperature sensing element and transmitter. The DDC system shall perform switchover between outside air economizer control mode and minimum outside air mode. Until the return air temperature rises above the setpoint, the DDC system shall hold the system in the minimum outside air mode. When the return air temperature rises above the setpoint, the DDC system shall place the AHU in the economizer mode or in the minimum outside air mode, as determined by a comparison of the outside air and return air temperatures in accordance with the differential temperature setpoints. When the outside air temperature is low with respect to the return air temperature, the AHU shall be in the economizer mode. When the DDC system places the control system in the minimum outside air mode, the outside air damper shall be open to the minimum outdoor air setting. #### 3.3.4.7 Emergency Fan Shutdown All Modes - Smoke detectors in the supply air and return air ductwork shall stop the supply fan and initiate a smoke alarm if smoke is detected at either location. Restarting the supply fan shall require manual reset at the smoke detector. #### 3.4 COMMISSIONING PROCEDURES # 3.4.1 Evaluations The Contractor shall make the observations, adjustments, calibrations, measurements, and tests of the control systems, set the time schedule, and make any necessary control system corrections to ensure that the systems function as described in the sequence of operation. #### 3.4.1.1 Item Check Signal levels shall be recorded for the extreme positions of each controlled An item-by-item check of the sequence of operation requirements shall be performed using Steps 1 through 4 in the specified control system commissioning procedures. Steps 1, 2, and 3 shall be performed with the HVAC system shut down; Step 4 shall be performed after the HVAC systems have been started. External input signals to the DDC system (such as starter auxiliary contacts, and external systems) may be simulated in steps 1, 2, and 3. With each operational mode signal change, DDC system output relay contacts shall be observed to ensure that they function. #### 3.4.1.2 Weather Dependent Test Procedures Weather dependent test procedures that cannot be performed by simulation shall be performed in the appropriate climatic season. When simulation is used, the actual results shall be verified in the appropriate season. #### 3.4.1.3 Two-Point Accuracy Check A two-point accuracy check of the calibration of each HVAC control system sensing element and transmitter shall be performed by comparing the DDC system readout to the actual value of the variable measured at the sensing element and transmitter or airflow measurement station location. Digital indicating test instruments shall be used, such as digital thermometers, motor-driven psychrometers, and tachometers. The test instruments shall be at least twice as accurate as the specified sensing element-to-DDC system readout accuracy. The calibration of the test instruments shall be traceable to National Institute Of Standards And Technology standards. The first check point shall be with the HVAC system in the shutdown condition, and the second check point shall be with the HVAC system in an operational condition. Calibration checks shall verify that the sensing element-to-DDC system readout accuracies at two points are within the specified product accuracy tolerances. If not, the device shall be recalibrated or replaced and the calibration check repeated. # 3.4.1.4 Insertion and Immersion Temperatures Insertion temperature and immersion temperature sensing elements and transmitter-to-DDC system readout calibration accuracy shall be checked at one physical location along the axis of the sensing element. # 3.4.1.5 Averaging Temperature Averaging temperature sensing element and transmitter-to-DDC system readout calibration accuracy shall be checked every 2 feet along the axis of the sensing element in the proximity of the sensing element, for a maximum of 10 readings. These readings shall then be averaged. REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 # 3.4.2 Central Plant Hydronic Heating with Steam/Hot Water Converter Installation shall be as follows: - a. Step 1 System Inspection: The HVAC system shall be observed in its shutdown condition. Power and main air shall be available where required. The converter valve shall be closed. - b. Step 2 Calibration Accuracy Check with HVAC System Shutdown: Readings shall be taken with a digital thermometer at each temperature sensing element location. Each temperature shall be read at the DDC controller, and the thermometer and DDC system readings logged. The calibration accuracy of the sensing element-to-DDC system readout for outside air temperature and hydronic system supply temperature shall be checked. - c. Step 3 Actuator Range Adjustments: A signal shall be applied to the actuator, through an operator entered value to the DDC system. The proper operation of the actuators and positions for all valves shall be verified. The signal shall be varied from live zero to full range, and it shall be verified that the actuators travel from zero stroke to full stroke within the signal range. It shall be verified that all sequenced actuators move from zero stroke to full stroke in the proper direction and move the connected device in the proper direction from one extreme position to the other. # d. Step 4 - Control System Commissioning: - (1) The two-point calibration sensing element-to-DDC system readout accuracy check for the outside air temperature shall be performed. Any necessary software adjustments to setpoints or parameters shall be made to achieve the outside air temperature schedule. - (2) A signal shall be applied to simulate that the outside air temperature is above the setpoint. It shall be verified that pump HWP-1 (HWP-2) stops. A signal shall be applied to simulate that the outside air temperature is below the setpoint. It shall be verified that pump HWP-1 (HWP-2) starts. - (3) The two-point calibration accuracy check of the sensing element-to-DDC system readout for the system supply temperature shall be performed. The system supply temperature setpoint shall be set for the temperature schedule as shown. Signals of 8 ma and 16 ma shall be sent to the DDC system from the outside air temperature sensor, to verify that the supply temperature setpoint changes to the appropriate values. - (4) The control system shall be placed in the occupied mode.
The calibration accuracy check of sensing element-to-DDC system readout shall be performed for each space temperature sensor and the values logged. Each space temperature seppoint shall be set as shown. DACA67-00-R-0222 SECTION 15951 Page 54 of 59 The control system shall be placed in the unoccupied mode, and it shall be verified that each space temperature setpoint changes to the unoccupied mode setting. #### 3.4.3 Heating and Ventilating Unit Steps for installation are as follows: - a. Step 1 System Inspection: The HVAC system shall be observed in its shutdown condition. The system shall be checked to see that power and main air are available where required, the outside air damper and relief air damper are closed, and the return air damper is open. - b. Step 2 Calibration Accuracy Check with HVAC System Shutdown: Readings shall be taken with a digital thermometer at each temperature sensing element location. Each temperature shall be read at the DDC controller, and the thermometer and DDC system readings logged. calibration accuracy of the sensing element-to-DDC system readout for space temperature shall be checked. - c. Step 3 Actuator Range Adjustments: A signal shall be applied to the actuator through an operator entered value to the DDC system. proper operation of the actuators and positioners for all dampers and valves shall be verified. The signal shall be varied from live zero to full range, and that the actuators travel from zero stroke to full stroke within the signal range shall be verified. It shall be verified that all sequenced and parallel-operated actuators move from zero stroke to full stroke in the proper direction, and move the connected device in the proper direction from one extreme position to the other. # d. Step 4 - Control System Commissioning: - (1) With the fan ready to start, the system shall be placed in the ventilation delay mode and in the occupied mode through operator entered values. It shall be verified that supply fans AHU 1 and AHU 2 start. It shall be verified that the outside air are closed, the return air damper is open, and the heating coil valve is under control, by artificially changing the space temperature through operator entered values. The system shall be placed out of the ventilation delay mode, and it shall be verified that the outside air and return air come under control by simulating a change in space temperature. - (2) The control system shall be placed in the minimum outside air mode. It shall be verified that the outside air damper opens to minimum position. - The calibration accuracy check of sensing element-to-DDC system readout for the space temperature shall be performed. space temperature setpoint shall be set as shown. REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 - (4) The control system shall be placed in the unoccupied mode, and it shall be verified that the HVAC system shuts down, and the control system assumes the specified shutdown conditions. The space temperature shall be artificially changed to below the night setback setpoint, and it shall be verified that the HVAC system starts; the space temperature shall be artificially changed to above the night setback setpoint, and it shall be verified that the HVAC system stops. The night setback temperature setpoint shall be set as shown. - (5) With the HVAC system running, a filter differential pressure switch input signal shall be simulated, at the device. It shall be verified that the filter alarm is initiated. The differential pressure switch shall be set at the setpoint as shown. - (6) With the HVAC system running, a freezestat trip input signal shall be simulated at the device. HVAC system shutdown shall be verified. It shall be verified that a low temperature alarm is initiated. The freezestat shall be set at the setpoint. The HVAC system shall be restarted by manual restart and it shall be verified that the alarm returns to normal. - (7) With the HVAC system running, a smoke detector trip input signal shall be simulated at each detector, and verification of control device actions and interlock functions as described in the Sequence of Operation shall be made. Simulation shall be performed without false-alarming any Life Safety systems. It shall be verified that the HVAC system shuts down and that the smoke detector alarm is initiated. The detectors shall be reset. The HVAC system shall be restarted by manual reset, and it shall be verified that the alarm signal is changed to a return-to-normal signal. ### 3.5 BALANCING, COMMISSIONING, AND TESTING # 3.5.1 Coordination with HVAC System Balancing Commissioning of the control system, except for tuning of controllers, shall be performed prior to or simultaneous with HVAC system balancing. The contractor shall tune the HVAC control system after all air system and hydronic system balancing has been completed, minimum damper positions set and a report has been issued. # 3.5.2 Control System Calibration, Adjustments, and Commissioning Control system commissioning shall be performed for each HVAC system, using test plans and procedures previously approved by the Government. The Contractor shall provide all personnel, equipment, instrumentation, and supplies necessary to perform commissioning and testing of the HVAC control system. All instrumentation and controls shall be calibrated and the specified accuracy shall be verified using test equipment with calibration traceable to NIST standards. Wiring shall be tested for continuity and for DACA67-00-R-0222 SECTION 15951 Page 56 of 59 ground, open, and short circuits. Tubing systems shall be tested for leaks. Mechanical control devices shall be adjusted to operate as specified. HVAC control panels shall be pretested off-site as a functioning assembly ready for field connections, calibration, adjustment, and commissioning of the operational HVAC control system. Control parameters and logic (virtual) points including control loop setpoints, gain constants, and integral constraints, shall be adjusted before the system is placed on line. Communications requirements shall be as indicated. Written notification of any planned commissioning or testing of the HVAC Control systems shall be given to the Government at least 14 calendar days in advance. # 3.5.3 Performance Verification Test The Contractor shall demonstrate compliance of the HVAC control system with the contract documents. Using test plans and procedures previously approved by the Government, the Contractor shall demonstrate all physical and functional requirements of the project. The performance verification test shall show, step-by-step, the actions and results demonstrating that the control systems perform in accordance with the sequences of operation. The performance verification test shall not be started until after receipt by the Contractor of written permission by the Government, based on Government approval of the Commissioning Report and completion of balancing. The tests shall not be conducted during scheduled seasonal off periods of base heating and cooling systems. ## 3.5.4 Endurance Test The endurance test shall be used to demonstrate the specified overall system reliability requirement of the completed system. The endurance test shall not be started until the Government notifies the Contractor in writing that the performance verification test is satisfactorily completed. The Government may terminate the testing at any time when the system fails to perform as specified. Upon termination of testing by the Government or by the Contractor, the Contractor shall commence an assessment period as described for Phase II. Upon successful completion of the endurance test, the Contractor shall deliver test reports and other documentation as specified to the Government prior to acceptance of the system. - a. Phase I (Testing). The test shall be conducted 24 hours per day, 7 days per week, for 15 consecutive calendar days, including holidays, and the system shall operate as specified. The Contractor shall make no repairs during this phase of testing unless authorized by the Government in writing. - b. Phase II (Assessment). After the conclusion of Phase I, the Contractor shall identify failures, determine causes of failures, repair failures, and deliver a written report to the Government. The report shall explain in detail the nature of each failure, corrective action taken, results of tests performed, and shall recommend the point at which testing should be resumed. After delivering the written report, the Contractor shall convene a test review meeting at the jobsite to present the results and recommendations to the Government. As a part of this test review meeting, the Contractor shall demonstrate that all failures have been DACA67-00-R-0222 SECTION 15951 Page 57 of 59 corrected by performing appropriate portions of the performance verification test. Based on the Contractor's report and test review meeting, the Government may require that the Phase I test be totally or partially rerun. After the conclusion of any retesting which the Government may require, the Phase II assessment shall be repeated as if Phase I had just been completed. #### 3.5.5 Posted and Panel Instructions Posted and Panel Instructions, showing the final installed conditions, shall be provided for each system. The posted instructions shall consist of laminated half-size drawings and shall include the control system schematic, equipment schedule, sequence of operation, wiring diagram, communication network diagram, and valve and damper schedules. The posted instructions shall be permanently affixed, by mechanical means, to a wall near the control panel. Panel instructions shall consist of laminated letter-size sheets and shall include a Routine Maintenance Checklist and as-built configuration check sheets. Panel instructions and one copy of the Operation and Maintenance Manuals, previously described herein, shall be placed inside each
control panel or permanently affixed, by mechanical means, to a wall near the panel. #### 3.6 TRAINING # 3.6.1 Training Course Requirements A training course shall be conducted for 10 operating staff members designated by the Contracting Officer in the maintenance and operation of the system, including specified hardware and software. The training period, for a total of 32 hours of normal working time, shall be conducted within 30 days after successful completion of the performance verification test. The training course shall be conducted at the project site. Audiovisual equipment and 12 sets of all other training materials and supplies shall be provided. A training day is defined as 8 hours of classroom instruction, including two 15 minute breaks and excluding lunchtime, Monday through Friday, during the daytime shift in effect at the training facility. # 3.6.2 Training Course Content For guidance in planning the required instruction, the Contractor shall assume that attendees will have a high school education or equivalent, and are familiar with HVAC systems. The training course shall cover all of the material contained in the Operating and Maintenance Instructions, the layout and location of each HVAC control panel, the layout of one of each type of unitary equipment and the locations of each, the location of each control device external to the panels, the location of the compressed air station, preventive maintenance, troubleshooting, diagnostics, calibration, adjustment, commissioning, tuning, and repair procedures. Typical systems and similar systems may be treated as a group, with instruction on the physical layout of one such system. The results of the performance verification test and the calibration, adjustment and commissioning report shall be presented as benchmarks of HVAC control system performance by which to measure operation and maintenance effectiveness. END OF SECTION REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 SECTION 15990 TESTING, ADJUSTING, AND BALANCING OF HVAC SYSTEMS #### PART 1 GENERAL #### 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. ASSOCIATED AIR BALANCE COUNCIL (AABC) AABC MN-1 (1989) National Standards for Testing and Balancing Heating, Ventilating, and Air Conditioning Systems NATIONAL ENVIRONMENTAL BALANCING BUREAU (NEBB) NEBB-01 (1991) Procedural Standards for Testing Adjusting Balancing of Environmental Systems #### 1.2 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having a "FIO" designation are for information only. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-01 Data TAB Related HVAC Submittals; FIO. A list of the TAB Related HVAC Submittals, no later than 7 days after the approval of the TAB Specialist. SD-04 Drawings TAB Schematic Drawings and Report Forms; GA. Three copies of the TAB Schematic Drawings and Report Forms, no later than 21 days prior to the start of TAB field measurements. SD-06 Instructions TAB Procedures; GA. Proposed procedures for TAB, submitted with the TAB Schematic Drawings and Report Forms. SD-07 Schedules REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 Systems Readiness Check; FIO. Proposed date and time to begin the Systems Readiness Check, no later than 7 days prior to the start of the Systems Readiness Check. TAB Execution; GA. Proposed date and time to begin field measurements, making adjustments, etc., for the TAB Report, submitted with the Systems Readiness Check Report. TAB Verification; GA. Proposed date and time to begin the TAB Verification, submitted with the TAB Report. SD-08 Statements TAB Firm; GA. Certification of the proposed TAB Firm's qualifications by either AABC or NEBB to perform the duties specified herein and in other related Sections, no later than 21 days after the Notice to Proceed. The documentation shall include the date that the Certification was initially granted and the date that the current Certification expires. Any lapses in Certification of the proposed TAB Firm or disciplinary action taken by AABC or NEBB against the proposed TAB Firm shall be described in detail. TAB Specialist; GA. Certification of the proposed TAB Specialist's qualifications by either AABC or NEBB to perform the duties specified herein and in other related Sections, no later than 21 days after the Notice to Proceed. The documentation shall include the date that the Certification was initially granted and the date that the current Certification expires. Any lapses in Certification of the proposed TAB Specialist or disciplinary action taken by AABC or NEBB against the proposed TAB Specialist shall be described in detail. Instrument Calibration; FIO. List of each instrument to be used during TAB, stating calibration requirements required or recommended by both the TAB Standard and the instrument manufacturer and the actual calibration history of the instrument, submitted with the TAB Procedures. The calibration history shall include dates calibrated, the qualifications of the calibration laboratory, and the calibration procedures used. SD-09 Reports Design Review Report; GA. REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 A copy of the Design Review Report, no later than 14 days after approval of the TAB Firm and the TAB Specialist. Systems Readiness Check Report; GA. A copy of completed checklists for each system, each signed by the TAB Specialist, at least 7 days prior to the start of TAB Execution. All items in the Systems Readiness Check Report shall be signed by the TAB Specialist and shall bear the seal of the Professional Society or National Association used as the TAB Standard. TAB Report; GA. Three copies of the completed TAB Reports, no later that 7 days after the execution of TAB. All items in the TAB Report shall be signed by the TAB Specialist and shall bear the seal of the Professional Society or National Association used as the TAB Standard. TAB Verification Report; GA. Three copies of the completed TAB Verification Report, no later that 7 days after the execution of TAB Verification. All items in the TAB Verification Report shall be signed by the TAB Specialist and shall bear the seal of the Professional Society or National Association used as the TAB Standard. SD-13 Certificates Ductwork Leak Testing; FIO. A written statement signed by the TAB Specialist certifying that the TAB Specialist witnessed the Ductwork Leak Testing, it was successfully completed, and that there are no known deficiencies related to the ductwork installation that will prevent TAB from producing satisfactory results. #### 1.3 SIMILAR TERMS In some instances, terminology differs between the Contract and the TAB Standard primarily because the intent of this Section is to use the industry standards specified, along with additional requirements listed herein to produce optimal results. The following table of similar terms is provided for clarification only. Contract requirements take precedent over the corresponding AABC or NEBB requirements where differences exist. # SIMILAR TERMS | Contract Term | AABC Term | NEBB Term | |---------------|---------------------------|-----------------------| | TAB Standard | National Standards for | Procedural Standards | | | Testing and Balancing | for Testing Adjusting | | | Heating, Ventilating, and | Balancing of | | | Air Conditioning Systems | Environmental | | Systems. | | | TAB Specialist TAB Engineer TAB Supervisor Systems Readiness Construction Phase Inspection Field Readiness Check & Preliminary Field Procedures. #### 1.4 TAB STANDARD TAB shall be performed in accordance with the requirements of the standard under which the TAB Firm's qualifications are approved, i.e., AABC MN-lor NEBB-01, unless otherwise specified herein. All recommendations and suggested practices contained in the TAB Standard shall be considered mandatory. The provisions of the TAB Standard, including checklists, report forms, etc., shall, as nearly as practical, be used to satisfy the Contract requirements. The TAB Standard shall be used for all aspects of TAB, including qualifications for the TAB Firm and Specialist and calibration of TAB instruments. Where the instrument manufacturer calibration recommendations are more stringent than those listed in the TAB Standard, the manufacturer's recommendations shall be adhered to. All quality assurance provisions of the TAB Standard such as performance guarantees shall be part of this contract. For systems or system components not covered in the TAB Standard, TAB procedures shall be developed by the TAB Specialist. Where new procedures, requirements, etc., applicable to the Contract requirements have been published or adopted by the body responsible for the TAB Standard used (AABC or NEBB), the requirements and recommendations contained in these procedures and requirements shall be considered mandatory. # 1.5 QUALIFICATIONS #### 1.5.1 TAB Firm The TAB Firm shall be either a member of AABC or certified by the NEBB and certified in all categories and functions where measurements or performance are specified on the plans and specifications, including building systems commissioning and the measuring of sound and vibration in environmental systems. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the firm loses subject certification during this period, the Contractor shall immediately notify the Contracting Officer and submit another TAB Firm for approval. Any firm that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any duties related to the HVAC systems, including TAB. All work specified in this
Section and in other related Sections to be performed by the TAB Firm shall be considered invalid if the TAB Firm loses its certification prior to Contract completion and must be performed by an approved successor. These TAB services are to assist the prime Contractor in performing the quality oversight for which it is responsible. The TAB Firm shall be a subcontractor of the prime Contractor, and shall report to and be paid by the prime Contractor. #### 1.5.2 TAB Specialist The TAB Specialist shall be either a member of AABC or an experienced technician of the Firm certified by the NEBB. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the Specialist loses subject certification during this period, the Contractor shall immediately notify the Contracting Officer and submit another TAB Specialist for approval. Any individual that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any duties related to the HVAC systems, including TAB. All work specified in this Section and in other related Sections performed by the TAB Specialist shall be considered invalid if the TAB Specialist loses its certification prior to Contract completion and must be performed by the approved successor. #### 1.6 TAB SPECIALIST RESPONSIBILITIES All TAB work specified herein and in related sections shall be performed under the direct guidance of the TAB Specialist. The TAB Specialist shall participate in the commissioning process specified in Section 15995 COMMISSIONING OF HVAC SYSTEMS. ## PART 2 PRODUCTS (NOT APPLICABLE) # PART 3 EXECUTION ## 3.1 DESIGN REVIEW The TAB Specialist shall review the Contract Plans and Specifications and advise the Contracting Officer of any deficiencies that would prevent the HVAC systems from effectively operating in accordance with the sequence of operation specified or prevent the effective and accurate TAB of the system. The TAB Specialist shall provide a Design Review Report individually listing each deficiency and the corresponding proposed corrective action necessary for proper system operation. # 3.2 TAB RELATED HVAC SUBMITTALS The TAB Specialist shall prepare a list of the submittals from the Contract Submittal Register that relate to the successful accomplishment of all HVAC TAB. The submittals identified on this list shall be accompanied by a letter of approval signed and dated by the TAB Specialist when submitted to the Government. The TAB Specialist shall also ensure that the location and details of ports, terminals, connections, etc., necessary to perform TAB are identified on the submittals. ### 3.3 TAB SCHEMATIC DRAWINGS AND REPORT FORMS A schematic drawing showing each system component, including balancing devices, shall be provided for each system. Each drawing shall be accompanied by a copy of all report forms required by the TAB Standard used for that system. Where applicable, the acceptable range of operation or appropriate setting for each component shall be included on the forms or as an attachment to the forms. The schematic drawings shall identify all testing points and cross reference these points to the report forms and procedures. #### 3.4 DUCTWORK LEAK TESTING The TAB Specialist shall witness the Ductwork Leak Testing specified in Section 15895 AIR SUPPLY, DISTRIBUTION, VENTILATION, AND EXHAUST SYSTEM and approve the results as specified in Paragraph TAB RELATED HVAC SUBMITTALS. #### 3.5 TESTING, ADJUSTING, AND BALANCING #### 3.5.1 TAB Procedures Step by step procedures for each measurement required during TAB Execution shall be provided. The procedures shall be oriented such that there is a separate section for each system. The procedures shall include measures to ensure that each system performs as specified in all operating modes, interactions with other components (such as exhaust fans, air handlers, air conditioning unit, hot water heating system, etc.) and systems, and with all seasonal operating differences, diversity, simulated loads, and pressure relationships required. # 3.5.2 Systems Readiness Check The TAB Specialist shall inspect each system to ensure that it is complete, including installation and operation of controls, and that all aspects of the facility that have any bearing on the HVAC systems, including installation of ceilings, walls, windows, doors, and partitions, are complete to the extent that TAB results will not be affected by any detail or touch-up work remaining. The TAB Specialist shall also verify that all items such as ductwork and piping ports, terminals, connections, etc., necessary to perform TAB shall be complete during the Systems Readiness Check. # 3.5.3 Preparation of TAB Report Preparation of the TAB Report shall begin only when the Systems Readiness Report has been approved. The Report shall be oriented so that there is a separate section for each system. The Report shall include a copy of the appropriate approved Schematic Drawings and TAB Related Submittals, such as pump curves, fan curves, etc., along with the completed report forms for each system. The operating points measured during successful TAB Execution and the theoretical operating points listed in the approved submittals shall be marked on the performance curves and tables. Where possible, adjustments shall be made using an "industry standard" technique which would result in the greatest energy savings, such as adjusting the speed of a fan instead of throttling the flow. Any deficiencies outside of the realm of normal adjustments and balancing during TAB Execution shall be noted along with a description of corrective action performed to bring the measurement into the specified range. If, for any reason, the TAB Specialist determines during TAB Execution that any Contract requirement cannot be met, the TAB Specialist shall immediately provide a written description of the deficiency and the corresponding proposed corrective action necessary for proper system operation to the Contracting Officer. #### 3.5.4 TAB Verification The TAB Specialist shall recheck ten percent of the measurements listed in the Tab Report and prepare a TAB Verification Report. The measurements selected for verification and the individuals that witness the verification will be selected by the Contracting Officer's Representative (COR). The measurements will be recorded in the same manner as required for the TAB Report. All measurements that fall outside the acceptable operating range specified shall be accompanied by an explanation as to why the measurement does not correlate with that listed in the TAB Report and a description of corrective action performed to bring the measurement into the specified range. If over 20 percent of the measurements selected by the COR for verification fall outside of the acceptable operating range specified, the COR will select an additional ten percent for verification. If over 20 percent of the total tested (including both test groups) fall outside of the acceptable range, the TAB Report shall be considered invalid and all contract TAB work shall be repeated beginning with the Systems Readiness Check. # 3.5.5 Marking of Setting Following approval of TAB Verification Report, the setting of all HVAC adjustment devices including valves, splitters, and dampers shall be permanently marked by the TAB Specialist so that adjustment can be restored if disturbed at any time. #### 3.5.6 Identification of Test Ports The TAB Specialist shall permanently and legibly identify the location points of duct test ports. If the ductwork has exterior insulation, the identification shall be made on the exterior side of the insulation. All penetrations through ductwork and ductwork insulation shall be sealed to prevent air leakage or to maintain integrity of vapor barrier. END OF SECTION REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 SECTION 15995 #### COMMISSIONING OF HVAC SYSTEMS PART 1 GENERAL #### 1.1 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals with "FIO" designation are for information only. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-01 Data Commissioning Team; FIO. List of team members who will represent the Contractor in the precommissioning checks and functional performance testing, at least 2 weeks prior to the start of pre-commissioning checks. Proposed revision to the list, prior to the start of the impacted work. SD-06 Instructions Test Procedures; FIO. Detailed procedures for pre-commissioning checks and functional performance tests, at least 4 weeks prior to the start of pre-commissioning checks. SD-07 Schedules Test Schedule; GA. Schedule for pre-commissioning checks and functional performance tests, at least 2 weeks prior to the start of pre-commissioning checks. SD-09 Reports Test Reports; GA. Completed pre-commissioning checklists and functional performance test checklists organized by system and by subsystem and submitted as one package. The results of failed tests shall be included along with a description of the corrective action taken. # 1.2 SEQUENCING AND SCHEDULING The work described in this Section shall begin only after all work required in related Sections, including Section 15951 DIRECT DIGITAL CONTROL FOR HVAC and Section 15990 TESTING, ADJUSTING AND BALANCING OF HVAC SYSTEMS, has been successfully completed, and all test and inspection reports and operation REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 and maintenance manuals required in these Sections have been submitted and approved. PART 2 PRODUCTS (NOT APPLICABLE) PART 3 EXECUTION #### 3.1 COMMISSIONING TEAM AND CHECKLISTS The Contractor shall designate team members to participate in the precommissioning checks and the functional performance testing specified herein. In
addition, the Government will be represented by a representative of the Contracting Officer, the Design Agent's Representative, and the Using Agency. The team members shall be as follows: | Designation | Function | | | | | | | | |--|---|--|--|--|--|--|--|--| | Q | Contractor's Chief Quality Control Representative | | | | | | | | | M Contractor's Mechanical Representative | | | | | | | | | | E | Contractor's Electrical Representative | | | | | | | | | T | Contractor's Testing, Adjusting, and Balancing | | | | | | | | | | Representative | | | | | | | | | C | Contractor's Controls Representative | | | | | | | | | D | Design Agent's Representative | | | | | | | | | 0 | Contracting Officer's Representative | | | | | | | | | U | Using Agency's Representative | | | | | | | | Each checklist shown in appendices A and B shall be completed by the commissioning team. Acceptance by each commissioning team member of each pre-commissioning checklist item shall be indicated by initials and date unless an "X" is shown indicating that participation by that individual is not required. Acceptance by each commissioning team member of each functional performance test checklist shall be indicated by signature and date. # 3.2 TESTS The pre-commissioning checks and functional performance tests shall be performed in a manner which essentially duplicates the checking, testing, and inspection methods established in the related Sections. Where checking, testing, and inspection methods are not specified in other Sections, methods shall be established which will provide the information required. Testing and verification required by this section shall be performed during the Commissioning phase. Requirements in related Sections are independent from the requirements of this Section and shall not be used to satisfy any of the requirements specified in this Section. The Contractor shall provide all materials, services, and labor required to perform the pre-commissioning checks and functional performance tests. A pre-commissioning check or functional performance test shall be aborted if any system deficiency prevents the successful completion of the test or if any participating non-Government commissioning team member of which participation is specified is not present for the test. The Contractor shall reimburse the Government for DACA67-00-R-0222 SECTION 15995 Page 2 of 21 REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 all costs associated with effort lost due to tests that are aborted. These costs shall include salary, travel costs and per diem (where applicable) for Government commissioning team members. # 3.2.1 Pre-Commissioning Checks Pre-commissioning checks shall be performed for the items indicated on the checklists in Appendix A. Deficiencies discovered during these checks shall be corrected and retested in accordance with the applicable contract requirements. #### 3.2.2 Functional Performance Tests Functional performance tests shall be performed for the items indicated on the checklists in Appendix B. Functional performance tests shall begin only after all pre-commissioning checks have been successfully completed. Tests shall prove all modes of the sequences of operation, and shall verify all other relevant contract requirements. Tests shall begin with equipment or components and shall progress through subsystems to complete systems. Upon failure of any functional performance test checklist item, the Contractor shall correct all deficiencies in accordance with the applicable contract requirements. The checklist shall then be repeated until it has been completed with no e # APPENDIX A PRE-COMMISSIONING CHECKLISTS Pre-commissioning checklist - Piping | For | HVAC Hot Water Piping System | | | | | | | | | |-----|-----------------------------------|---|---|---|---|---|---|---|---| | Che | cklist Item | Q | M | E | Т | С | D | 0 | U | | Ins | tallation | | | | | | | | | | a. | Piping complete. | | | Х | | X | | | | | b. | As-built shop drawings submitted. | | | X | | X | | | | | c. | Piping flushed and cleaned. | | | Х | | X | | | | | d. | Strainers cleaned. | | | Х | | X | | | | | e. | Valves installed as required. | | | Х | | X | | | | | f. | Piping insulated as required. | | | Х | | Х | | | | DACA67-00-R-0222 SECTION 15995 Page 3 of 21 # 00029/11 REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 | g. | Thermometers and gauges installed as required. | | Х | | X |
 | | |------|---|----|---|---|---|------|--| | h. | Verify operation of valves. | | X | | |
 | | | i. | Air vents installed as specified. | | Х | X | X |
 | | | j. | Flexible connectors installed as specifi | ed | Х | X | Х |
 | | | k. | Verify that piping has been labeled and valves identified as specified. | | X | | |
 | | | Test | ting, Adjusting, and Balancing (TAB) | | | | | | | | a. | Hydrostatic test complete. | | Х | | Х |
 | | | b. | TAB operation complete. | | Х | | |
 | | | Pre | -commissioning Checklist - Ductwork | | | | | | | | | |------------|--|------|-------|------|-----|---|---|---|---| | For | Air Handler: AHU-1, AHU-2, ACU-1, EF-3 | | | | | | | | | | Che | cklist Item | Q | M | E | Т | С | D | 0 | U | | Inst | callation | | | | | | | | | | a. | Ductwork complete. | | | Х | | Х | | | | | b. | As-built shop drawings submitted. | | | X | | Х | | | | | c. | Ductwork leak test complete. | | | Х | | Х | | | | | d. | Access doors installed as required with installation of each verified by the specified team members initialing each location on a copy of the as-built drawings. | | | X | | X | | | 1 | | e. | Ductwork insulated as required. | | | Х | | Х | | | | | f. | Thermometers and gauges installed as required. | | | | | | | | | | g. | Verify open/closed status of dampers. | | | Х | | Х | | | | | h. | Flexible connectors installed as specifi | ed | | Х | | Х | | | | | Test | ing, Adjusting, and Balancing (TAB) | | | | | | | | | | a. | TAB operation complete. | | | Х | | X | | | | | Pre- | -commissioning Checklist - DX Air Cooled | Cond | ensin | g Uı | nit | | | | | | For | Condensing Unit: CU-1 | | | | | | | | | | Che | cklist Item | Q | М | E | Т | С | D | 0 | U | | Inst | callation | | | X | X | Х | | | | | b. | Refrigerant pipe leak tested. | | | X | Х | Х | | | | | C. | Refrigerant pipe evacuated and charged in accordance with manufacturer's instructions. | | | X | X | X | | | | | d. | Check condenser fans for proper rotation | • | | Х | | Х | | | | | e.
DACA | Any damage to coil fins has been repaired SECTION 15995 Page | | | X | | X | | | | REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 | f. | Manufacturer's required maintenance/ operational clearance provided. | | | X | Х | Х | | | | |-----------|--|---|----------|---|---|---|---|---|---| | Ele | ctrical Power available to unit disconnect. | | | | Х | X | | | | | b. | Power available to unit control panel. | | | | Х | | | | | | C. | Verify that power disconnect is located within sight of the unit it controls | | | | Х | | | | | | Con | trols
Unit safety/protection devices tested. | | | X | Х | | | | | | b. | Control system and interlocks installed. | | | Х | Х | | | | | | c. | Control system and interlocks operational | 1 | | Х | Х | | | | | | Pre | -commissioning Checklist - Pumps | | | | | | | | | | For | Pumps: HWP-1 thru HWP-5 | | | | | | | | | | Che | cklist Item | Q | М | E | Т | С | D | 0 | U | | Ins | tallation | | | | | | | | | | a. | Pumps grouted in place. | | | X | X | Х | | | | | b. | Pump vibration isolation devices functional. | | | Х | Х | X | | | | | c. | Pump/motor coupling alignment verified. | | | X | X | X | | | | | d. | Piping system installed. | | | Х | X | X | | | | | e. | Piping system pressure tested. | | | X | X | X | | | | | f. | Pump not leaking. | | | Х | X | X | | | | | g. | Field assembled couplings aligned to meet manufacturer's prescribed tolerances | s | | Х | Х | X | | | | | Ele | ctrical | | | | | | | | | | a. | Power available to pump disconnect. | | | | X | X | | | | | b. | Pump rotation verified. | | | | Х | X | | | | | c.
DAC | Control system interlocks functional. A67-00-R-0222 SECTION 15995 Page | |
E 21 | | Х | | | | | # REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 | d. | Verify that power disconnect is located within sight of the unit it controls. | | | | Х | | | | | |------------|---|------|----|-----|---|---|---|---|---| | Test | ting, Adjusting, and Balancing (TAB) | | | | | | | | | | a. | Pressure/temperature gauges installed. | | | Х | | Х | | | | | b. | Piping system cleaned. | | | X | X | X | | | | | c. | Chemical water treatment complete. | | | X | X | X | | | | | d. | Water balance complete. | | | X | | X | | | | | e. | Water balance with design maximum flow. | | | Х | | Х | | | | | f. | TAB Report submitted. | | | Х | | Х | | | | | Pre- | -commissioning Checklist - Unit Heater | | | | | | | | | | For | Unit Heater: | | | | | | | | | | Chec | cklist Item | Q | M | E | Т | С | D | 0 | U | | Inst | callation | | | | | | | | | | a. | Hot water piping properly connected. | | | х _ | | | | |] | | b. | Steam and condensate piping properly connected. | | | Х | Х | Х | | | : | | C. | Hot water piping pressure tested. | | | Х _ | | | | |] | | d. | Steam and condensate piping pressure tested. | | | X | X | Х | | |] | | е. | Air vent installed on hot water coil with shutoff valve as specified. | | | X |
X | Х | | | | | f. | Any damage to coil fins has been repaired | d | | Х | | Х | | | | | g. | Manufacturer's required maintenance/ operational clearance provided. | | | X | X | X | | | | | Elec | ctrical | | | | | | | | | | a. | Power available to unit disconnect. | | | | Х | | | | | | b. | Proper motor rotation verified. | | | | X | Х | | | | | c.
DACA | Verify that power disconnect is located A67-00-R-0222 SECTION 15995 Page | 7 of | 21 | | | | | | | REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 | | within sight of the unit it controls. | | | . X | |
 | | |-----|---|--------|-----|-----|---|------|--| | d. | Power available to electric heating coil | · | _ | X | |
 | | | Con | trols | | | | | | | | a. | Control valves properly installed. | | _ X | | |
 | | | b. | Control valves operable. | | _ X | X | |
 | | | C. | Verify proper location and installation thermostat. | of
 | _ x | | |
 | | | Tes | ting, Adjusting, and Balancing (TAB) | | | | | | | | a. | TAB Report submitted. | | _ X | | Х |
 | | # REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 Pre-commissioning Checklist - Exhaust Fans | For | Exhaust | Fans: | |-----|---------|-------| |-----|---------|-------| | Che | cklist Item | Q | M | E | Т | С | D | 0 | U | |-----|---|-------|----|-----|---|-----|---|---|---| | Ins | tallation | | | | | | | | | | a. | Fan belt adjusted. | | | Х | | Х | | | | | Ele | ctrical | | | | | | | | | | a. | Power available to fan disconnect. | | | | X | | | | | | b. | Proper motor rotation verified. | | | | | Х | | | | | C. | Verify that power disconnect is located within sight of the unit it controls. | | | | X | | | | | | Con | trols | | | | | | | | | | a. | Control interlocks properly installed. | | | | Х | | | | | | b. | Control interlocks operable. | | | | Х | | | | | | c. | Dampers/actuators properly installed. | | | Х | | | | | | | d. | Dampers/actuators operable. | | | Х | | | | | | | e. | Verify proper location and installation of thermostat. | | | Х | | | | | | | Tes | ting, Adjusting, and Balancing (TAB) | | | | | | | | | | a. | TAB results, to AABC or NEBB Stds, relative to cfm shown on drawings | | | _ X | | _ X | | _ | | | b. | TAB Report submitted. | | | Х | | X | | | | | Pre | -commissioning Checklist - HVAC System Co | ntrol | .s | | | | | | | | For | HVAC Systems: | | | | | | | | | | Che | cklist Item | Q | M | E | Т | С | D | 0 | U | | Ins | tallation | | | | | | | | | | a. | As-built shop drawings submitted. | | | Х | Х | | | | | | b. | Layout of control panel matches drawings | · | | Х | X | | | | | | DAC | A67-00-R-0222 SECTION 15995 Page | 9 of | 21 | | | | | | | REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 | C. | Framed instructions mounted in or near control panel. | | | X | Х | | | | | |------|---|-------|------|------|-----|---|---|---|---| | d. | Components properly labeled (on inside and outside of panel). | i
 | | Х | X | | | | | | e. | Control components piped and/or wired to each labeled terminal strip. | | | Х | Х | | | | | | f. | EMCS connection made to each labeled terminal strip as shown. | | | Х | X | | | | | | g. | Control wiring labeled at all terminations, splices, and junctions. | | | Х | Х | | | | | | h. | Shielded wiring used on electronic sensors | 3 | | X | X | | | | | | i. | Water drain installed as specified. | | | Х | Х | | | | | | Main | n Power | | | | | | | | | | a. | 110 volt AC power available to panel. | | | | Х | | | | | | Test | ting, Commissioning, and Balancing | | | | | | | | | | a. | Testing, Commissioning, and Balancing Report submitted. | | | Х | | | | | | | Pre- | -commissioning Checklist - Single Zone Air | Han | dlin | g Ur | nit | | | | | | For | Air Handling Units: | | | | | | | | | | Che | cklist Item | Q | М | E | Т | С | D | 0 | U | | Inst | tallation | | | | | | | | | | a. | Vibration isolation devices installed. | | | Х | Х | Х | | | | | b. | Inspection and access doors are operable and sealed. | | | Х | | Х | | | | | c. | Casing undamaged. | | | X | X | Х | | | | | d. | Insulation undamaged. | | | X | Х | Х | | | | | e. | Condensate drainage is unobstructed. | | | X | Х | Х | | | | | f. | Fan belt adjusted. | | | X | | Х | | | | | g. | Any damage to coil fins has been repaired | | | Х | | Х | | | | | h | Manufacturer's required maintenance | | | | | | | | | h. Manufacturer's required maintenance DACA67-00-R-0222 SECTION 15995 Page 10 of 21 REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 | | clearance provided. | |
Х | X | X . |
 | | |------|---|---|-------|-----|-----|------|--| | Elec | ctrical | | | | | | | | a. | Power available to unit disconnect. | |
 | X | X . |
 | | | b. | Power available to unit control panel. | |
 | Х | |
 | | | C. | Proper motor rotation verified. | |
 | _ | X . |
 | | | d. | Verify that power disconnect is located within sight of the unit it controls. | |
_ | Х _ | |
 | | | e. | Power available to electric heating coil. | |
 | Х | |
 | | | Coi | ls | | | | | | | | a. | Refrigerant piping properly connected. | |
X | X | X |
 | | | b. | Refrigerant piping pressure tested. | |
Х | Х | X . |
 | | | c. | Hot water piping properly connected. | |
Х | | |
 | | | d. | Hot water piping pressure tested. | |
Х | X | |
 | | | e. | Air vents installed on water coils with shutoff valves as specified. | |
Х | Х | Х |
 | | | f. | Any damage to coil fins has been repaired | · |
Х | | X |
 | | | Cont | trols | | | | | | | | a. | Control valves/actuators properly installed. | |
X | | |
 | | | b. | Control valves/actuators operable. | |
Х | | |
 | | | C. | Dampers/actuators properly installed. | |
Х | | |
 | | | d. | Dampers/actuators operable. | |
X | | |
 | | | e. | Verify proper location and installation of thermostat. | |
Х | | |
 | | | Test | ting, Adjusting, and Balancing (TAB) | | | | | | | | a. | Construction filters removed and replaced | • |
X | | X |
 | | | b. | TAB results cfm shown on drawings. | |
Х | | Х |
 | | | 00029/11
REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012
FAIRCHILD AFB, WA. PN GJKZ 99-0151 | |--| | c. TAB Report submitted X X | | APPENDIX B | | FUNCTIONAL PERFORMANCE TESTS CHECKLISTS | | Functional Performance Test Checklist - Pumps | | For Pumps: | | Prior to performing this checklist, ensure that for closed loop systems, system is pressurized and the make-up water system is operational or, for open loop systems, that the sumps are filled to the proper level. | | 1. Activate pump start using control system commands (all possible combination, on/auto, etc.). ON AUTO OFF | | a. Verify pump inlet/outlet pressure reading, compare to Testing, Adjusting, and Balancing (TAB) Report, pump design conditions, and pump manufacturer's performance. | | DESIGN TAB ACTUAL Pump inlet pressure (psig) | | b. Operate pump at shutoff and at 100 percent of designed flow when all components are in full flow. Plot test readings on pump curve and compare results against readings taken from flow measuring devices. | | Pump inlet pressure (psig) Pump outlet pressure Pump flow rate (gpm) SHUTOFF 100 percent | | c. Operate pump at shutoff and at minimum flow or when all components are in full by-pass. Plot test readings on pump curve and compare results against readings taken from flow measuring devices. | | SHUTOFF 100 percent Pump inlet pressure (psig) Pump outlet pressure Pump flow rate (gpm) | | 2. Verify motor amperage each phase and voltage phase to phase and phase to ground for both the full flow and the minimum flow conditions. | a. Full flow: PHASE 1 PHASE 2 PHASE 3 DACA67-00-R-0222 SECTION 15995 Page 12 of 21 REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 | Amperage | | |---------------------------------|---| | Voltage | | | Voltage | | | Voltage to ground | | | | | | b. Minimum flow: | | | | PHASE 1 PHASE 2 PHASE 3 | | Amperage | | | Voltage | | | Voltage | | | Voltage to ground | | | 3. Unusual vibration, noise, | etc. | | | | | - | | | | | | | | | 4. Certification: We the u | undersigned have witnessed the above functional | | performance tests and certify | that the item tested has met the performance | | requirements in this section of | the specifications. | | | Signature and Date | | | J | | Contractor's Chief Quality Cont | rol Representative | | | | | Contractor's Mechanical Represe | entative | | contractor b Medianical Represe | | | Contractor's Electrical Represe | entative | | | | | Contractor's Testing, Adjusting | g and Balancing Representative | | | | | Contractor's Controls Represent | ative | | 1 | | | Contracting Officer's Represent | cative | | Haina Agonarda Bernasarhati | | | Using Agency's Representative | | Functional Performance Test Checklist - Single Zone Air Handling Unit For Air Handling Units: 1. Functional Performance Test: Contractor shall verify operation of air handling unit as per specification including the following: | a. The following shall be verified when the [supply fan operating] [supply and return fans operating] mode is initiated: | |--| | (1) All
dampers in normal position | | (2) All valves in normal position. | | (3) System safeties allow start if safety conditions are met | | b. Occupied mode of operation - economizer de-energized. | | (1) Outside air damper at minimum position. | | (2) Return air damper open | | (3) Relief air damper [at minimum position] [closed] | | (4) Chilled water control valve modulating to maintain space cooling temperature set point. | | (5) Hot water control valve modulating to maintain space heating temperature set point input from outside air temperature controller | | c. Occupied mode of operation - economizer energized. | | (1) Outside air damper modulated to maintain mixed air temperature set point. | | (2) Relief air damper modulates with outside air damper according to sequence of operation. | | (3) Chilled water control valve modulating to maintain space cooling temperature set point. | | d. Unoccupied mode of operation | | (1) All dampers in normal position. | | (2) Verify low limit space temperature is maintained as specified in sequence of operation. | | e. The following shall be verified when the [supply fan off] [supply and return fans off] mode is initiated: | | (1) All dampers in normal position. | | (2) All valves in normal position. | | (3) Fan de-energizes | REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 | f. Verify cooling coil and heating coil operation by varying thermostat set point from cooling set point to heating set point and returning to cooling set point. | |---| | g. Verify safety shut down initiated by smoke detectors | | h. Verify safety shut down initiated by low temperature protection thermostat. | | 2. Certification: We the undersigned have witnessed the above functional performance tests and certify that the item tested has met the performance requirements in this section of the specifications. | | Signature and Date | | Contractor's Chief Quality Control Representative | | Control at and a Machani sal Danna contation | | Contractor's Mechanical Representative | | Contractor's Electrical Representative | | Contractor's Testing, Adjusting and Balancing Representative | | Contractor's Controls Representative | | Contracting Officer's Representative | | Using Agency's Representative | | Functional Performance Test Checklist - Air Cooled Condensing Unit | | For Condensing Unit: | | 1. Functional Performance Test: Contractor shall demonstrate operation of refrigeration system as per specifications including the following: Start building air handler to provide load for condensing unit. Activate controls system start sequence as follows. | | a. Start air handling unit. Verify control system energizes condensing unit start sequence. | | b. Shut off air handling equipment to verify condensing unit deenergizes. | | c. Restart air handling equipment one minute after condensing unit shut down. Verify condensing unit restart sequence. | | 2. Verify condensing unit amperage each phase and voltage phase to phase and phase to ground. DACA67-00-R-0222 SECTION 15995 Page 15 of 21 | | Amperage Voltage Voltage Voltage to ground 3. Record the following informat | PHASE 1 ion: | PHASE 2 | PHASE 3 | | |--|---|-------------------------------|----------------|--------| | Ambient dry bulb temperature
Ambient wet bulb temperature
Suction pressure
Discharge pressure | | | | | | 4. Unusual vibration, noise, etc | • | | | | | 5. Certification: We the under | rsigned have | e witnessed t | he above funct | -ional | | performance tests and certify that requirements in this section of the | | tested has rions. | | rmance | | performance tests and certify that | specificat | tested has r
ions.
Sign | met the perfor | rmance | | performance tests and certify that requirements in this section of the | specificat
Representat | tested has r
ions.
Sign | met the perfor | rmance | | performance tests and certify that
requirements in this section of the
Contractor's Chief Quality Control | specificat
Representat
ive | tested has rions. Sign | met the perfor | rmance | | performance tests and certify that requirements in this section of the Contractor's Chief Quality Control Contractor's Mechanical Representat | specificat Representat ive ive Represe | tested has rions. Sign | met the perfor | rmance | | performance tests and certify that requirements in this section of the Contractor's Chief Quality Control Contractor's Mechanical Representat Contractor's Electrical Representat | specificat Representat ive ive Represe | tested has rions. Sign | met the perfor | rmance | | performance tests and certify that requirements in this section of the Contractor's Chief Quality Control Contractor's Mechanical Representat Contractor's Electrical Representat Contractor's Testing, Adjusting and | specificat Representat ive ive Represe Balancing | tested has rions. Sign | met the perfor | rmance | Functional Performance Test Checklist - Unit Heaters The Contracting Officer will select unit heaters to be spot-checked during the functional performance test. The number of terminals shall not exceed 2. 1. Functional Performance Test: Contractor shall demonstrate operation of selected unit heaters as per specifications including the following: | a. Verify unit heater response to room temperature set point adjustment. Changes to be heating set point to heating set point minus 10 degrees and return to heating set point. | |---| | b. Check blower fan speedrpm | | c. Check heating mode inlet air temperature. Check heating mode inlet air temperature. $_$ degrees F | | d. Check heating mode outlet air temperature. Check heating mode outlet air temperature. $_$ degrees F | | 2. Certification: We the undersigned have witnessed the above functional performance tests and certify that the item tested has met the performance requirements in this section of the specifications. | | Signature and Date | | Contractor's Chief Quality Control Representative | | Contractor's Mechanical Representative | | Contractor's Electrical Representative | | Contractor's Testing, Adjusting and Balancing Representative | | Contractor's Controls Representative | | Contracting Officer's Representative | | Using Agency's Representative | | Functional Performance Test Checklist - Steam/Hot Water Converter | | For Converter: HE-1 | | 1. Functional Performance Test: Contractor shall demonstrate operation of heating system as per specifications including the following: Start building heating equipment to provide load for converter. | | a. Verify control system energizes | | b. Verify converter senses hot water temperature below set point and control system modulates steam valve. | | c. Shut off building heating equipment to remove load on heating system. Verify converter steam valve closes after load is removed. | REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 2. Verify converter inlet/outlet pressure reading, compare to converter design conditions and manufacturer's performance data. | Converter inlet water temp (degrees F) Converter outlet water temp (degrees F) Converter inlet steam pressure (psig) Determine water flow rate based on pressure drop through converter Determine water flow rate with flow measuring device Verify that temperature of water is in accordance with outdoor air reset schedule | DESIGN | ACTUAL | |--|-----------|--------| | 3. Verify proper operation of converter safeties. | · - | | | 4. Check and report unusual vibration, noise, etc | · . | | | 5. Certification: We the undersigned have with performance tests and certify that the item teste requirements in this section of the specifications. | d has met | | | Contractor's Chief Quality Control Representative | | | | Contractor's Mechanical Representative | | | | Contractor's Electrical Representative | | | | Contractor's Testing, Adjusting and Balancing Repres | sentative | | | Contractor's Controls Representative | | · | | Contracting Officer's Representative | | | | Using Agency's Representative | | | Functional Performance Test Checklist - HVAC Controls For HVAC System: AHU-1, AHU-2, ACU-1, EF-1, EF-2, EF-3, HE-1 The Contracting Officer will select HVAC control systems to undergo functional performance testing. The number of systems shall not exceed 7. DACA67-00-R-0222 SECTION 15995 Page 18 of 21 - 1. Functional Performance Test: Contractor shall verify operation of HVAC controls by performing the following tests: - a. Verify that controller is maintaining the set point by manually measuring the controlled variable with a thermometer, sling psychrometer, inclined manometer, etc. - b. Verify sensor/controller combination by manually measuring the controlled medium. Take readings from control panel display and compare readings taken manually. Record all readings. | Sensor | | |---------------------|--| | Manual measurement | | | Panel reading value | | - c. Verify system stability
by changing the controller set point as follows: - (1) Air temperature 10 degrees F - (2) Water temperature 10 degrees F - (3) Static pressure 10 percent of set point - (4) Relative humidity percent (RH) The control system shall be observed for 10 minutes after the change in set point. Instability or excessive hunting will be unacceptable. - d. Verify interlock with other HVAC controls. - e. Verify interlock with fire alarm control panel. - f. Verify interlock with EMCS. - $\mbox{[g. Change controller set point 10 percent with EMCS and verify correct response.]}$ - 2. Verify that operation of control system conforms to that specified in the sequence of operation. - 3. Certification: We the undersigned have witnessed the above functional performance tests and certify that the item tested has met the performance requirements in this section of the specifications. | | | Signature and Date | |-------------------------|---------------------------|--------------------| | Contractor's Chief Qual | ity Control Representativ | e | | Contractor's Mechanical | Representative | | | Contractor's Electrical | Representative | | | DACA67-00-R-0222 | SECTION 15995 Page 19 of | 21 | | Contractor's Testing, Adjusting | g and Balancing Representative | |---------------------------------|--------------------------------| | Contractor's Controls Represent | tative | | Contractor's Officer's Represen | ntative | | Using Agency's Representative | | END OF SECTION THIS PAGE INTENTIONALLY LEFT BLANK SECTION 16070 ## SEISMIC PROTECTION FOR ELECTRICAL EQUIPMENT ## 1 GENERAL #### 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. ## AMERICAN STANDARDS FOR TESTING AND MATERIALS (ASTM) ASTM E 580 (1996) Application of Ceiling Suspension Systems for Acoustical Tile and Lay-in Panels in Areas Requiring Moderate Seismic Restraint ## UNDERWRITERS LABORATORIES (UL) UL 1570 (1995; Rev thru Jun 1997) Fluorescent Lighting Fixtures UL 1571 (1995; Rev thru Jun 1997) Incandescent Lighting Fixtures # 1.2 SYSTEM DESCRIPTION # 1.2.1 General Requirements The requirements for seismic protection measures described in this section shall be applied to the electrical equipment and systems listed below. Structural requirements shall be in accordance with Section 13082 and/or as shown on the drawings. # 1.2.2 Electrical Equipment Electrical equipment shall include the following items to the extent required on the drawings or in other sections of these specifications: Power and Lighting Distribution Panels Light Fixtures Dry Type Transformers C.T./Metering Enclosures Motor Starters Conduits # 1.2.3 Electrical Systems The following electrical systems shall be installed as required on the drawings and other sections of these specifications and shall be seismically protected in accordance with this specification: Electrical power, lighting, fire alarm. REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 # 1.2.4 Contractor Designed Bracing The Contractor shall design the bracing in accordance with the requirements of Section 13082 and additional data furnished by the Contracting Officer. Resistance to lateral forces induced by earthquakes shall be accomplished without consideration of friction resulting from gravity loads. The bracing for the following electrical equipment and systems shall be developed by the Contractor: All pendant-mounted lighting fixtures. (F1, F1E, F6, F6E) ## 1.2.5 Conduits Requiring No Special Seismic Restraints Seismic restraints may be omitted from electrical conduit less than (64 mm) 2-1/2 inches trade size. All other interior conduit shall be seismically protected as specified. # 1.3 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-01 Data Lighting Fixtures in Buildings; GA. (All pendant-mounted lighting fixtures. (F1, F1E, F6, F6E) Copies of the design calculations with the detail drawings. Calculations shall be stamped by a Registered Professional Engineer and shall verify the capability of structural members to which bracing is attached for carrying the load from the brace. Contractor Designed Bracing; GA. Copies of the Design Calculations with the Drawings. Calculations shall be approved, certified, stamped and signed by a Registered Professional Engineer. Calculations shall verify the capability of structural members to which bracing is attached for carrying the load from the brace. SD-04 Drawings Lighting Fixtures in Buildings; All pendant-mounted lighting fixtures. (F1, F1E, F6, F6E). Detail drawings along with catalog cuts, templates, and erection and installation details, as appropriate, for the items listed. Submittals shall be complete in detail; shall indicate thickness, type, grade, class of metal, and dimensions; and shall show construction details, reinforcement, anchorage, and installation with relation to the building construction. # 1.4 EQUIPMENT REQUIREMENTS # 1.4.1 Rigidly Mounted Equipment The following specific items of equipment: panelboards, contactors, dry type transformers, control stations, pad-mounted oil-filled transformers, 00029/11 REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 concrete vaults, lighting fixtures, motor starters, metering components, C.T. enclosures, H.V. tap box (sectionalizer), switchboard, circuit breakers, H.V. terminations and control panels, to be furnished under this contract shall be constructed and assembled to withstand the seismic force requirements as may be required by Section 13082. For any rigid equipment which is rigidly attached on both sides of a building expansion joint, flexible joints for piping, electrical conduit, etc., that are capable of accommodating displacements equal to the full width of the joint in both orthogonal directions, shall be provided. Such as: Transformers Panelboards #### 2 PRODUCTS ## 2.1 LIGHTING FIXTURE SUPPORTS Lighting fixtures and supports shall conform to UL 1570 or UL 1571 as applicable. # 2.2 SWAY BRACING MATERIALS Sway bracing materials (e.g. rods, plates, rope, angles, etc.) shall be as specified in Section 13080 SEISMIC PROTECTION FOR MISCELLANEOUS EQUIPMENT. #### 3 EXECUTION #### 3.1 SWAY BRACES FOR CONDUIT Conduit shall be braced as for an equivalent weight pipe in accordance with Section 15070 SEISMIC PROTECTION FOR MECHANICAL EQUIPMENT. # 3.2 LIGHTING FIXTURES IN BUILDINGS Lighting fixtures and supports shall conform to the following: # 3.2.1 Pendant Fixtures Pendant fixtures shall conform to the requirements of TI 809-04, Chapter 10. ## 3.2.2 Ceiling Attached Fixtures #### 3.2.2.1 Recessed Fluorescent Fixtures Recessed fluorescent individual or continuous-row mounted fixtures shall be supported by a seismic-resistant suspended ceiling support system built in accordance with Section 09510 ACOUSTICAL CEILINGS. Seismic protection for the fixtures shall conform to the requirements as may be required in Section 13082. Recessed lighting fixtures not over 56 pounds in weight may be supported by and attached directly to the ceiling system runners using screws or bolts, number and size as required by the seismic design. Fixture accessories, including louvers, diffusers, and lenses shall have lock or screw attachments. 00029/11 REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 ## 3.2.2.2 Surface-Mounted Fluorescent Fixtures Surface-mounted fluorescent individual or continuous-row fixtures shall be attached to a seismic-resistant ceiling support system built in accordance with Section 09510 ACOUSTICAL CEILINGS. Seismic protection for the fixtures shall conform to the requirements of Section 13082. ## 3.2.3 Assembly Mounted on Outlet Box A supporting assembly, that is intended to be mounted on an outlet box, shall be designed to accommodate mounting features on 4 inch boxes, plaster rings, and fixture studs. ## 3.2.4 Wall-Mounted Emergency Light Unit Attachments for wall-mounted emergency light units (if any) shall be designed and secured for the worst expected seismic disturbance at the site. # 3.2.5 Lateral Force Structural requirements for light fixture bracing shall be in accordance with Section 13082 SEISMIC PROTECTION FOR MISCELLANIOUS EQUIPMENT. END OF SECTION #### SECTION 16375 # ELECTRICAL DISTRIBUTION SYSTEM, UNDERGROUND # PART 1 GENERAL # 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. # AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI) | ANSI C57.12.26 | (1993) Pad-Mounted Compartmental-Type, Self-Cooled, Three-Phase Distribution Transformers for Use with Separable Insulated High-Voltage Connectors, High-Voltage, 34 500 Grd Y/19 920 Volts and Below; 2500 kVa and Smaller | |-------------------------|---| | ANSI C57.12.27 | (1982) Conformance Requirements for Liquid-
Filled Distribution Transformers Used in Pad-
Mounted Installations, Including Unit
Substations | | ANSI C57.12.28 | (1996) Switchgear and Transformers - Pad-
mounted Equipment - Enclosure Integrity | | ANSI C80.1 | (1995) Rigid Steel Conduit - Zinc Coated | | ANSI C135.30 | (1988) Zinc-Coated Ferrous Ground Rods for
Overhead or Underground Line Construction | | AMERICAN SOCIETY FOR TH | ESTING AND MATERIALS (ASTM) | | ASTM A 123 | (1989a) Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products | | ASTM A 153 | (1996) Zinc Coating (Hot-Dip) on Iron and Steel Hardware | | ASTM B 3 | (1995) Soft or
Annealed Copper Wire | | ASTM B 8 | (1993) Concentric-Lay-Stranded Copper
Conductors, Hard, Medium-Hard, or Soft | | ASTM C 478 | (1996) Precast Reinforced Concrete Manhole | ASTM D 1654 Sections (1992) Evaluation of Painted or Coated Specimens Subjected to Corrosive Environments | ASTM D 4059 | (1996) Analysis of Polychlorinated Biph | nenyls | |-------------|---|--------| | | in Insulating Liquids by Gas Chromatogr | aphy | ASTM F 883 (1990) Padlock ASSOCIATION OF EDISON ILLUMINATING COMPANIES (AEIC) AEIC CS6 (1996) Ethylene Propylene Rubber Insulated Shielded Power Cables Rated 5 Through 69 kV FACTORY MUTUAL ENGINEERING AND RESEARCH (FM) FM P7825a (1998) Approval Guide Electrical Equipment | FM P7825a | (1998) Approval Guide Electrical Equipment | |--------------------------|--| | INSTITUTE OF ELECTRICAL | AND ELECTRONICS ENGINEERS (IEEE) | | IEEE C2 | (1997) National Electrical Safety Code | | IEEE ANSI/IEEE C37.63 | (1997) Requirements for Overhead, Pad-
Mounted, Dry-Vault, and Submersible Automatic
Line Sectionalizer for AC Systems | | IEEE ANSI/IEEE C57.12.00 | (1993) IEEE Standard General Requirements for
Liquid-Immersed Distribution, Power, and
Regulating Transformers | | IEEE ANSI/IEEE C57.98 | (1993) Guide for Transformer Impulse Tests | | IEEE Std 48 | (1996) Standard Test Procedures and
Requirements for Alternating-Current Cable
Terminations 2.5 kV through 765 kV | | IEEE Std 81 | (1983) Guide for Measuring Earth Resistivity,
Ground Impedance, and Earth Surface
Potentials of a Ground System (Part 1) | | IEEE Std 100 | (1996) IEEE Standard Dictionary of Electrical and Electronics Terms | | IEEE Std 242 | (1986; R 1991) Recommended Practice for
Protection and Coordination of Industrial and
Commercial Power Systems | | IEEE Std 386 | (1995) Separable Insulated Connector Systems for Power Distribution Systems Above 600V | | IEEE Std 399 | (1990) Recommended Practice for Industrial and Commercial Power Systems Analysis | IEEE Std 404 (1993) Cable Joints for Use with Extruded Dielectric Cable Rated 5000 V through 138 000 V and Cable Joints for Use with Laminated | Dielectric | Cable | Rated | 2500 | V | Through | 500 | 000 | | |------------|-------|-------|------|---|---------|-----|-----|--| | 7.7 | | | | | | | | | IEEE Std 592 (1990; R 1996) Exposed Semi-conducting Shields on Pre-molded High Voltage Cable Joints and Separable Insulated Connectors # NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA) | NEMA FB 1 | (1993) Fittings, Cast Metal Boxes and Conduit
Bodies for Conduit and Cable Assemblies | |-----------|--| | NEMA SG 2 | (1993) High Voltage Fuses | | NEMA TC 6 | (1990) PVC and ABS Plastic Utilities Duct for Underground Installation | | NEMA WC 7 | (1991; Rev 1) Cross-Linked-Thermosetting-
Polyethylene- Insulated Wire and Cable for
the Transmission and Distribution of
Electrical Energy | | NEMA WC 8 | (1991; Rev 1; Rev 2) Ethylene-Propylene-
Rubber-Insulated Wire and Cable for the
Transmission and Distribution of Electrical
Energy | # NATIONAL FIRE PROTECTION ASSOCIATION (NFPA) NFPA 70 (1999) National Electrical Code # UNDERWRITERS LABORATORIES (UL) | UL 6 | (1997) Rigid Metal Conduit | |---------|--| | UL 467 | (1993; Rev thru Aug 1996) Grounding and Bonding Equipment | | UL 486A | (1997) Wire Connectors and Soldering Lugs for Use with Copper Conductors | | UL 510 | (1994; Rev thru Nov 1997) Polyvinyl Chloride,
Polyethylene and Rubber Insulating Tape | | UL 651 | (1995; Rev thru Apr 1997) Schedule 40 and 80 Rigid PVC Conduit | | UL 854 | (1996; Rev Apr 1996) Service-Entrance Cables | | UL 1072 | (1995; Rev Mar 1998) Medium-Voltage Power
Cable | ## 1.2 GENERAL REQUIREMENTS # 1.2.1 Terminology Terminology used in this specification is as defined in IEEE Std 100. #### 1.2.2 Service Conditions Items provided under this section shall be specifically suitable for the following service conditions: a. Seismic Zone - (See Specification Section 16070) ## 1.3 SUBMITTALS Governmental approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-01 Data Manufacturer's Catalog Data; Catalog cuts, brochures, circulars, specifications, product data, and printed information in sufficient detail and scope to verify compliance with the requirements of the contract documents. Material, Equipment, and Fixture Lists; A complete itemized listing of equipment and materials proposed for incorporation into the work. Each entry shall include an item number, the quantity of items proposed, and the name of the manufacturer of each such item. Installation Procedures; As a minimum, installation procedures for oil-filled transformers, medium-voltage cable terminations and splices and High-voltage terminal cabinets. Procedures shall include cable pulling plans, diagrams, instructions, and precautions required to install, adjust, calibrate, and test the devices and equipment. SD-04 Drawings Electrical Distribution System; Detail drawings consisting of equipment drawings, illustrations, schedules, instructions, diagrams, manufacturers standard installation drawings and other information necessary to define the installation and enable the Government to check conformity with the requirements of the contract drawings. If departures from the contract drawings are deemed necessary by the Contractor, complete details of such departures shall be included with the detail drawings. Approved departures shall be made at no additional cost to the Government. Detail drawings shall show how components are assembled, function together and how they will be installed on the project. Data and drawings for component parts of an item or system shall be coordinated and submitted as a unit. Data and drawings shall be coordinated and included in a single submission. Multiple submissions for the same equipment or system are not acceptable except where prior approval has been obtained from the Contracting Officer. In such cases, a list of data to be submitted later shall be included with the first submission. Detail drawings shall consist of the following: - a. Detail drawings showing physical arrangement, construction details, connections, finishes, materials used in fabrication, provisions for conduit entrance, access requirements for installation and maintenance, physical size, electrical characteristics, foundation and support details, and equipment weight. Drawings shall be drawn to scale and/or dimensioned. All optional items shall be clearly identified as included or excluded. - b. Internal wiring diagrams of equipment showing wiring as actually provided for this project. External wiring connections shall be clearly identified. Detail drawings shall as a minimum depict the installation of the following items: - a. Medium-voltage cables and accessories including cable installation plan. - b. Pad-mounted, oil-filled transformers. As-Built Drawings; The as-built drawings shall be a record of the construction as installed. The drawings shall include the information shown on the contract drawings as well as deviations, modifications, and changes from the contract drawings, however minor. The as-built drawings shall be a full sized set of prints marked to reflect deviations, modifications, and changes. The as-built drawings shall be complete and show the location, size, dimensions, part identification, and other information. Additional sheets may be added. The as-built drawings shall be jointly inspected for accuracy and completeness by the Contractor's quality control representative and by the Contracting Officer prior to the submission of each monthly pay estimate. Upon completion of the work, the Contractor shall provide three full sized sets of the marked prints to the Contracting Officer for approval. If upon review, the as-built drawings are found to contain errors and/or omissions, they will be returned to the Contractor for correction. The Contractor shall correct and return the as-built drawings to the Contracting Officer for approval within 10 calendar days from the time the drawings are returned to the Contractor. SD-09 Reports Factory Tests; Certified factory test reports shall be submitted when the manufacturer performs routine factory tests, including tests required by standards listed in paragraph REFERENCES. Results of factory tests performed shall be certified by the manufacturer, or an approved testing laboratory, and submitted within 7 days following successful completion of the tests. The manufacturer's pass-fail criteria for tests specified in paragraph FIELD TESTING shall be included. Field Testing; A proposed field test plan, 20 days prior to testing the installed system. No field test shall be performed until the test plan is approved. The test plan shall consist of complete field test procedures including tests to be performed, test equipment required, and tolerance limits. Test Reports; Six copies of the information described below in 8-1/2 by 11 inch binders having a minimum of three rings, including a separate section for each test. Sections shall be separated by heavy plastic dividers with tabs. - a. A list of equipment used, with calibration certifications. - b. A copy of measurements taken. - c. The dates of testing. - d. The equipment and values to be verified. - e. The condition specified for the test. - f. The test results, signed and dated. - g. A description of adjustments made. Cable Installation Reports;
Six copies of the information described below in 8-1/2 by 11 inch binders having a minimum of three rings from which material may readily be removed and replaced, including a separate section for each cable pull. Sections shall be separated by heavy plastic dividers with tabs, with all data sheets signed and dated by the person supervising the pull. - a. Site layout drawing with 600 V service entrance cable pulls numerically identified. - b. A list of equipment used, with calibration certifications. The manufacturer and quantity of lubricant used on pull. - c. The cable manufacturer and type of cable. - d. The dates of cable pulls, time of day, and ambient temperature. - e. The length of cable pull and calculated cable pulling tensions. - f. The actual cable pulling tensions encountered during pull. SD-13 Certificates Materials and Equipment; Where materials or equipment are specified to conform to the standards of the Underwriters Laboratories (UL) or to be constructed or tested, or both, in accordance with the standards of the American National Standards Institute (ANSI), the Institute of Electrical and Electronics Engineers (IEEE), or the National Electrical Manufacturers Association (NEMA), the Contractor shall submit proof that the items provided conform to such requirements. The label of, or listing by, UL will be acceptable as evidence that the items conform. Either a certification or a published catalog specification data statement, to the effect that the item is in accordance with the referenced ANSI or IEEE standard, will be acceptable as evidence that the item conforms. A similar certification or published catalog specification data statement to the effect that the item is in accordance with the referenced NEMA standard, by a company listed as a member company of NEMA, will be acceptable as evidence that the item conforms. In lieu of such certification or published data, the Contractor may submit a certificate from a recognized testing agency equipped and competent to perform such services, stating that the items have been tested and that they conform to the requirements listed, including methods of testing of the specified agencies. Compliance with above-named requirements does not relieve the Contractor from compliance with any other requirements of the specifications. Cable Splicer Qualification; A certification that contains the names and the qualifications of people recommended to perform the splicing and termination of medium-voltage cables approved for installation under this contract. The certification shall indicate that any person recommended to perform actual splicing and terminations has been adequately trained in the proper techniques and have had at least three recent years of experience in splicing and terminating the same or similar types of cables approved for installation. In addition, any person recommended by the Contractor may be required to perform a practice splice and termination, in the presence of the Contracting Officer, before being approved as a qualified installer of medium-voltage cables. If that additional requirement is imposed, the Contractor shall provide short sections of the approved types of cables along with the approved type of splice and termination kits, and detailed manufacturer's instruction for the proper splicing and termination of the approved cable types. Cable Installer Qualifications; Contractor shall provide at least one onsite person in a supervisory position with a documentable level of competency and experience to supervise all cable pulling operations. A resume shall be provided showing the cable installers' experience in the last three years, including a list of references complete with points of contact, addresses and telephone numbers. ## SD-19 OPERATION AND MAINTENANCE MANUALS Electrical Distribution System; Six copies of operation and maintenance manuals, within 30 calendar days following the completion of tests and including assembly, installation, operation and maintenance instructions, spare parts data which provides supplier name, current cost, catalog order number, and a recommended list of spare parts to be stocked. Manuals shall also include data outlining detailed procedures for system startup and operation, and a troubleshooting guide which lists possible operational problems and corrective action to be taken. A brief description of all equipment, basic operating features, and routine maintenance requirements shall also be included. Documents shall be bound in a binder marked or identified on the spine and front cover. A table of contents page shall be included and marked with pertinent contract information and contents of the manual. Tabs shall be provided to separate different types of documents, such as catalog ordering information, drawings, instructions, and spare parts data. Index sheets shall be provided for each section of the manual when warranted by the quantity of documents included under separate tabs or dividers. # 1.4 DELIVERY, STORAGE, AND HANDLING Devices and equipment shall be visually inspected by the Contractor when received and prior to acceptance from conveyance. Stored items shall be protected from the environment in accordance with the manufacturer's published instructions. Damaged items shall be replaced. Oil filled transformers and high-voltage terminal cabinets shall be stored in accordance with the manufacturer's requirements #### 1.5 EXTRA MATERIALS One additional spare fuse or fuse element for each furnished fuse or fuse element shall be delivered to the contracting officer when the electrical system is accepted. Two complete sets of all special tools required for maintenance shall be provided, complete with a suitable tool box. Special tools are those that only the manufacturer provides, for special purposes (to access compartments, or operate, adjust, or maintain special parts). ## PART 2 PRODUCTS # 2.1 STANDARD PRODUCT Material and equipment shall be the standard product of a manufacturer regularly engaged in the manufacture of the product and shall essentially duplicate items that have been in satisfactory use for at least 2 years prior to bid opening. Items of the same classification shall be identical including equipment, assemblies, parts, and components. ## 2.2 NAMEPLATES # 2.2.1 General Each major component of this specification shall have the manufacturer's name, address, type or style, model or serial number, and catalog number on a nameplate securely attached to the equipment. Nameplates shall be made of non-corrosive metal. Equipment containing liquid dielectrics shall have the type of dielectric on the nameplate. As a minimum, nameplates shall be provided for transformers and high-voltage terminal cabinets. ## 2.2.2 Liquid-Filled Transformer Nameplates Power transformers shall be provided with nameplate information in accordance with IEEE ANSI/IEEE C57.12.00. Nameplates shall indicate the number of gallons and composition of liquid-dielectric, and shall be permanently marked with a statement that the transformer dielectric to be supplied is non-polychlorinated biphenyl. If transformer nameplate is not so marked, the Contractor shall furnish manufacturer's certification for each transformer that the dielectric is non-PCB classified, with less than 2 ppm PCB content in accordance with paragraph LIQUID DIELECTRICS. Certifications shall be related to serial numbers on transformer nameplates. Transformer dielectric exceeding the 2 ppm PCB content or transformers without certification will be considered as PCB insulated and will not be accepted. ## 2.3 CORROSION PROTECTION ## 2.3.1 Aluminum Materials Aluminum shall not be used. # 2.3.2 Ferrous Metal Materials #### 2.3.2.1 Hardware Ferrous metal hardware shall be hot-dip galvanized in accordance with ASTM A 153 and ASTM A 123. # 2.3.2.2 Equipment Equipment and component items, including but not limited to transformers and high-voltage terminal cabinets shall be provided with corrosion-resistant finishes which shall withstand 120 hours of exposure to the salt spray test specified in ASTM B 117 without loss of paint or release of adhesion of the paint primer coat to the metal surface in excess of 1/16 inch from the test mark. The scribed test mark and test evaluation shall be in accordance with ASTM D 1654 with a rating of not less than 7 in accordance with TABLE 1, (procedure A). Cut edges or otherwise damaged surfaces of hot-dip galvanized sheet steel or mill galvanized sheet steel shall be coated with a zinc rich paint conforming to the manufacturer's standard. # 2.3.3 Finishing Finish painting shall be performed at the factory, with color as designated by BCE. # 2.4 CABLES Cables shall be single conductor type unless otherwise indicated. ## 2.4.1 Medium-Voltage Cables #### 2.4.1.1 General Shall be copper conductors, 15 KV, URD construction, 133% EPR insulation, 1/3 concentric neutral for 3 phase circuits, full concentric neutral for single phase circuits, full PVC or polyurethane jacket over the concentric neutral, #2AWG conductor for loop feeders. Corona shields shall not be used as neutrals. # 2.4.1.2 Ratings Cables shall be rated for a circuit voltage of 15 kV. ## 2.4.1.3 Conductor Material 15 kV underground cables shall be soft drawn copper complying with ASTM B 3 and ASTM B 8 for regular concentric and compressed stranding. #### 2.4.1.4 Insulation Cable insulation shall be ethylene-propylene-rubber (EPR) insulation conforming to the requirements of NEMA WC 8 and AEIC CS6. A 133% insulation level shall be used on 15 kV rated cables. ## 2.4.1.5 Shielding The 15 kV cable shall have a semiconducting conductor shield, a semiconducting insulation shield, and an overall copper tape shield for each phase. The shield tape shall be sized to meet IEEE C 2 requirements for applicable ground fault availability. # 2.4.1.6 Neutrals Neutrals shall be concentric, consisting of tinned copper wires. Neutral conductors shall have combined ampacity equal to
the phase conductor ampacity rating. ## 2.4.1.7 Jackets Cables shall be provided with a PVC jacket, in accordance with ICEA. # 2.4.2 Low-Voltage Cables Cables shall be rated 600 volts and shall conform to the requirements of NFPA 70, and must be UL listed for the application or meet the applicable section of either ICEA or NEMA standards. ### 2.4.2.1 Conductor Material Underground cables shall be annealed copper complying with ASTM B 3 and ASTM B 8. Intermixing of copper and aluminum conductors is not permitted. #### 2.4.2.2 Insulation Insulation must be in accordance with NFPA 70, and must be UL listed for the application or meet the applicable sections of either ICEA, or NEMA standards. #### 2.4.2.3 Jackets Multi-conductor cables shall have on overall XLP or EPR outer jacket. - 2.4.2.4 Direct Buried (Not Used) - 2.4.2.5 In Duct. Cables shall be single-conductor cable, in accordance with NFPA 70 - 2.5 CABLE JOINTS, TERMINATIONS, AND CONNECTORS - 2.5.1 Medium-Voltage Cable Joints Medium-voltage cable joints shall comply with IEEE Std 404 and IEEE Std 592. Medium-voltage cable terminations shall comply with IEEE Std 48. Joints shall be the standard products of a manufacturer and shall be either of the factory preformed type or of the kit type containing tapes and other required parts. Joints shall have ratings not less than the ratings of the cables on which they are installed. Splice kits may be of the heat-shrinkable type for voltages up to 15 kV, of the pre-molded splice and connector type, the conventional taped type, or the resin pressure-filled overcast taped type for voltages up to 35 kV; except that for voltages of 7.5 kV or less a resin pressure-filled type utilizing a plastic-tape mold is acceptable. Joints used in manholes, handholes, vaults and pull boxes shall be certified by the manufacturer for waterproof, submersible applications. ## 2.5.2 Medium-Voltage Separable Insulated Connectors Separable insulated connectors shall comply with IEEE Std 386 and IEEE Std 592 and shall be of suitable construction or standard splice kits shall be used. Connectors shall be of the load-break type as indicated, of suitable construction for the application and the type of cable connected, and shall include cable shield adapters. Separable insulated connectors shall not be used as substitutes for conventional permanent splices. External clamping points and test points shall be provided. Dead-break or load-break elbows shall not be installed in manholes. # 2.5.3 Low-Voltage Cable Splices Low-voltage cable splices and terminations shall be rated at not less than 600 Volts. Splices in conductors No. 10 AWG and smaller shall be made with an insulated, solder-less, pressure type connector, conforming to the applicable requirements of UL 486A. Splices in conductors No. 8 AWG and larger shall be made with non-insulated, solder-less, pressure type connector, conforming to the applicable requirements of UL 486A and UL 486B. Splices shall then be covered with an insulation and jacket material equivalent to the conductor insulation and jacket. Splices below grade or in wet locations shall be sealed type conforming to ANSI C119.1 or shall be waterproofed by a sealant-filled, thick wall, heat shrinkable, thermosetting tubing or by pouring a thermosetting resin into a mold that surrounds the joined conductors. #### 2.5.4 Terminations Terminations shall be in accordance with IEEE Std 48, Class 1 or Class 2; of the molded elastomer, wet-process porcelain, pre-stretched elastomer, heat-shrinkable elastomer, or taped type. Acceptable elastomers are track-resistant silicone rubber or track-resistant ethylene propylene compounds, such as ethylene propylene rubber or ethylene propylene diene monomer. Separable insulated connectors may be used for apparatus terminations, when such apparatus is provided with suitable bushings. Terminations shall be of the outdoor type, except that where installed inside outdoor equipment housings which are sealed against normal infiltration of moisture and outside air, indoor, Class 2 terminations are acceptable. Class 3 terminations are not acceptable. Terminations, where required, shall be provided with mounting brackets suitable for the intended installation and with grounding provisions for the cable shielding, metallic sheath, and armor. # 2.5.4.1 Factory Preformed Type Molded elastomer, wet-process porcelain, pre-stretched, and heat-shrinkable terminations shall utilize factory preformed components to the maximum extent practicable rather than tape build-up. Terminations shall have basic impulse levels as required for the system voltage level. Leakage distances shall comply with wet withstand voltage test requirements of IEEE Std 48 for the next higher Basic Insulation Level (BIL) level. # 2.5.4.2 Taped Terminations Taped terminations shall use standard termination kits providing terminal connectors, field-fabricated stress cones, and rain hoods. Terminations shall be installed per the kit manufacturer's recommendations. ## 2.6 CONDUIT AND DUCTS (NOT USED) Underground, low-voltage (600 V or less) conduits for service entrance conductors shall be Schedule 40 PVC conduit in concrete encased duct-banks. Place ductbank 36 inches (900 mm) below grade. Provide PVC coated, rigid galvanized steel elbows at all transformers, high-voltage terminal cabinets, terminations into buildings, or short bends. Encase elbows in concrete. Secure conduit in position before placing concrete. Provide plastic warning tape with metallic wire above all duct runs. Underground, low-voltage (600 V or less) conduits for branch circuits or communication conduits shall be direct buried, Schedule 40 PVC. Provide empty conduits with pull ropes for future use. Provide plastic warning tape with metallic wire above all duct runs. #### 2.6.1 Metallic Conduit Rigid galvanized steel conduit shall comply with UL 6 and ANSI C80.1. Metallic conduit fittings and outlets shall comply with UL 514A and NEMA FB 1. #### 2.6.2 Nonmetallic Ducts # 2.6.2.1 Concrete Encased Ducts (NOT USED) UL 651 Schedule 40 PVC. ## 2.6.3 Conduit Sealing Compound Compounds for sealing ducts and conduit shall have a putty-like consistency workable with the hands at temperatures as low as 35 degrees F, shall neither slump at a temperature of 300 degrees F, nor harden materially when exposed to the air. Compounds shall adhere to clean surfaces of fiber or plastic ducts; metallic conduits or conduit coatings; concrete, masonry, or lead; any cable sheaths, jackets, covers, or insulation materials; and the common metals. Compounds shall form a seal without dissolving, noticeably changing characteristics, or removing any of the ingredients. Compounds shall have no injurious effect upon the hands of workmen or upon materials. # 2.7 MANHOLES, HANDHOLES, AND PULLBOXES (NOT USED) Manholes, handholes, and pull-boxes shall be of the size and type indicated on the plans. Strength of manholes, handholes, and pull-boxes and their frames and covers shall conform to the requirements of IEEE C2. Pre-cast concrete vaults shall have the required strength established by ASTM C 478, ASTM C 478M. Frames and covers shall be round, made of cast iron and be load-rated per ASHHTO 20 requirements. Provide a concrete riser a minimum of 6" high to allow vault to be completely buried, so only the round cover is showing at finished grade. Vault bases shall have closed bottoms, knock-outs on all sides, (2) ground rod knock-outs and galvanized pulling irons at each end. Handholes for low voltage cables installed in parking lots, sidewalks, and turfed areas shall be fabricated from an aggregate consisting of sand and with continuous woven glass strands having an overall compressive strength of at least 10,000 psi and a flexural strength of at least 5,000 psi. Pullbox and handhole covers in sidewalks, and turfed areas shall be of the same material as the box. Concrete pullboxes shall consist of precast reinforced concrete boxes, extensions, bases, and covers. All cables in any underground manhole, handhole, or pullbox shall be fire-proofed per Specification Section 2.13 Cable-fireproofing. ## 2.8 POLES AND HARDWARE (NOT USED) #### 2.9 PAD-MOUNTED OIL-FILLED TRANSFORMERS Transformers shall be of the outdoor type, having the ratings and arrangements indicated. Medium-voltage ratings of cable terminations shall be 15 KV between phases for 133 percent insulation level. ## 2.9.1 Pad-Mounted Transformers Pad-mounted transformers shall comply with ANSI C57.12.26 and shall be of the dead-front, loop feed type. Plug unused bushings. Pad-mounted transformer stations shall be assembled and coordinated by one manufacturer. Each transformer station shall be shipped as a complete unit so that field installation requirements are limited to mounting each unit on a concrete pad and connecting it to primary and secondary lines. Stainless steel pins and hinges shall be provided. Barriers shall be provided between high- and low-voltage compartments. High-voltage compartment doors shall be interlocked with low-voltage compartment doors to prevent access to any high-voltage section unless its associated low-voltage section door has first been opened. Compartments shall be sized to meet the specific dimensional requirements of ANSI C57.12.26. Penta-head locking bolts shall be provided with provisions for a padlock. # 2.9.1.1 High-Voltage Compartments The high-voltage compartment shall be dead-front construction. Primary switching and protective devices shall include gang-operated load-break switch, oil-immersed bayonet-type fuses for the primary, selected and sized for overloads, an internal fuse-link for short-circuits, 15 kV separable 200 amp load-break integral one piece bushings and de-energized tap changer switch. Provide high voltage parking stand. Fuses shall comply with the requirements of Specification Section 16475 Coordinated Power System Protection. The switch shall be mounted inside transformer tank with switch
operating handle located in high-voltage compartment and equipped with metal loop for hook stick operation. Fuses shall be interlocked with switches so that fuses can be removed only when the associated switch is in the "OPEN" position. Adjacent to medium-voltage cable connections, a nameplate or equivalent stenciled inscription shall be provided inscribed "DO NOT OPEN CABLE CONNECTORS UNLESS SWITCH IS OPEN." # 2.9.1.2 Load-Break Switch Loop feed sectionalizer switches: Provide three, two-position, oil-immersed type switches to permit closed transition loop feed and sectionalizing. Each switch shall be rated at 15 kV, 95 kV BIL, with a continuous current rating and load-break rating of 200 amperes, and a make-and-latch rating of 10,000 rms amperes symmetrical. Locate the switch handle in the high-voltage compartment. Operation of switches shall be as follows: ARRANGEMENT DESCRIPTION OF SWITCH POSITION | # | SWITCH
ARRANGEMENT | LINE A SW
OPEN CLOSE | | XFMR SW
OPEN CLOSE | |---|---|-------------------------|---|-----------------------| | 1 | Line A connected to
Line B and both
lines connected to
transformer | х | Х | Х | | 2 | Transformer connected to Line A only | Х | Х | X | | 3 | Transformer connected to Line B only | Х | Х | Х | | 4 | Transformer open and loop closed | Х | Х | X | | 5 | Transformer open and loop open | Х | Х | Х | # 2.9.1.3 Transformer Tank Sections Transformers shall comply with IEEE ANSI/IEEE C57.12.00, ANSI C57.12.21, and ANSI C57.12.26 and shall be of the mineral oil-insulated type. Transformers shall be suitable for outdoor use and shall have 2 separate windings per phase. Standard NEMA primary taps shall be provided. Where primary taps are not specified, (4)2-1/2 percent rated kVA high-voltage taps shall be provided, 2 above and 2 below rated primary voltage. Operating handles for primary tap changers for de-energized operation shall be located within high-voltage compartments, externally to transformer tanks. Adjacent to the tap changer operating handle, a nameplate or equivalent stenciled inscription shall be provided and inscribed "DO NOT OPERATE UNDER LOAD." Transformer ratings at 60 Hz shall be as shown on the plans and as follows: # 2.9.1.4 Low-Voltage Cable Compartments Neutrals shall be provided with fully insulated bushings. Clamp type cable terminations, suitable for copper conductors entering from below, shall be provided as necessary. Provide secondary buss-pads as necessary to terminate the number and sizes of conductors as shown on the drawings. #### 2.9.1.5 Accessories High-voltage warning signs shall be permanently attached to each side of transformers. Voltage warning signs shall comply with IEEE C2. Copperfaced steel or stainless steel ground connection pads shall be provided in both the high- and low-voltage compartments. Provide a pressure relief valve and drain valve with built-in sampling device. Insulated-bushing-type parking stands shall be provided adjacent to each separable load-break elbow to provide for cable isolation during sectionalizing operations. #### 2.10 GROUNDING AND BONDING #### 2.10.1 Driven Ground Rods Ground rods shall be copper-clad steel conforming to ANSI C135.30 not less than 3/4 inch in diameter by 10 feet in length. Sectional type rods may be used. # 2.10.2 Grounding Conductors Grounding conductors shall be bare, except where installed in conduit with associated phase conductors. Insulated conductors shall be of the same material as phase conductors and green color-coded, except that conductors shall be rated no more than 600 volts. Bare conductors shall be ASTM B 8 soft-drawn unless otherwise indicated. Aluminum is not acceptable. ## 2.10.3 Grounding and Bonding Provide grounding and bonding as required in NFPA 70 (1999 NEC), Article 250. # 2.11 CONCRETE AND REINFORCEMENT Concrete work shall have minimum 3000 psi compressive strength and conform to the requirements of Section 03300 CAST-IN-PLACE STRUCTURAL CONCRETE. Concrete reinforcing shall be as specified in Section 03200 CONCRETE REINFORCEMENT. #### 2.12 PADLOCKS Padlocks shall conform to ASTM F 883, Type EPC, size 2. # 2.13 LIQUID DIELECTRICS Liquid dielectrics for transformers shall be non-polychlorinated biphenyl (PCB) mineral oil as specified. Non-flammable fluids shall not be used. Tetrachloroethylene (perchloroethylene) and 1, 2, 4 trichlorobenzene fluids shall not be used. In lieu of the manufacturer's certification, the Contractor may submit a test sample of the dielectric in accordance with ASTM D 923 and have tests performed per ASTM D 4059 at a testing facility approved by the Contracting Officer. Equipment with test results indicating PCB level exceeding 2 ppm shall be replaced. ## 2.14 FACTORY TESTS Factory tests shall be performed, as follows, in accordance with the applicable publications and with other requirements of these specifications. The Contracting Officer shall be notified at least 10 days before the equipment is ready for testing. The Contracting Officer reserves the right to witness the tests. - a. Transformers: Manufacturer's standard routine tests in accordance with IEEE ANSI/IEEE C57.12.00. - b. Transformers rated 200 kVA and above: Reduced full-wave, chopped-wave, and full-wave impulse test on each line and neutral terminal, in accordance with IEEE ANSI/IEEE C57.98. - c. Instrument Current Transformers: Manufacturer's standard tests in accordance with IEEE ANSI/ IEEE C57.13. - d. Factory Preformed Terminations: Wet withstand voltage tests in accordance with IEEE Std 48 for the next higher BIL level. - e. Electrical Power Insulators: Manufacturer's standard tests in accordance with ANSI C29.1. # PART 3 EXECUTION # 3.1 GENERAL INSTALLATION REQUIREMENTS Equipment and devices shall be installed and energized in accordance with the manufacturer's published instructions. Except as covered herein, excavation, trenching, and back-filling shall conform to the requirements of Section 02316 EXCAVATION, TRENCHING, AND BACKFILLING FOR UTILITIES SYSTEMS. Concrete work shall have minimum 3000 psi compressive strength and conform to the requirements of Section 03300 CAST-IN-PLACE STRUCTURAL CONCRETE. ## 3.1.1 Conformance to Codes The installation shall comply with the requirements and recommendations of NFPA 70 and IEEE C2 as applicable. # 3.1.2 Verification of Dimensions The Contractor shall become familiar with details of the work, shall verify dimensions in the field, and shall advise the Contracting Officer of any discrepancy before performing any work. ## 3.2 CABLE INSTALLATION The Contractor shall obtain from the cable manufacturer an installation manual or set of instructions which addresses such aspects as cable construction, insulation type, cable diameter, bending radius, cable temperature, lubricants, coefficient of friction, conduit cleaning, storage procedures, moisture seals, testing for and purging moisture, etc. The Contractor shall then perform pulling calculations and prepare a pulling plan which shall be submitted along with the manufacturers instructions in accordance with SUBMITTALS. #### 3.2.1 Cable Installation Plan and Procedure Cable shall be installed strictly in accordance with the cable manufacturer's recommendations. Each circuit shall be identified by means of a laminated plastic, or non-ferrous metal tags, or approved equal, in each manhole, handhole, junction box, and each terminal. Each tag shall contain the following information; cable type, conductor size, circuit number, circuit voltage, cable destination and phase identification. #### 3.2.1.1 15 KV Cable Inspection The cable reel shall be inspected for correct storage positions, signs of physical damage, and broken end seals. If end seal is broken, moisture shall be removed from cable in accordance with the cable manufacturer's recommendations. # 3.2.1.2 Duct Cleaning Duct shall be cleaned with an assembly that consists of a flexible mandrel (manufacturers standard product in lengths recommended for the specific size and type of duct) that is 1/4 inch less than inside diameter of duct, 2 wire brushes, and a rag. The cleaning assembly shall be pulled through conduit a minimum of 2 times or until less than a volume of 8 cubic inches of debris is expelled from the duct. # 3.2.1.3 Duct Lubrication The cable lubricant shall be compatible with the cable jacket for cable that is being installed. Application of lubricant shall be in accordance with lubricant manufacturer's recommendations. ## 3.2.1.4 Cable Installation The Contractor shall provide a cable feeding truck and a cable-pulling winch as required. The Contractor shall provide a pulling grip or pulling eye in accordance with cable manufacturer's recommendations. The pulling grip or pulling eye apparatus shall be attached to polypropylene or manilla rope followed by lubricant front-end packs and then by power cables. A dynamometer shall be used to monitor pulling tension. Pulling tension shall not exceed cable manufacturer's recommendations. The Contractor shall not allow cables to cross over while cables are being fed into duct. For cable installation in cold weather, cables shall be kept at 50 degrees F temperature for at least 24 hours before installation. #### 3.2.1.5 Cable Installation Plan The Contractor shall submit a cable installation plan for all cable pulls in accordance with the detail drawings portion of paragraph SUBMITTALS. Cable installation plan shall include: - a. Site layout drawing with cable pulls identified in numeric order of expected pulling sequence and direction of cable pull. - b. List of cable installation equipment. - c. Lubricant manufacturer's application instructions. - d. Procedure for resealing cable ends to prevent moisture from entering cable. - e. Cable pulling tension calculations of all cable pulls. - f. Cable percentage conduit fill. - g. Cable side-wall thrust pressure. - h. Cable minimum bend radius
and minimum diameter of pulling wheels used. - i. Cable jam ratio. - j. Maximum allowable pulling tension on each different type and size of conductor. - k. Maximum allowable pulling tension on pulling device. # 3.2.2 Duct Line Low-voltage cables shall be installed in duct lines where indicated. Neutral and grounding conductors shall be installed in the same duct with their associated phase conductors. ## 3.2.3 Direct-Burial (Not Used) ## 3.2.3.4 Medium-Voltage Cable Joints Cable joints in duct banks shall be made only in manholes, transformer HV incoming terminal compartments or HV terminal cabinets. # 3.2.3.5 Cable Markers Markers shall be located near the ends of cable runs, at each cable joint or splice, at approximately every 500 feet along cable runs, and at changes in direction of cable runs. In addition to markers, a 5 mil, brightly colored plastic warning tape with metallic wire shall be placed approximately 12 inches below finished grade of trenches. Tape shall not less than 3 inches in width and suitably inscribed at not more than 10 feet on centers # 3.2.4 Insect and Rodent Damage Animal guards and buried fiberglass pads shall be installed at each transformer high voltage and low voltage compartments and HV terminal cabinet cable entry areas, to prevent entry by animals, birds, amphibians or insects. # 3.2.5 Electric Manholes (NOT USED) Cables shall be routed around the interior walls and securely supported from walls on cables racks. Cable routing shall minimize cable crossover, provide access space for maintenance and installation of additional cables, and maintain cable separation in accordance with IEEE C2. # 3.3 CABLE JOINTS Medium-voltage cable joints shall be made by qualified cable splicers only. Qualifications of cable splicers shall be submitted in accordance with paragraph SUBMITTALS. Shields shall be applied as required to continue the shielding system through each entire cable joint. Shields may be integrally molded parts of preformed joints. Shields shall be grounded at each joint or in accordance with manufacturer's recommended practice. Cable joints shall provide insulation and jacket equivalent to that of the associated cable # 3.4 DUCT LINES # 3.4.1 Requirements Numbers and sizes of ducts shall be as indicated. Duct lines shall be laid with a minimum slope of 4 inches per 100 feet. Depending on the contour of the finished grade, the high-point may be at a terminal, a manhole, a handhole, or between manholes or handholes. Short-radius manufactured 90-degree duct bends may be used only for pole or equipment risers, unless specifically indicated as acceptable. The minimum manufactured bend radius shall be 18 inches for ducts of less than 3 inch diameter, and 36 inches for ducts 3 inches or greater in diameter. Otherwise, long sweep bends having a minimum radius of 25 feet shall be used for a change of direction of more than 5 degrees, either horizontally or vertically. Both curved and straight sections may be used to form long sweep bends, but the maximum curve used shall be 30 degrees and manufactured bends shall be used. Ducts shall be provided with end bells whenever duct lines terminate in manholes or handholes. ## 3.4.2 Treatment Ducts shall be kept clean of concrete, dirt, or foreign substances during construction. Field cuts requiring tapers shall be made with proper tools and match factory tapers. A coupling recommended by the duct manufacturer shall be used whenever an existing duct is connected to a duct of different material or shape. Ducts shall be stored to avoid warping and deterioration with ends sufficiently plugged to prevent entry of any water or solid substances. Ducts shall be thoroughly cleaned before being laid. Plastic ducts shall be stored on a flat surface and protected from the direct rays of the sun. ## 3.4.3 Concrete Encasement All 15 KV class and 600 V class Service entrance conduits shall be concreteencased. Conduits requiring concrete encasements shall comply with NFPA 70. The separation between adjacent electric power and communication ducts shall conform to IEEE C2. Duct line encasements shall be monolithic construction. Where a connection is made to a previously poured encasement, the new encasement shall be well bonded or doweled to the existing encasement. The Contractor shall submit proposed bonding method for approval in accordance with the detail drawing portion of paragraph SUBMITTALS. At any point, except railroad and airfield crossings, tops of concrete encasements shall be not less than the cover requirements listed in NFPA 70, as shown on the drawings, or as noted elsewhere within other specification sections. The deepest burial depth shall apply. At railroad and airfield crossings, duct lines shall be encased with concrete and reinforced as indicated to withstand specified surface loadings. Tops of concrete encasements shall be not less than 5 feet below tops of rails or airfield paving unless otherwise indicated. Where ducts are jacked under existing pavement, rigid steel conduit will be installed because of its strength. To protect the corrosion-resistant conduit coating, pre-drilling or installing conduit inside a larger iron pipe sleeve (jack-and-sleeve) is required. For crossings of existing railroads and airfield pavements greater than 50 feet in length, the pre-drilling method or the jack-and-sleeve method will be used. Separators or spacing blocks shall be made of steel, concrete, plastic, or a combination of these materials placed not farther apart than 4 feet on centers. Ducts shall be securely anchored to prevent movement during the placement of concrete and joints shall be staggered at least 6 inches vertically. ## 3.4.4 Non-encased Direct-Burial Top of duct lines shall be below the frost line depth and installed with a minimum of 3 inches of earth around each duct, except that between adjacent electric power and communication ducts, 12 inches of earth is required. Bottoms of trenches shall be graded toward manholes or handholes and shall be smooth and free of stones, soft spots, and sharp objects. Where bottoms of trenches comprise materials other than sand, a 3 inch layer of sand shall be laid first and compacted to approximate densities of surrounding firm soil before installing ducts. Joints in adjacent tiers of duct shall be vertically staggered at least 6 inches. The first 6 inch layer of backfill cover shall be sand compacted as previously specified. The rest of the excavation shall be back-filled and compacted in 3 to 6 inch layers. Duct banks may be held in alignment with earth. However, high-tiered banks shall use a wooden frame or equivalent form to hold ducts in alignment prior to back-filling. #### 3.4.5 Duct Line Markers Duct line markers shall be provided at each duct line stub-out. In addition to markers, a 5 mil brightly colored plastic tape shall be placed approximately 12 inches below finished grade. Marker tape shall not be less than 3 inches in width. Tape shall be suitably inscribed at not more than 10 feet on centers with a continuous metallic backing and a corrosion-resistant 1 mil metallic foil core to permit easy location of the duct line. # 3.5 PAD-MOUNTED EQUIPMENT INSTALLATION Pad-mounted equipment, shall be installed on concrete pads in accordance with the manufacturer's published, standard installation drawings and procedures, except that they shall be modified to meet the requirements of this document. Units shall be installed so that they do not damage equipment or scratch painted or coated surfaces. After installation, surfaces shall be inspected and scratches touched up with a paint or coating provided by the manufacturer especially for this purpose. Primary taps shall be set at 13,200 V. #### 3.5.1 Concrete Pads # 3.5.1.1 Construction Concrete pads for pad-mounted electrical equipment shall be poured-in-place. Pads shall be constructed as indicated, except that exact pad dimensions and mounting details are equipment specific and are the responsibility of the Contractor. Tops of concrete pads shall be level and shall project above finished grade as noted on the drawing details. Edges of concrete pads shall have a 3/4 inch chamfer. Conduits for primary, secondary, and grounding conductors shall be set in place prior to placement of concrete pads. Where grounding electrode conductors are installed through concrete pads, PVC conduit sleeves shall be installed through the concrete to provide physical protection. To facilitate cable installation and termination, the concrete pad shall be provided with a rectangular hole below the primary and secondary compartments, sized in accordance with the manufacturer's recommended dimensions. Upon completion of equipment installation the rectangular hole shall be filled with masonry grout. ## 3.5.1.2 Concrete and Reinforcement Concrete work shall have minimum 3000 psi compressive strength and comform to the requirements of Section 03300 CAST-IN-PLACE STRUCTURAL CONCRETE. Concrete pad reinforcement shall be in accordance with Section 03200 CONCRETE REINFORCEMENT. # 3.5.1.3 Sealing When the installation is complete, the Contractor shall seal all conduit and other entries into the equipment enclosure with an approved sealing compound. Seals shall be of sufficient strength and durability to protect all energized live parts of the equipment from rodents, insects, or other foreign matter. ## 3.5.2 Padlocks Padlocks shall be provided for pad-mounted equipment. Padlocks shall be keyed as directed by the Contracting Officer. Padlocks shall comply with Base Standards. # 3.6 CONNECTIONS TO BUILDINGS Cables shall be extended into the various buildings as indicated, and shall be connected to the first applicable termination point in each building. Interfacing with building interior conduit systems shall be at conduit stubouts terminating outside of a building and as specified under Section 16415 ELECTRICAL WORK, INTERIOR. After installation of cables, conduits shall be
sealed with caulking compound to prevent entrance of moisture or gases into buildings. ## 3.7 GROUNDING A ground ring and ground rods as indicated on the drawings shall be installed under and/ or around pad-mounted equipment as shown. Equipment frames of metal-enclosed equipment, and other non-current-carrying metal parts, such as cable shields, cable sheaths, and metallic conduit shall be grounded. At least 2 connections shall be provided from a transformer to the ground mat. Metallic frames and covers of handholes and pull boxes shall be grounded by use of a braided, copper ground strap with equivalent ampacity of No. 6 AWG. # 3.7.1 Grounding Electrodes Grounding electrodes shall be installed as shown on the drawings and as follows: - a. Driven rod electrodes Unless otherwise indicated, ground rods shall be driven into the earth until the tops of the rods are approximately 1 foot below finished grade. - b. Ground ring A ground ring shall be installed as shown consisting of bare copper conductors installed 24 inches, plus or minus 3 inches, below finished top of soil grade. Ground ring conductors shall be sized as shown on the drawings, but no less than a minimum of No. 2 AWG - c. Additional electrodes When the required ground resistance is not met, additional electrodes shall be provided and interconnected with grounding conductors to achieve the ground resistance required by NFPA 70. The additional electrodes shall be up to four 10 foot rods, spaced a minimum of 10 feet apart. If a high level of ground resistance is encountered, then UL listed chemically charged ground rods may be used. If the resultant resistance exceeds 25 ohms, measured not less than 48 hours after rainfall, the Contracting Officer shall be notified immediately. # 3.7.2 Grounding and Bonding Connections Connections above grade shall be made by the fusion-welding process or with bolted solder-less connectors, in compliance with UL 467. Connections below grade shall be made by a fusion-welding process # 3.7.3 Grounding and Bonding Conductors Grounding and bonding conductors include conductors used to bond transformer enclosures and equipment frames to the grounding electrode system. Grounding and bonding conductors shall be sized as shown and located to provide maximum physical protection. Bends greater than 45 degrees in ground conductors are not permitted. Routing of ground conductors through concrete shall be avoided. When concrete penetration is necessary, non-metallic conduit shall be cast flush with the points of concrete entrance and exit so as to provide an opening for the ground conductor, and the opening shall be sealed with a suitable compound after installation. # 3.7.4 Surge-Arrester Grounding (Not Used) #### 3.8 FIELD TESTING # 3.8.1 General Field testing shall be performed in the presence of the Contracting Officer. The Contractor shall notify the Contracting Officer 10 days prior to conducting tests. The Contractor shall furnish all materials, labor, and equipment necessary to conduct field tests. The Contractor shall perform all tests and inspections recommended by the manufacturer unless specifically waived by the Contracting Officer. The Contractor shall maintain a written record of all tests which includes date, test performed, personnel involved, devices tested, serial number and name of test equipment, and test results. Field test reports shall be signed and dated by the Contractor. ## 3.8.2 Safety The Contractor shall provide and use safety devices such as rubber gloves, protective barriers, and danger signs to protect and warn personnel in the test vicinity. The Contractor shall replace any devices or equipment which are damaged due to improper test procedures or handling. ## 3.8.3 Ground-Resistance Tests The resistance of each grounding electrode system shall be measured using the fall-of-potential method defined in IEEE Std 81. Ground resistance measurements shall be made before the electrical distribution system is energized and shall be made in normally dry conditions not less than 48 hours after the last rainfall. Resistance measurements of separate grounding electrode systems shall be made before the systems are bonded together below grade. The combined resistance of separate systems may be used to meet the required resistance of 5 ohms, but the specified number of electrodes must still be provided. - a. Single rod electrode 25 ohms. - b. Multiple rod electrodes 5 ohms. - c. Ground ring 5 ohms. # 3.8.4 Ground-Ring Connection Inspection All below-grade ground-ring connections will be visually inspected by the Contracting Officer before back-filling. The Contractor shall notify the Contracting Officer 24 hours before the site is ready for inspection. ## 3.8.5 Medium-Voltage Cable Test After installation and before the operating test or connection to an existing system, the medium-voltage cable system shall be given a high potential test. Direct-current voltage shall be applied on each phase conductor of the system by connecting conductors as one terminal and connecting grounds or sheaths of the cable as the other terminal for each test. Prior to making the test, the cables shall be isolated by opening applicable protective devices and disconnecting equipment. The test shall be conducted with all splices, connectors, and terminations in place. The method, voltage, length of time, and other characteristics of the test for initial installation shall be in accordance with NEMA WC 8. Recommendations of IEEE Std 404 for cable joints and IEEE Std 48 for cable terminations shall not be exceeded, unless the cable and accessory manufacturers indicate higher voltages are acceptable for testing. Should any cable fail due to a weakness of conductor insulation or due to defects or injuries incidental to the installation or because of improper installation of cable, cable joints, terminations, or other connections, the Contractor shall make necessary repairs or replace cables as directed. Repaired or replaced cables shall be re-tested. # 3.8.6 Low-Voltage Cable Test Low-voltage cable, complete with splices, shall be tested for insulation resistance after the cables are installed, in their final configuration, ready for connection to the equipment, and prior to energization. Existing conductors that are intended to be re-used shall also comply with this testing requirement. The test voltage shall be 500 volts dc, applied for one minute between each conductor and ground and between all possible combinations of conductors in the same trench, duct, or cable, with all other conductors in the same trench, duct, or conduit. The minimum value of insulation shall be: R in megohms = (rated voltage in kV + 1) x 1000/(length of cable in feet Each cable failing this test shall be repaired or replaced. The repaired cable shall be re-tested until failures have been eliminated. # 3.8.7 Liquid-Filled Transformer Tests The following field tests shall be performed on all liquid-filled transformers. Pass-fail criteria shall be in accordance with transformer manufacturer's specifications. - a. Insulation resistance test phase-to-ground. - b. Turns ratio test. - c. Correct phase sequence. - d. Correct operation of tap changer. # 3.8.8 Pre-Energization Services Calibration, testing, adjustment, and placing into service of the installation shall be accomplished by a manufacturer's product field service engineer or independent testing company with a minimum of 2 years of current product experience. The following services shall be performed on the equipment listed below. These services shall be performed subsequent to testing but prior to the initial energization. The equipment shall be inspected to ensure that installation is in compliance with the recommendations of the manufacturer and as shown on the detail drawings. Terminations of conductors at major equipment shall be inspected to ensure the adequacy of connections. Bare and insulated conductors between such terminations shall be inspected to detect possible damage during installation. If factory tests were not performed on completed assemblies, tests shall be performed after the installation of completed assemblies. Components shall be inspected for damage caused during installation or shipment to ensure packaging materials have been removed. Components capable of being both manually and electrically operated shall be operated manually prior to the first electrical operation. Components capable of being calibrated, adjusted, and tested shall be calibrated, adjusted, and tested in accordance with the instructions of the equipment manufacturer. Items for which such services shall be provided, but are not limited to, are the following: - a. Pad-mounted transformers - b. Panelboards # 3.8.9 Operating Tests After the installation is completed, and at such times as the Contracting Officer may direct, the Contractor shall conduct operating tests for approval. The equipment shall be demonstrated to operate in accordance with the requirements herein. An operating test report shall be submitted in accordance with paragraph SUBMITTALS. #### 3.9 MANUFACTURER'S FIELD SERVICE # 3.9.1 On-site Training The Contractor shall conduct a training course for the operating staff as designated by the Contracting Officer. The training period shall consist of a total of 4 hours of normal working time and shall start after the system is functionally completed but prior to final acceptance tests. The course instruction shall cover pertinent points involved in operating, starting, stopping, and servicing the equipment, as well as all major elements of the operation and maintenance manuals. Additionally, the course instructions shall demonstrate all routine maintenance operations. A VHS format video tape of the entire training session shall be submitted. # 3.9.2 Installation Engineer After delivery of the equipment, the Contractor shall furnish one or more field engineers, regularly employed by the equipment manufacturer
to supervise the installation of the equipment, assist in the performance of the onsite tests, initial operation, and instruct personnel as to the operational and maintenance features of the equipment. #### 3.10 ACCEPTANCE Final acceptance of the facility will not be given until the Contractor has successfully completed all tests and after all defects in installation, material or operation have been corrected. END OF SECTION ## SECTION 16415 # ELECTRICAL WORK, INTERIOR ## PART 1 GENERAL # 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. # AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI) | ANSI C12.1 | (1995) Code for Electricity Metering | | |-----------------------------------|--|--| | ANSI C57.12.70 | (1978; R 1993) Terminal Markings and
Connections for Distribution and Power
Transformers | | | ANSI C82.1 | (1985; C82.1a; C82.1b; C82.1c; C82.1d; C82.1e; R 1992) Specifications for Fluorescent Lamp Ballasts | | | ANSI C82.4 | (1992) Ballasts for High-Intensity-Discharge
and Low-Pressure Sodium Lamps (Multiple-
Supply Type) | | | ANSI C135.30 | (1988) Zinc-Coated Ferrous Ground Rods for
Overhead or Underground Line Construction | | | AMERICAN SOCIETY FOR TE | ESTING AND MATERIALS (ASTM) | | | ASTM B 1 | (1995) Hard-Drawn Copper Wire | | | ASTM B 8 | (1995) Concentric-Lay-Stranded Copper
Conductors, Hard, Medium-Hard, or Soft | | | ASTM D 709 | (1992; R 1997) Laminated Thermosetting Materials | | | CODE OF FEDERAL REGULATIONS (CFR) | | | | 47 CFR 18 | Industrial, Scientific, and Medical Equipment | | | INSTITUTE OF ELECTRICAL | AND ELECTRONICS ENGINEERS (IEEE) | | IEEE C2 (1997) National Electrical Safety Code | IEEE ANSI/IEEE C57.12.00 | (1993) IEEE Standard General Requirements for
Liquid-Immersed Distribution, Power, and
Regulating Transformers | |--|---| | IEEE ANSI/IEEE C57.12.80 | (1978; R 1992) Terminology for Power and Distribution Transformers | | IEEE ANSI/IEEE C57.13 | (1993) Instrument Transformers | | IEEE ANSI/IEEE C57.98 | (1993) Guide for Transformer Impulse Tests | | IEEE C62.41 | (1991; R 1995) Surge Voltages in Low-Voltage
AC Power Circuits | | IEEE Std 81 | (1983) Guide for Measuring Earth Resistivity,
Ground Impedance, and Earth Surface
Potentials of a Ground System (Part 1) | | IEEE Std 242 | (1986; R 1991) Recommended Practice for
Protection and Coordination of Industrial and
Commercial Power Systems | | IEEE Std 399 | (1990) Recommended Practice for Industrial and Commercial Power Systems Analysis | | | | | NATIONAL ELECTRICAL MAI | NUFACTURERS ASSOCIATION (NEMA) | | NATIONAL ELECTRICAL MAI | (1991) Enclosures for Electrical Equipment (1000 Volts Maximum) | | | (1991) Enclosures for Electrical Equipment | | NEMA 250 | (1991) Enclosures for Electrical Equipment (1000 Volts Maximum) (1993) Molded Case Circuit Breakers and | | NEMA 250 | (1991) Enclosures for Electrical Equipment (1000 Volts Maximum) (1993) Molded Case Circuit Breakers and Molded Case Switches | | NEMA 250 NEMA AB 1 NEMA FU 1 | <pre>(1991) Enclosures for Electrical Equipment (1000 Volts Maximum) (1993) Molded Case Circuit Breakers and Molded Case Switches (1986) Low Voltage Cartridge Fuses</pre> | | NEMA 250 NEMA AB 1 NEMA FU 1 NEMA ICS 1 | <pre>(1991) Enclosures for Electrical Equipment (1000 Volts Maximum) (1993) Molded Case Circuit Breakers and Molded Case Switches (1986) Low Voltage Cartridge Fuses (1993) Industrial Control and Systems (1993) Industrial Control and Systems Controllers, Contactors, and Overload Relays Rated Not More Than 2,000 Volts AC or 750</pre> | | NEMA 250 NEMA AB 1 NEMA FU 1 NEMA ICS 1 NEMA ICS 2 | <pre>(1991) Enclosures for Electrical Equipment (1000 Volts Maximum) (1993) Molded Case Circuit Breakers and Molded Case Switches (1986) Low Voltage Cartridge Fuses (1993) Industrial Control and Systems (1993) Industrial Control and Systems Controllers, Contactors, and Overload Relays Rated Not More Than 2,000 Volts AC or 750 Volts DC (1993) Industrial Control and Systems Factory</pre> | | NEMA OS 1 | (1989) Sheet-Steel Outlet Boxes, Device
Boxes, Covers, and Box Supports | |--------------------------|---| | NEMA OS 2 | (1986; Errata Aug 1986; R 1991) Nonmetallic
Outlet Boxes, Device Boxes, Covers and Box
Supports | | NEMA PB 1 | (1990) Panelboards | | NEMA PB 2 | (1995) Dead-front Distribution Switchboards | | NEMA RN 1 | (1989) Polyvinyl-Chloride (PVC) Externally
Coated Galvanized Rigid Steel Conduit and
Intermediate Metal Conduit | | NEMA SG 3 | (1995) Power Switching Equipment | | NEMA ST 20 | (1992) Dry-Type Transformers for General Applications | | NEMA TC 2 | (1990) Electrical Polyvinyl Chloride (PVC) Tubing (EPT) and Conduit (EPC-40 and EPC-80) | | NEMA WD 1 | (1983; R 1989) General Requirements for Wiring Devices | | NEMA WD 6 | (1988) Wiring Devices - Dimensional
Requirements | | NATIONAL FIRE PROTECTION | ON ASSOCIATION (NFPA) | | NFPA 70 | (1999) National Electrical Code | | NFPA 101 | (1997; Errata 97-1) Life Safety Code | | UNDERWRITERS LABORATOR: | IES (UL) | | UL 6 | (1997) Rigid Metal Conduit | | UL 20 | (1995; Rev thru Jan 1998) General-Use Snap
Switches | | UL 44 | (1997; Rev Aug 1997) Thermoset-Insulated Wires and Cables | | UL 50 | (1995; Rev thru Oct 1997) Enclosures for Electrical Equipment | | UL 67 | (1993; Rev thru Nov 1995) Panelboards | | UL 83 | (1996; Rev Sep 1997) Thermoplastic-Insulated Wires and Cables | | UL | 98 | (1994; R thru Oct 1995) Enclosed and Dead-
Front Switches | |----|------|---| | UL | 198G | (1988; Rev May 1988) Fuses for Supplementary
Over-current Protection | | UL | 360 | (1996; Rev thru Oct 1997) Liquid-Tight Flexible Steel Conduit | | UL | 467 | (1993; Rev thru Aug 1996) Grounding and Bonding Equipment | | UL | 486A | (1997) Wire Connectors and Soldering Lugs for Use with Copper Conductors | | UL | 486C | (1997) Splicing Wire Connectors | | UL | 486E | (1994; Rev thru Feb 1997) Equipment Wiring
Terminals for Use with Aluminum and/or Copper
Conductors | | UL | 489 | (1996; Rev thru Nov 1997) Molded-Case Circuit
Breakers, Molded-Case Switches, and Circuit-
Breaker Enclosures | | UL | 498 | (1996; Rev thru Nov 1997) Attachment Plugs and Receptacles | | UL | 508 | (1993; Rev thru Oct 1997) Industrial Control Equipment | | UL | 510 | (1994; Rev thru Nov 1997) Insulating Tape | | UL | 512 | (1993; R Dec 1995) Fuseholders | | UL | 514A | (1996) Metallic Outlet Boxes | | UL | 514B | (1997) Fittings for Conduit and Outlet Boxes | | UL | 514C | (1996) Nonmetallic Outlet Boxes, Flush-Device Boxes, and Covers | | UL | 542 | (1994; Rev May 1997) Lampholders, Starters, and Starter Holders for Fluorescent Lamps | | UL | 651 | (1995; Rev thru Apr 1997) Schedule 40 and 80 Rigid PVC Conduit | | UL | 674 | (1994; Rev thru Feb 1997) Electric Motors and
Generators for Use in Division 1 Hazardous
(Classified) Locations | | UL 698 | (1995; Rev thru Dec 1996) Industrial Control
Equipment for Use in Hazardous (Classified)
Locations | |---------|---| | UL 797 | (1993; Rev thru Mar 1997) Electrical Metallic Tubing | | UL 817 | (1994; Rev thru Aug 1997) Cord Sets and Power-Supply Cords | | UL 844 | (1995; Rev thru Aug 1997) Electric Lighting Fixtures for Use in Hazardous (Classified) Locations | | UL 854 | (1996) Service-Entrance Cables | | UL 869A | (1993; Rev thru Apr 1996) Reference Standard for Service Equipment | | UL 877 | (1993; Rev thru May 1997) Circuit Breakers
and Circuit-Breaker Enclosures for Use in
Hazardous (Classified) Locations | | UL 886 | (1994; Rev thru Jan 1997) Outlet Boxes and Fittings for Use in Hazardous (Classified) Locations | | UL 891 | (1994; Rev thru Jan 1995) Dead-Front
Switchboards | | UL 924 | (1995; Rev thru Oct 97) Emergency Lighting and Power Equipment | | UL 935 | (1995; Rev thru Apr 1997)Fluorescent-Lamp
Ballasts | | UL 943 | (1993; Rev thru Mar 1997)Ground-Fault
Circuit-Interrupters | | UL 1010 | (1995; Rev thru Dec 1996)Receptacle-Plug
Combinations for Use in Hazardous
(Classified) Locations | | UL 1029 | (1994; Rev thru Sep 1995) High-Intensity-
Discharge Lamp Ballasts | | UL 1242 | (1996; Rev Apr 1997) Intermediate Metal
Conduit | | UL 1449 | (1985; Errata Apr 1986; Rev May 1995)
Transient Voltage Surge Suppressors | UL 1570 (1995; Rev thru Jun 1997) Fluorescent Lighting Fixtures UL 1572 (1995; Rev thru Jun 97) High Intensity Discharge Lighting Fixtures UL Elec Const Dir (1997) Electrical Construction Equipment Directory #### 1.2 GENERAL ### 1.2.1 Rules The installation shall conform to the requirements of NFPA 70 and NFPA 101, unless more stringent requirements are indicated or shown. # 1.2.2 Coordination The drawings indicate the extent and the general location and arrangement of equipment, conduit, and wiring. The Contractor shall become familiar with all details of the work and verify all dimensions in the field so that the outlets and equipment shall be properly located and readily accessible. Lighting
fixtures, outlets, and other equipment and materials shall be located to avoid interference with mechanical or structural features; otherwise, lighting fixtures shall be symmetrically located according to the room arrangement when uniform illumination is required, or asymmetrically located to suit conditions fixed by design and shown. Raceways, junction and outlet boxes, and lighting fixtures shall not be supported from sheet metal roof decks. If any conflicts occur necessitating departures from the drawings, details of and reasons for departures shall be submitted and approved prior to implementing any change. The Contractor shall coordinate electrical work with the HVAC and electrical drawings and specifications and provide power related wiring. # 1.2.3 Special Environments ### 1.2.3.1 Weatherproof Locations Wiring, Fixtures, and equipment in designated locations shall conform to NFPA 70 requirements for installation in damp or wet locations. # 1.2.3.2 Hazardous Locations Wiring in locations indicated shall conform to the NFPA 70 for Class I, Division 2, Group D hazardous locations. Wiring and equipment shall be of the classes, divisions, groups, and suitable for a maximum operating temperature of 437 degrees F(Ignition temperature of Hexane; worst case chemical). #### 1.2.4 Standard Products Material and equipment shall be a standard product of a manufacturer regularly engaged in the manufacture of the product and shall essentially duplicate items that have been in satisfactory use for at least 2 years prior to bid opening. ### 1.2.5 NAMEPLATES ## 1.2.5.1 Identification Nameplates Major items of electrical equipment and major components shall be permanently marked with an identification name to identify the equipment by type or function and specific unit number as indicated. Designation of motors shall coincide with their designation in the motor controller or panel. Unless otherwise specified, identification nameplates shall be made of laminated plastic in accordance with ASTM D 709 with black outer layers and a white core. Edges shall be chamfered. Plates shall be fastened with black-finished round-head drive screws, except motors, or approved nonadhesive stainless steel fasteners. When the nameplate is to be installed on an irregular-shaped object, the Contractor shall devise an approved support suitable for the application and ensure the proper installation of the supports and nameplates. In all instances, the nameplate shall be installed in a conspicuous location. At the option of the Contractor, the equipment manufacturer's standard embossed nameplate material with black paint-filled letters may be furnished in lieu of laminated plastic. The front of each panelboard, and switchboard shall have a nameplate to indicate the phase letter, corresponding color and arrangement of the phase conductors. The following equipment, as a minimum, shall be provided with identification nameplates: > Minimum 1/4 inch High Letters Minimum 1/8 inch High Letters Panelboards Starters Transformers Equipment Enclosures Motors Control Power Transformers Instrument Transformers Each panel or similar assemblies shall be provided with a nameplate in addition to nameplates listed above, which shall be provided for individual compartments in the respective assembly, including nameplates which identify "future," "spare," and "dedicated" or "equipped spaces." # 1.2.6 As-Built Drawings Following the project completion or turnover, within 30 days the Contractor shall furnish 2 sets of as-built drawings to the Contracting Officer. ### 1.2.7 Recessed Light Fixtures (RLF) Option The Contractor has the option to substitute inch-pound (I-P) RLF to metric RLF. This option shall be coordinated with Section $\ge 0.9510 = ACOUSTICAL$ CEILINGS. #### 1.3 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-01 Data Fault Current and Protective Device Coordination Study; GA. The study shall be submitted along with protective device equipment submittals. No time extensions or similar contract modifications will be granted for work arising out of the requirements for this study. Approval of protective devices proposed shall be based on recommendations of this study, The Government shall not be held responsible for any changes to equipment, device ratings, settings, or additional labor for installation of equipment or devices ordered and/or procured prior to approval of the study. Manufacturer's Catalog; GA. Data composed of catalog cuts, brochures, circulars, specifications, product data, and printed information in sufficient detail and scope to verify compliance with the requirements of the contract documents. Material, Equipment, and Fixture Lists; FIO. A complete itemized listing of equipment and materials proposed for incorporation into the work. Each entry shall include an item number, the quantity of items proposed, and the name of the manufacturer of each item. Installation Procedures; GA. Installation procedures for rotating equipment and transformers. Procedures shall include diagrams, instructions, and precautions required to install, adjust, calibrate, and test devices and equipment. SD-04 Drawings Interior Electrical Equipment; FIO. Detail drawings consisting of equipment drawings, illustrations, schedules, instructions, diagrams, and other information necessary to define the installation. Detail drawings shall show the rating of items and systems and how the components of an item and system are assembled, function together, and how they will be installed on the project. Data and drawings for component parts of an item or system shall be coordinated and submitted as a unit. Data and drawings shall be coordinated and included in a single submission. Multiple submissions for the same equipment or system are not acceptable except where prior approval has been obtained from the Contracting Officer. In such cases, a list of data to be submitted later shall be included with the first submission. Detail drawings shall show physical arrangement, construction details, connections, finishes, materials used in fabrication, provisions for conduit entrance, access requirements for installation and maintenance, physical size, electrical characteristics, foundation and support details, and equipment weight. Drawings shall be drawn to scale and/or dimensioned. Optional items shall be clearly identified as included or excluded. Detail drawings shall as a minimum include: - a. Transformers. - b. Metering and Current Transformer Wiring. - c. Single line electrical diagrams including primary, metering, sensing and relaying, control wiring, and control logic. - d. Sway bracing for suspended luminaires. Structural drawings showing the structural or physical features of major equipment items, components, assemblies, and structures, including foundations or other types of supports for equipment and conductors. These drawings shall include accurately scaled or dimensioned outline and arrangement or layout drawings to show the physical size of equipment and components and the relative arrangement and physical connection of related components. Weights of equipment, components and assemblies shall be provided when required to verify the adequacy of design and proposed construction of foundations or other types of supports. Dynamic forces shall be stated for switching devices when such forces must be considered in the design of support structures. The appropriate detail drawings shall show the provisions for leveling, anchoring, and connecting all items during installation, and shall include any recommendations made by the manufacturer. Electrical drawings including single-line and three-line diagrams, and schematics or elementary diagrams of each electrical system; internal wiring and field connection diagrams of each electrical device when published by the manufacturer; wiring diagrams of cabinets, panels, units, or separate mountings; interconnection diagrams that show the wiring between separate components of assemblies; field connection diagrams that show the termination of wiring routed between separate items of equipment; internal wiring diagrams of equipment showing wiring as actually provided for this project. Field wiring connections shall be clearly identified. If departures from the contract drawings are deemed necessary by the Contractor, complete details of such departures, including changes in related portions of the project and the reasons why, shall be submitted with the detail drawings. Approved departures shall be made at no additional cost to the Government. As-Built Drawings; GA. The as-built drawings shall be a record of the construction as installed. The drawings shall include all the information shown on the contract drawings, deviations, modifications, and changes from the contract drawings, however minor. The as-built drawings shall be kept at the job site and updated daily. The as-built drawings shall be a full-sized set of prints marked to reflect all deviations, changes, and modifications. The as-built drawings shall be complete and show the location, size, dimensions, part identification, and other information. Additional sheets may be added. The as-built drawings shall be jointly inspected for accuracy and completeness by the Contractor's quality control representative and by the Contracting Officer prior to the submission of each monthly pay estimate. Upon completion of the work, the Contractor shall submit three full sized sets of the marked prints to the Contracting Officer for approval. If upon review, the as-built drawings are found to contain errors and/or omissions, they will be returned to the Contractor for correction. The Contractor shall correct and return the as-built drawings to the Contracting Officer for approval within ten calendar
days from the time the drawings are returned to the Contractor. SD-08 Statements Onsite Test; GA. A detailed description of the Contractor's proposed procedures for on-site tests. SD-09 Reports Factory Test Reports; GA. Six copies of the information described below in $8\ 1/2\ x\ 11$ inch binders having a minimum of 5 rings from which material may readily be removed and replaced, including a separate section for each test. Sections shall be separated by heavy plastic dividers with tabs. - a. A list of equipment used, with calibration certifications. - b. A copy of measurements taken. - c. The dates of testing. - d. The equipment and values to be verified. - e. The conditions specified for the test. - f. The test results, signed and dated. - g. A description of adjustments made. Field Test Plan; GA. A detailed description of the Contractor's proposed procedures for onsite test submitted 20 days prior to testing the installed system. No field test will be performed until the test plan is approved. The test plan shall consist of complete field test procedures including tests to be performed, test equipment required, and tolerance limits. Field Test Reports; GA. Six copies of the information described below in $8\ 1/2\ x\ 11$ inch binders having a minimum of 5 rings from which material may readily be removed and replaced, including a separate section for each test. Sections shall be separated by heavy plastic dividers with tabs. - a. A list of equipment used, with calibration certifications. - b. A copy of measurements taken. - c. The dates of testing. - d. The equipment and values to be verified. - e. The conditions specified for the test. - f. The test results, signed and dated. - g. A description of adjustments made. - h. Final position of controls and device settings. SD-13 Certificates Materials and Equipment; GA. The label or listing of the Underwriters Laboratories, Inc., will be accepted as evidence that the materials or equipment conform to the applicable standards of that agency. In lieu of this label or listing, a statement from a nationally recognized, adequately equipped testing agency indicating that the items have been tested in accordance with required procedures and that the materials and equipment comply with all contract requirements will be accepted. However, materials and equipment installed in hazardous locations must bear the UL label unless the data submitted from other testing agency is specifically approved in writing by the Contracting Officer. Items which are required to be listed and labeled in accordance with Underwriters Laboratories must be affixed with a UL label that states that it is UL listed. No exceptions or waivers will be granted to this requirement. Materials and equipment will be approved based on the manufacturer's published data. For other than equipment and materials specified to conform to UL publications, a manufacturer's statement indicating complete compliance with the applicable standard of the American Society for Testing and Materials, National Electrical Manufacturers Association, or other commercial standard, is acceptable. #### 1.4 WORKMANSHIP Materials and equipment shall be installed in accordance with NFPA 70, recommendations of the manufacturer, and as shown. # PART 2 PRODUCTS Products shall conform to the respective publications and other requirements specified below. Materials and equipment not listed below shall be as specified elsewhere in this section. Items of the same classification shall be identical including equipment, assemblies, parts, and components. ### 2.1 CABLES AND WIRES Conductors No. 8 AWG and larger diameter shall be stranded. Conductors No. 10 AWG and smaller diameter shall be solid, except that conductors for remote control, alarm, and signal circuits, classes 1, 2, and 3, shall be stranded unless specifically indicated otherwise. Conductor sizes and ampacities shown are based on copper, unless indicated otherwise. All conductors shall be copper. ## 2.1.1 Equipment Manufacturer Requirements When manufacturer's equipment requires copper conductors at the terminations or requires copper conductors to be provided between components of equipment, provide copper conductors or splices, splice boxes, and other work required to meet manufacturer's requirements. ### 2.1.2 Insulation Unless indicated otherwise, or required by NFPA 70, power and lighting wires shall be 600-volt, Type THWN/THHN conforming to UL 83, except that grounding wire may be type TW conforming to UL 83. Where lighting fixtures require 90-degree Centigrade (C) conductors, provide only conductors with 90-degree C insulation or higher, but size the wire ampacity at the 75 degree rating. ## 2.1.3 Bonding Conductors ASTM B 1, solid bare copper wire for sizes No. 8 AWG and smaller diameter; ASTM B 8, Class B, stranded bare copper wire for sizes No. 6 AWG and larger diameter. # 2.2 TRANSIENT VOLTAGE SURGE PROTECTION (TVSS) All power, communications and signal circuits entering or leaving Building 1012 shall have transient voltage surge protection. Transient voltage surge suppressors shall provide normal sine wave tracking, with Category A1 ring wave suppression (2,000 Volts, 67 amps, 180 degrees) of less than 50 volts for the nominal 120 Vac legs. The TVSS's shall provide independent, distinct, and dedicated circuitry for each possible protection mode (i.e., line-to-line, line-to-neutral, line-to-ground, neutral-to-ground). TVSS circuitry shall be fully encapsulated. Surge suppressors shall meet the requirements of IEEE C62.41 and be UL listed and labeled as having been tested in accordance with UL 1449 and UL 1283. Surge suppressor ratings shall be 650 volts rms phase to ground. Fuses shall not be used as surge suppression. TVSS's for power circuits shall be by the same manufacturer as the TVSS's supplied for Data, Signal and Control Wire TVSS's. #### 2.3 CIRCUIT BREAKERS ### 2.3.1 MOLDED-CASE CIRCUIT BREAKERS Molded-case circuit breakers shall conform to NEMA AB 1 and UL 489 and UL 877 for circuit breakers and circuit breaker enclosures located in hazardous (classified) locations. Circuit breakers may be installed in panelboards, switchboards, enclosures, or combination motor controllers. ### 2.3.1.1 Construction Circuit breakers shall be suitable for mounting and operating in any position. Lug shall be listed for copper and aluminum conductors in accordance with UL 486E. Single-pole circuit breakers shall be full module size with not more than one pole per module. Multi-pole circuit breakers shall be of the common-trip type having a single operating handle such that an overload or short circuit on any one pole will result in all poles opening simultaneously. Sizes of 100 amperes or less may consist of single-pole breakers permanently factory assembled into a multi-pole unit having an internal, mechanical, non-tamperable common-trip mechanism and external handle ties. All circuit breakers shall have a quick-make, quick-break over-center toggle-type mechanism, and the handle mechanism shall be trip-free to prevent holding the contacts closed against a short-circuit or sustained overload. All circuit breaker handles shall assume a position between "ON" and "OFF" when tripped automatically. All ratings shall be clearly visible. ## 2.3.1.2 Ratings Voltage ratings shall be not less than the applicable circuit voltage. The interrupting rating of the circuit breakers shall be at least equal to the available short-circuit current at the line terminals of the circuit breaker and correspond to the UL listed integrated short-circuit current rating specified for the panelboards and switchboards. Molded-case circuit breakers shall have nominal voltage ratings, maximum continuous-current ratings, and maximum short-circuit interrupting ratings in accordance with NEMA AB 1. Ratings shall be coordinated with system X/R ratio. 2.3.1.3 Cascade System Ratings (Series Rated Breakers) Selection of circuit breakers interrupting ratings based on a "Series" rating is not acceptable. Each breaker must have independent ratings; (i.e., No other breakers shall be required in order to achieve the stated rating). 2.3.1.4 Thermal-Magnetic Trip Elements Thermal magnetic circuit breakers shall be provided as shown. Automatic operation shall be obtained by means of thermal-magnetic tripping devices located in each pole providing inverse time delay and instantaneous circuit protection. The instantaneous magnetic trip shall be adjustable and accessible from the front of all circuit breakers on frame sizes above 100 amperes. 2.3.2 SWD Circuit Breakers Circuit breakers rated 15 or 20 amperes and intended to switch 277 volts or less fluorescent lighting loads shall be marked "SWD." 2.3.3 HACR Circuit Breakers Circuit breakers 100 amperes or below, 600 volts or less, intended to protect multi-motor and combination-load installations involved in heating, air conditioning, and refrigerating equipment shall be marked "Listed HACR Type." - 2.4 MOTOR SHORT-CIRCUIT PROTECTOR (MSCP)(NOT USED) - 2.5 CONDUIT AND TUBING - 2.5.1 Electrical, Zinc-Coated Steel Metallic Tubing (EMT) UL 797 2.5.2 Flexible Conduit, Steel and Plastic General-purpose type, UL 1; liquid tight, UL 360, and UL 1660. 2.5.3 Intermediate Metal Conduit UL 1242. 2.5.4 PVC Coated Rigid Steel Conduit NEMA RN 1. 2.5.5 Rigid Metal Conduit UL 6. REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 - 2.6 CONDUIT AND DEVICE BOXES AND FITTINGS - 2.6.1 Boxes, Metallic Outlet NEMA OS 1 and UL 514C. - 2.6.2 Boxes, Nonmetallic, Outlet and Flush-Device Boxes and Covers NEMA OS 2 and UL 514C. - 2.6.3 Boxes, Outlet for Use in Hazardous (Classified) Locations UL 886. - 2.6.4 Boxes, Switch (Enclosed), Surface-Mounted UL 98. - 2.6.5 Fittings for Conduit and Outlet Boxes UL 514B. - 2.6.6 Fittings For Use in Hazardous (Classified) Locations UL 886. - 2.6.7 Fittings, PVC, for Use with Rigid PVC Conduit and Tubing UL 514B. - 2.7 CONDUIT COATINGS
PLASTIC RESIN SYSTEM NEMA RN 1, Type A-40. - 2.8 CONNECTORS, WIRE PRESSURE - 2.8.1 For Use With Copper Conductors UL 486A. - 2.9 ELECTRICAL GROUNDING AND BONDING EQUIPMENT UL 467. - 2.9.1 Ground Rods Ground rods shall be of copper-clad steel conforming to ANSI C135.30 not less than 3/4 inch in diameter by 10 feet in length of the sectional type driven full length into the earth. ### 2.9.2 Ground Bus The ground bus shall be flat copper in one piece, if practicable. ### 2.10 ENCLOSURES NEMA ICS 6 or UL 698 for use in hazardous (classified) locations, unless otherwise specified. ## 2.10.1 Cabinets and Boxes Cabinets and boxes with volume greater than 100 cubic inches shall be in accordance with UL 50, hot-dip, zinc-coated, if sheet steel. ### 2.10.2 Circuit Breaker Enclosures UL 489. 2.10.3 Circuit Breaker Enclosures for Use in Hazardous (Classified) Locations UL 877. ## 2.11 FIXTURES, LIGHTING AND FIXTURE ACCESSORIES/COMPONENTS The lighting fixture descriptions and individual specification requirements are in the "Lighting Fixture Specifications" at the end of this specification section. Its contents are an integral part of these specifications. Fixtures, accessories and components, including ballasts, lampholders, lamps, starters and starter holders, shall conform to industry standards specified below. ## 2.11.1 Fixture, Auxiliary or Emergency UL 924. #### 2.11.2 Fluorescent a. Fixture: NEMA LE 4 for ceiling compatibility of recessed fixtures and UL 1570. Fixtures shall be plainly marked for proper lamp and ballast type to identify lamp diameter, wattage, color and start type. Marking shall be readily visible to service personnel, but not visible from normal viewing angles. # b. Ballasts: (1) Electronic Ballast. Electronic ballasts shall consist of a rectifier, high frequency inverter, and power control and regulation circuitry. The ballasts shall be UL listed, Class P, with a Class A sound rating and shall contain no PCBs. Ballasts shall meet 47 CFR 18 for electromagnetic interference and shall not interfere with the operation of other electrical equipment. Design shall withstand line transients per IEEE C62.41, Category A. Unless otherwise indicated, the minimum number of ballasts shall be used to serve each individual fixture, using one, two, three or four lamp ballasts. A single ballast may be used to serve multiple fixtures if they are continuous mounted, factory manufactured for that installation with an integral wireway, and are identically controlled. - (a) Light output regulation shall be +/- 10%. - (b) Voltage input regulation shall be +/- 10%. - (c) Lamp current crest factor shall be no more than 1.6. - (d) Ballast factor shall be not less than 85% nor more than 100%, unless otherwise indicated. - (e) A 60 Hz filter shall be provided. Flicker shall be no more than 10% with any lamp suitable for the ballast. - (f) Ballast case temperature shall not exceed 25 degree Celsius rise above 40 degree Celsius ambient, when tested in accordance with UL 935. - (g) Total harmonic distortion shall be in the range of 10-20%. - (h) Power factor shall not be less than 0.95. - (i) Ballasts shall operate at a frequency of 20 kHz or more. - (j) Operating filament voltage shall be 2.5 to 4.5 volts. - (k) Warranty. Three year full warranty including a \$10 labor allowance. - (1) Ballast Efficacy Factor (BEF) shall be in accordance with the following table. Ballasts and lamps shall be matching rapid start or instant start as indicated on the following table. If 32W-F32-T8 lamps and ballasts are used, they must be either all rapid start or all instant start. # ELECTRONIC FLUORESCENT BALLAST EFFICACY FACTORS* | LAMP | TYPE OF | NOMINAL | NUMBER | MIN. BALLAST | |------------|---------------|---------------|--------|--------------| | TYPE | STARTER | OPERATIONAL | OF | EFFICACY | | | & LAMP | INPUT VOLTAGE | LAMPS | FACTOR | | 32W F32 T8 | rapid or | 120 or 277 V | 1 | 2.4 | | | instant start | | 2 | 1.4 | | | | | 3 | 1.0 | *For ballasts not specifically designed for use with dimming controls The BEF is calculated using the formula: BEF = Ballast Factor (in percent) / Power Input Where Power Input = Total Wattage of Combined Lamps and Ballasts. - c. Lampholders, Starters, and Starter Holders: UL 542. - 2.11.3 High-Intensity-Discharge - a. Fixture: UL 1572. - b. Ballasts: ANSI C82.4 for multiple supply types and UL 1029. - 2.12 LOW-VOLTAGE FUSES AND FUSEHOLDERS - 2.12.1 Fuses, Low Voltage Cartridge Type NEMA FU 1. - 2.12.2 Fuses, High-Interrupting-Capacity, Current-Limiting Type Fuses, Class CC shall be in accordance with UL 198C. - 2.12.3 Fuses for Supplementary Overcurrent Protection UL 198G. - 2.12.4 Fuseholders UL 512. 2.13 INSTRUMENTS, ELECTRICAL INDICATING ANSI C39.1. - 2.14 MOTOR CONTROLS - 2.14.1 Enclosures Starter enclosures and combination starter enclosures shall be rated NEMA 12, unless otherwise noted on the drawings. Devices located in the classified hazardous areas shall have a NEMA enclosure rating per NFPA 70 for Class I, Div 1, Group D or Class I, Div 2, Group D operation, as required for the classification shown on the drawings. ### 2.14.2 Branch Circuit/Short Circuit/Ground Fault Protection Combination starters shall be provided with magnetic-only motor circuit protectors for short-circuit protection. #### 2.14.3 Solid-State Motor Overload Protection All motors one-half H.P. and above shall be protected from motor overloads by adjustable solid state relays with Class 20 trip characteristics. Overload protection shall be provided integral with the motor controller or combination motor controller, and shall be rated in accordance with the requirements of NFPA 70. Class 10 overload relays shall be used on hermetically sealed, submersible pumps, and similar motors. All other fractional horse-power motors smaller than one-half H.P. shall be protected according to the requirements of NFPA 70. In addition to the above requirements, all motors larger than 10 H.P. shall have over/under-voltage, phase-loss, phase reversal protection integral with the motor controller or combination motor controller. ### 2.14.4 Automatic Control Devices Automatic control devices (such as thermostats, float or pressure switches) which control the starting and stopping of motors automatically, shall utilize a magnetic starter, with the automatic-control device actuating the pilot-control circuit. ### 2.14.5 Control Circuits All starter enclosures and combination controllers shall be provided with a control power transformer. The transformer volt-ampere rating shall be sized for extra capacity at 100 VA larger than normally required for NEMA starter size. Transformer secondary shall be 120 VAC. Provide transformer-mounted primary and secondary Class CC fuse protection. Provide two fuses for the primary and one fuse for the secondary. ## 2.14.6 Pilot Devices ### 2.14.6.1 Manual/Automatic Starting Selection - a. All starter enclosures and combination controllers shall be provided with a three-position selector switch marked MANUAL-OFF-AUTOMATIC. - b. Connections to the selector switch shall be such that; only the normal automatic regulatory control devices will be bypassed when the switch is in the Manual position; all safety control devices, such as low-or high-pressure cutouts, high-temperature cutouts, and motor-overload protective devices, shall be connected in the motor-control circuit in both the Manual and the Automatic positions of the selector switch. Control circuit connections to any MANUAL-OFF-AUTOMATIC switch or to more than one automatic regulatory control device shall be made in accordance with wiring diagram approved by the Contracting Officer unless such diagram is included on the drawings. All controls shall be 120 VAC or less unless otherwise indicated. ### 2.14.6.2 Pilot Lights a. All starter enclosures and combination controllers shall be provided with red "Run" and green "Stop" pilot lights. Pilot lights shall be transformer rated with a 120 vac primary. Pilot lights shall be the LED bayonet type, with a minimum of 8-LED elements per lamp. #### 2.15 PANELBOARDS Dead-front construction, NEMA PB 1 and UL 67. Panelboards shall have copper bus and be of the bolt-on circuit breaker type. Series rated breakers shall not be used; see Specification section 2.3.1.3 Cascade System Ratings. Provide sizes, types and ratings per the panel schedules on the drawings. Provide solid neutral bars and ground bars with enough capacity for one conductor for each terminal (i.e., no more than one wire per terminal). Provide approximately 25% spare circuit breakers in each panel. Panel faces shall be painted to match the adjacent wall color. ### 2.16 RECEPTACLES ## 2.16.1 Heavy Duty Grade NEMA WD 1. Devices shall conform to all requirements for heavy-duty receptacles. 2.16.2 Ground Fault Interrupters UL 943, Class A or B. 2.16.3 Hazardous (Classified) Locations UL 1010, for Class I, Div 1, Group D or Class I, Div 2, Group D 2.16.4 NEMA Standard Receptacle Configurations NEMA WD 6. a. Duplex, 20-Ampere, 125 Volt 20-ampere, non-locking: NEMA type 5-20R, locking: NEMA type L5-20R. 2.17 SERVICE ENTRANCE EQUIPMENT UL 869A. REPAIR FUEL SYSTEM MAINTENANCE DOCK - BUILDING 1012 FAIRCHILD AFB, WA. PN GJKZ 99-0151 2.18 SPLICE, CONDUCTOR UL 486C. 2.19 SNAP SWITCHES UL 20. - 2.20 TAPES - 2.20.1 Plastic Tape UL 510. 2.20.2 Rubber Tape UL 510. #### 2.21 TRANSFORMERS Three-phase transformers shall have two windings per phase. Full-capacity standard NEMA taps shall be provided in the primary windings of transformers unless otherwise indicated. Three-phase transformers shall be configured with delta-wye windings, except as indicated. ## 2.21.1 Transformers, Dry-Type Transformers shall have 220 degrees C insulation system for transformers 15 kVA and greater and shall have 180 degrees C insulation system for transformers rated 10 kVA and less, with temperature rise not exceeding 150 degrees C under full-rated load in maximum ambient temperature of 40 degrees
C. Transformers of 150 degrees C temperature rise shall be capable of carrying continuously 100 percent of nameplate kVA without exceeding insulation rating. # a. 600 Volt or Less Primary: NEMA ST 20, UL 506, general purpose, dry-type, self-cooled, ventilated transformers shall be provided in NEMA 1 enclosure. Transformers shall be quiet type with maximum sound level at least 3 decibels less than NEMA standard level for transformer ratings indicated. ## 2.21.2 Average Sound Level The average sound level in decibels (dB) of transformers shall not exceed the following dB level at 12 inches for the applicable kVA rating range listed unless otherwise indicated: | kVA Range | dВ | Sound | Level | |-----------|----|-------|-------| | | | | | | 1-50 | | | 50 | | 51-150 | | | 55 | #### 2.22 WATTHOUR/DEMAND METERS Digital multimeters shall comply with UL 508 and FCC Part 15 Class A. Meters shall primarily be used for watthour-demand metering with pulse-initiators for remote monitoring of watt-hour usage and instantaneous demand. Meters shall also have the following three phase and neutral capabilities: current, voltage, real power (KW), reactive power (KVAR), apparent power (KVA), true power factor, frequency, and demand levels of the items above. Meters shall also provide voltage and current total harmonic distortion (THD), date/time stamping. Metering shall be accurate to within 1%. Meters shall be programmable from the front face. Meters shall operate on 120 VAC, allow direct phase voltage inputs up to 600 VAC and have CT and neutral inputs rated 5 amp nominally, up to 10 amps full scale. Meters shall be mounted semi-flush on the front of the CT enclosure. #### 2.23 INSTRUMENT TRANSFORMERS #### 2.23.1 General Instrument transformers shall comply with ANSI C12.11 and IEEE ANSI/IEEE C57.13. Instrument transformers shall be configured for mounting in/on the device to which they are applied. Polarity marks on instrument transformers shall be visually evident and shown on drawings. ## 2.23.2 Current Transformers Unless otherwise indicated, window-type transformers are acceptable; and except for window-type units installed over insulated buses, transformers shall have a BIL rating consistent with the rated BIL of the associated switchgear, buses or conductors. Current transformers shall have the indicated ratios. The continuous thermal-current rating factor shall be not less than 1.25. Circuit protectors shall be provided across secondary leads of the current transformers to prevent the accidental open-circuiting of the transformers while energized. Each terminal of each current transformer shall be connected to a short-circuiting terminal block in the associated metering section, panel or enclosure. ### 2.23.2.1 Current Transformers for kWH and Demand Metering (Low Voltage) Current transformers shall conform to IEEE ANSI/IEEE C57.13. Provide current transformers with a metering accuracy Class of 0.3 , with a minimum RF of 1.33 at 30 degrees C, with 600-volt insulation, and 10 kV BIL. Provide butyl-molded, window-type current transformers solidly mounted inside the metering section, panel or enclosure. #### 2.24 WIRING DEVICES NEMA WD 1 for wiring devices, and NEMA WD 6 for dimensional requirements of wiring devices. ## 2.25 COORDINATED POWER SYSTEM PROTECTION Analyses shall be prepared to demonstrate that the equipment and system constructed meet the specified requirements for equipment ratings, coordination, and protection. They shall include a load flow analysis, a fault current analysis, and protective device coordination study. The studies shall be performed by a registered professional engineer with demonstrated experience in power system coordination in the last three years. The Contractor shall provide a list of references complete with points of contact, addresses and telephone numbers. The selection of the engineer is subject to the approval of the Contracting Officer. ## 2.25.1 Scope of Analyses The fault current analysis, and protective device coordination study shall begin at: the outdoor, pad-mounted transformer secondary buses and extend down to system buses where fault availability is 10,000 amperes (symmetrical) or less for building/facility 600 volt level distribution buses. ## 2.25.2 Determination of Facts The time-current characteristics, features, and nameplate data for each existing protective device shall be determined and documented. The Contractor shall coordinate with the Base Electrical Engineer for fault current availability at the site. # 2.25.3 Single Line Diagram A single line diagram shall be prepared to show the electrical system buses, devices, transformation points, and all sources of fault current (including motor contributions). A fault-impedance diagram or a computer analysis diagram shall be provided. Each bus, device or transformation point shall have a unique identifier. Show impedance data on the fault-impedance diagram. Locations of switches, breakers, and circuit interrupting devices shall be shown on the diagram together with available fault data, and the device interrupting rating. ## 2.25.4 Fault Current Analysis ### 2.25.4.1 Method The fault current analysis shall be performed in accordance with methods described in IEEE Std 242, and IEEE Std 399. #### 2.25.4.2 Data Actual data shall be utilized in fault calculations. Bus characteristics and transformer impedances shall be those proposed. Data shall be documented in the report. # 2.25.4.3 Fault Current Availability FAIRCHILD AFB, WA. PN GJKZ 99-0151 Balanced three-phase fault, bolted line-to-line fault, and line-to-ground fault current values shall be provided at each voltage transformation point and at each power distribution bus. The maximum and minimum values of fault available at each location shall be shown in tabular form on the diagram or in the report. ## 2.25.5 Coordination Study The study shall demonstrate that the maximum possible degree of selectivity has been obtained between devices specified, consistent with protection of equipment and conductors from damage from overloads and fault conditions. The study shall include a description of the coordination of the protective devices in this project. Provide a written narrative that describes: which devices may operate in the event of a fault at each bus; the logic used to arrive at device ratings and settings; situation where system coordination is not achievable due to device limitations (an analysis of any device curves which order overlap); coordination between upstream and downstream devices; and relay settings. Recommendations to improve or enhance system reliability, and detail where such changes would involve additions or modifications to the contract and cost changes (addition or reduction) shall be provided. Composite coordination plots shall be provided on log-log graph paper. # 2.25.6 Study Report - a. The report shall include a narrative: the analyses performed; the bases and methods used; and the desired method of coordinated protection of the power system. - b. The study shall include descriptive and technical data for existing devices and new protective devices proposed. The data shall include manufacturers published data, nameplate data, and definition of the fixed or adjustable features of the existing or new protective devices. - c. The report shall document Base System data including system voltages, fault MVA, system X/R ratio, time-current characteristic curves, current transformer ratios, and relay device curves and protective device ratings and settings. - d. The report shall contain fully coordinated composite time-current characteristic curves for each bus in the system, as required to ensure coordinated power system protection between protective devices or equipment. The report shall include recommended ratings and settings of all protective devices in tabulated form. - e. The report shall provide the calculations performed for the analyses, including computer analysis programs utilized. The name of the software package, developer, and version number shall be provided. #### PART 3 EXECUTION #### 3.1 GROUNDING Grounding shall be in conformance with NFPA 70, the contract drawings, and the following specifications. ### 3.1.1 Ground Rods The resistance to ground shall be measured using the fall-of-potential method described in IEEE Std 81. The maximum resistance of a driven ground shall not exceed 25 ohms under normally dry conditions. If this resistance cannot be obtained with a single rod, additional rods not less than 10 feet on centers, or if sectional type rods are used, (3) additional sections may be coupled and driven with the first rod. In high-ground-resistance, UL listed chemically charged ground rods may be used. If the resultant resistance exceeds 5 ohms measured not less than 48 hours after rainfall, the Contracting Officer shall be notified immediately. Connections below grade shall be fusion welded. Connections above grade shall be fusion welded or shall use UL 467 approved connectors. #### 3.1.2 Ground Bus Ground bus shall be provided in the electrical equipment rooms as indicated. Non-current-carrying metal parts of transformer neutrals and other electrical equipment shall be effectively grounded by bonding to the ground bus. The ground bus shall be bonded to the service entrance ground rod. Connections and splices shall be of the brazed, welded, bolted, or pressure-connector type, except that pressure connectors or bolted connections shall be used for connections to removable equipment. For the communications equipment room, a minimum of one ground rod system shall be installed. ## 3.1.3 Grounding Conductors A green equipment grounding conductor, sized in accordance with NFPA 70 shall be provided in every conduit, regardless of the type of conduit. Equipment grounding bars shall be provided in all panelboards. The equipment grounding conductor shall be carried back to the service entrance grounding connection or separately
derived grounding connection. All equipment grounding conductors, including metallic raceway systems used as such, shall be bonded or joined together in each wiring box or equipment enclosure. Metallic raceways and grounding conductors shall be checked to assure that they are wired or bonded into a common junction. Metallic boxes and enclosures, if used, shall also be bonded to these grounding conductors by an approved means per NFPA 70. In metal boxes where receptacles, switches, or other utilization devices are installed, any designated grounding terminal on these devices shall also be bonded to the equipment grounding conductor junction with a short jumper. ## 3.2 WIRING METHODS Wiring shall conform to NFPA 70, the contract drawings, and the following specifications. Unless otherwise indicated, wiring shall consist of insulated conductors installed in rigid zinc-coated steel conduit. Wire fill in conduits shall be based on NFPA 70 for the type of conduit and wire insulation specified. Wire fill in conduits located in Class I or II hazardous areas shall be limited to 25 percent of the cross sectional area of the conduit. # 3.2.1 Conduit and Tubing Systems Conduit and tubing systems shall be installed as indicated. Conduit sizes shown are based on use of copper conductors with insulation types as described in paragraph WIRING METHODS. Minimum size of raceways shall be 3/4 inch. Only metal conduits will be permitted when conduits are required for shielding or other special purposes indicated, or when required by conformance to NFPA 70. Nonmetallic conduit and tubing may be used in damp, wet or corrosive locations when permitted by NFPA 70 and the conduit or tubing system is provided with appropriate boxes, covers, clamps, screws or other appropriate type of fittings. Electrical metallic tubing (EMT) may be installed only within building stud walls or above drop ceilings. EMT shall not be installed in damp or wet locations, or the air space of exterior masonry cavity walls. Bushings, manufactured fittings or boxes providing equivalent means of protection shall be installed on the ends of all conduits and shall be of the insulating type, where required by NFPA 70. Only UL listed adapters shall be used to connect EMT to rigid metal conduit, cast boxes, and conduit bodies. Penetrations of above grade floor slabs, time-rated partitions and fire walls shall be fire-stopped in accordance with Section 07270 FIRESTOPPING. Except as otherwise specified, IMC may be used as an option for rigid steel conduit in areas as permitted by NFPA 70. Raceways shall not be installed under the firepits of boilers and furnaces and shall be kept 6 inches away from parallel runs of flues, steam pipes and hot-water pipes. Raceways shall be concealed within finished walls, ceilings, and floors unless otherwise shown. Raceways crossing structural expansion joints or seismic joints shall be provided with suitable expansion fittings or other suitable means to compensate for the building expansion and contraction and to provide for continuity of grounding. ### 3.2.1.1 Pull Rope A pull rope shall be inserted in each empty raceway. The pull rope shall have not less than 200 pounds per square inch tensile strength. Not less than 24 inches of slack shall be left at each end of the pull rope. # 3.2.1.2 Conduit Stub-Ups Where conduits are to be stubbed up through concrete floors, a short elbow shall be installed below grade to transition from the horizontal run of conduit to a vertical run. A conduit coupling fitting, threaded on the inside shall be installed, to allow terminating the conduit flush with the finished floor. Wiring shall be extended in rigid threaded conduit to equipment, except that where required, flexible conduit may be used 6 inches above the floor. Empty or spare conduit stub-ups shall be plugged flush with the finished floor with a threaded, recessed plug. ### 3.2.1.3 Below Slab-on-Grade or in the Ground Electrical wiring below slab-on-grade shall be protected by a conduit system. Conduit passing vertically through slabs-on-grade, installed below slab-on-grade or in the earth shall be rigid steel. Rigid steel conduits shall have a factory-applied polyvinyl chloride, plastic resin, or epoxy coating system. ### 3.2.1.4 Installing in Slabs Including Slabs on Grade Conduit installed in slabs-on-grade shall be rigid steel. Rigid steel conduits shall have a factory-applied polyvinyl chloride, plastic resin, or epoxy coating system. Conduits shall be installed as close to the middle of concrete slabs as practicable without disturbing the reinforcement. Outside diameter shall not exceed 1/3 of the slab thickness and conduits shall be spaced not closer than 3 diameters on centers except at cabinet locations where the slab thickness shall be increased as approved by the Contracting Officer. Where conduit is run parallel to reinforcing steel, the conduit shall be spaced a minimum of one conduit diameter away but not less than one inch from the reinforcing steel. ## 3.2.1.5 Changes in Direction of Runs Changes in direction of runs shall be made with symmetrical bends or castmetal fittings. Field-made bends and offsets shall be made with an approved hickey or conduit-bending machine. Crushed or deformed raceways shall not be installed. Trapped raceways in damp and wet locations shall be avoided where possible. Lodgment of plaster, dirt, or trash in raceways, boxes, fittings and equipment shall be prevented during the course of construction. Clogged raceways shall be cleared of obstructions or shall be replaced. ## 3.2.1.6 Supports Metallic conduits and the support system to which they are attached, shall be securely and rigidly fastened in place to prevent vertical and horizontal movement at intervals of not more than 10 feet and within 3 feet of boxes, cabinets, and fittings, with approved pipe straps, wall brackets, conduit clamps, conduit hangers, threaded C-clamps, beam clamps, or ceiling trapeze. Loads and supports shall be coordinated with supporting structure to prevent damage or deformation to the structure. Loads shall not be applied to joist bridging. Attachment shall be by wood screws or screw-type nails to wood; by toggle bolts on hollow masonry units; by expansion bolts on concrete or brick; by machine screws, welded threaded studs, heat-treated or springsteel-tension clamps on steel work. Nail-type nylon anchors or threaded studs driven in by a powder charge and provided with lock washers and nuts may be used in lieu of expansion bolts or machine screws. Raceways or pipe straps shall not be welded to steel structures. Cutting the main reinforcing bars in reinforced concrete beams or joists shall be avoided when drilling holes for support anchors. Holes drilled for support anchors, but not used, shall be filled. In partitions of light steel construction, sheet-metal screws may be used. Raceways shall not be supported using wire or nylon ties. Raceways shall be independently supported from the structure. Upper raceways shall not be used as a means of support for lower raceways. Supporting means shall not be shared between electrical raceways and mechanical piping or ducts, except as noted on the drawings. Cables and raceways shall not be supported by ceiling grids. Except where permitted by NFPA 70, wiring shall not be supported by ceiling support systems. Conduits shall be fastened to sheet-metal boxes and cabinets with two locknuts where required by NFPA 70, where insulating bushings are used, and where bushings cannot be brought into firm contact with the box; otherwise, a single locknut and bushing may be used. Threadless fittings for electrical metallic tubing shall be of a type approved for the conditions encountered. Additional support for horizontal runs is not required when EMT rests on steel stud cutouts. ## 3.2.1.7 Exposed Raceways Exposed raceways shall be installed parallel or perpendicular to walls, structural members, or intersections of vertical planes and ceilings. Raceways under raised floors and above accessible ceilings shall be considered as exposed installations in accordance with NFPA 70 definitions. ## 3.2.1.8 Exposed Risers Exposed risers in wire shafts of multistory buildings shall be supported by U-clamp hangers at each floor level, and at intervals not to exceed 10 feet. ## 3.2.1.9 Communications Raceways Communications raceways indicated shall be installed in accordance with the previous requirements for conduit and tubing and with the additional requirement that no length of run shall exceed 50 feet for 1/2 inch and 3/4 inch sizes, and 100 feet for 1 inch or larger sizes, and shall not contain more than two 90-degree bends or the equivalent. Additional pull or junction boxes shall be installed to comply with these limitations whether or not indicated. Inside radii of bends in conduits of 1 inch size or larger shall not be less than ten times the nominal diameter. ### 3.2.2 Cables and Conductors Installation shall conform to the requirements of NFPA 70. Covered, bare or insulated conductors of circuits rated over 600 volts shall not occupy the same equipment wiring enclosure, cable, or raceway with conductors of circuits rated 600 volts or less. ## 3.2.2.1 Sizing Unless otherwise noted, all sizes are based on copper conductors and the insulation types indicated. Sizes shall be not less than indicated. Branch-circuit conductors shall be not smaller than No. 12 AWG. Conductors for branch circuits of 120 volts more than 100 feet long and of 277 volts more than 230 feet long, from panel to load center, shall be no smaller than No. 10 AWG. Class 1 remote control and signal circuit conductors shall be not less than No. 14 AWG. Class 2 remote control and signal circuit conductors shall be not less than No. 16 AWG. Class 3 low-energy, remote-control and signal circuits shall be not less than No. 22 AWG. # 3.2.2.2 Cable Splicing Splices shall be made in an accessible location. Crimping tools and dies shall
be approved by the connector manufacturer for use with the type of connector and conductor. a. Copper Conductors, 600 Volt and Under: Splices in conductors No. 10 AWG and smaller diameter shall be made with an insulated, pressure-type connector. Splices in conductors No. 8 AWG and larger diameter shall be made with a solderless connector and insulated with tape or heat-shrink type insulating material equivalent to the conductor insulation. ### 3.2.2.3 Conductor Identification and Tagging Power, control, and signal circuit conductor identification shall be provided within each enclosure where a tap, splice, or termination is made. Where several feeders pass through a common pull box, the feeders shall be tagged to indicate clearly the electrical characteristics, circuit number, and panel designation. Phase conductors of low voltage power circuits shall be identified by color coding. Phase identification by a particular color shall be maintained continuously for the length of a circuit, including junctions. a. Color coding shall be provided for service, feeder, branch, and ground conductors. Color shall be green for grounding conductors and white for neutrals; except where neutrals of more than one system are installed in the same raceway or box, other neutral shall be white with colored (not green) stripe. The color coding for 3-phase and single-phase low voltage systems shall be as follows: 120/208-volt, 3-phase: Black(A), red(B), and blue(C). 277/480-volt, 3-phase: Yellow(A), Brown(B), and Orange(C). 120/240-volt, 1-phase: Black and red. b. Conductor phase and voltage identification shall be made by color-coded insulation for all conductors smaller than No. 6 AWG. For conductors No. 6 AWG and larger, identification shall be made by color-coded insulation, or conductors with black insulation may be furnished and identified by the use of half-lapped bands of colored electrical tape wrapped around the insulation for a minimum of 3 inches of length near the end, or other method as submitted by the Contractor and approved by the Contracting Officer. c. Control and signal circuit conductor identification shall be made by color-coded insulated conductors, plastic-coated self-sticking printed markers, permanently attached stamped metal foil markers, or equivalent means as approved. Control circuit terminals of equipment shall be properly identified. Terminal and conductor identification shall match that shown on approved detail drawings. Hand lettering or marking is not acceptable. ### 3.3 BOXES AND SUPPORTS Boxes shall be provided in the wiring or raceway systems where required by NFPA 70 for pulling of wires, making connections, and mounting of devices or fixtures. Pull boxes shall be furnished with screw-fastened covers. Indicated elevations are approximate, except where minimum mounting heights for hazardous areas are required by NFPA 70. Unless otherwise indicated, boxes for wall switches shall be mounted 48 inches above finished floors. Switch and outlet boxes located on opposite sides of fire rated walls shall be separated by a minimum horizontal distance of 24 inches. The total combined area of all box openings in fire rated walls shall not exceed 100 square inches per 100 square feet. Maximum box areas for individual boxes in fire rated walls vary with the manufacturer and shall not exceed the maximum specified for that box in UL Elec Const Dir. Only boxes listed in UL Elec Const Dir shall be used in fire rated walls. ## 3.3.1 Box Applications Each box shall have not less than the volume required by NFPA 70 for number of conductors enclosed in box. Boxes for metallic raceways, 4 by 4 inch nominal size and smaller, shall be of the cast-metal hub type when located in normally wet locations, when flush and surface mounted on outside of exterior surfaces, or when located in hazardous areas. Cast-metal boxes installed in wet locations and boxes installed flush with the outside of exterior surfaces shall be gasketed. Boxes for mounting lighting fixtures shall be not less than 4 inches square, or octagonal, except smaller boxes may be installed as required by fixture configuration, as approved. Cast-metal boxes with 3/32 inch wall thickness are acceptable. Large size boxes shall be NEMA 12 or as shown. Boxes in other locations shall be sheet steel, except that nonmetallic boxes may be used with nonmetallic conduit. Boxes for use in masonry-block or tile walls shall be square-cornered, tile-type, or standard boxes having square-cornered, tile-type covers. ### 3.3.2 Brackets and Fasteners Boxes and supports shall be fastened to wood with wood screws or screw-type nails of equal holding strength, with bolts and metal expansion shields on concrete or brick, with toggle bolts on hollow masonry units, and with machine screw or welded studs on steel work. Threaded studs driven in by powder charge and provided with lock-washers and nuts, or nail-type nylon anchors may be used in lieu of expansion shields, or machine screws. Penetration of more than 1-1/2 inches into reinforced-concrete beams or more than 3/4 inch into reinforced-concrete joists shall avoid cutting any main reinforcing steel. The use of brackets which depend on gypsum wallboard or plasterboard for primary support will not be permitted. In partitions of light steel construction, bar hangers with 1 inch long studs, mounted between metal wall studs or metal box mounting brackets shall be used to secure boxes to the building structure. When metal box mounting brackets are used, additional box support shall be provided on the side of the box opposite the brackets. This additional box support shall consist of a minimum 12 inch long section of wall stud, bracketed to the opposite side of the box and secured by two screws through the wallboard on each side of the stud. Metal screws may be used in lieu of the metal box mounting brackets. # 3.3.3 Mounting in Walls, Ceilings, or Recessed Locations In walls or ceilings of concrete, tile, or other non-combustible material, boxes shall be installed so that the edge of the box is not recessed more than 1/4 inch from the finished surface. Boxes mounted in combustible walls or ceiling material shall be mounted flush with the finished surface. The use of gypsum or plasterboard as a means of supporting boxes will not be permitted. Boxes installed for concealed wiring shall be provided with suitable extension rings or plaster covers, as required. The bottom of boxes installed in masonry-block walls for concealed wiring shall be mounted flush with the top of a block to minimize cutting of the blocks, and boxes shall be located horizontally to avoid cutting webs of block. Separate boxes shall be provided for flush or recessed fixtures when required by the fixture terminal operating temperature, and fixtures shall be readily removable for access to the boxes unless ceiling access panels are provided. # 3.3.4 Installation in Overhead Spaces In open overhead spaces, cast-metal boxes threaded to raceways need not be separately supported except where used for fixture support; cast-metal boxes having threadless connectors and sheet metal boxes shall be supported directly from the building structure or by bar hangers. Hangers shall not be fastened to or supported from joist bridging. Where bar hangers are used, the bar shall be attached to raceways on opposite sides of the box and the raceway shall be supported with an approved type fastener not more than 24 inches from the box. ### 3.4 DEVICE PLATES One-piece type device plates shall be provided for all outlets and fittings. Plates on unfinished walls or on fittings shall be of zinc-coated sheet steel or cast-metal Plates on finished walls shall be of impact-resistant plastic and shall be ivory. Screws shall be of metal with countersunk heads, in a color to match the finish of the plate. Plates shall be installed with all four edges in continuous contact with finished wall surfaces without the use of mats or similar devices. Plaster fillings will not be permitted. Plates shall be installed with an alignment tolerance of 1/16 inch. The use of sectional-type device plates will not be permitted. Plates installed in wet locations shall be gasketed and provided with a hinged, gasketed cover, unless otherwise specified. ## 3.5 RECEPTACLES # 3.5.1 Single and Duplex, 15 or 20-ampere, 125 volt Duplex receptacles shall be rated 20 amperes, 125 volts, two-pole, three-wire, grounding type with polarized parallel slots. Bodies shall be of ivory to match color of switch handles in the same room or to harmonize with the color of the respective wall, and supported by mounting strap having plaster ears. Contact arrangement shall be such that contact is made on two sides of an inserted blade. Receptacle shall be side- or back-wired with two screws per terminal. The third grounding pole shall be connected to the metal mounting yoke. Switched receptacles shall be the same as other receptacles specified except that the ungrounded pole of each suitable receptacle shall be provided with a separate terminal. Only the top receptacle of a duplex receptacle shall be wired for switching application. Receptacles with ground fault circuit interrupters shall have the current rating as indicated, and shall be UL Class A type unless otherwise shown. Ground fault circuit protection shall be provided as required by NFPA 70 and as indicated on the drawings. ## 3.5.2 Floor Outlets (Not Used) ## 3.5.3 Weatherproof Applications Weatherproof receptacles shall be suitable for the environment, damp or wet as applicable, and the housings shall be labeled to identify the allowable use. Receptacles shall be marked in accordance with UL 514A for the type of use indicated; "Damp locations", "Wet Locations", "Wet Location Only When Cover Closed". Assemblies shall be installed in accordance with the manufacturer's recommendations. ## 3.5.3.1 Damp Locations Receptacles in damp locations shall be mounted in an outlet box with a
gasketed, weatherproof, cast-metal cover plate (device plate, box cover) and a gasketed cap (hood, receptacle cover) over each receptacle opening. The cap shall be either a screw-on type permanently attached to the cover plate by a short length of bead chain or shall be a flap type attached to the cover with a spring loaded hinge. ### 3.5.3.2 Wet Locations Receptacles in wet locations shall be installed in an assembly rated for such use whether the plug is inserted or withdrawn, unless otherwise indicated. In a duplex installation, the receptacle cover shall be configured to shield the connections whether one or both receptacles are in use. #### 3.6 WALL SWITCHES Wall switches shall be of the totally enclosed tumbler type. The wall switch handle and switch plate color shall be ivory. Wiring terminals shall be of the screw type or of the solderless pressure type having suitable conductor-release arrangement. Switches shall be rated 20-ampere, 120 or 277 vac as applicable. #### 3.7 SERVICE EQUIPMENT Service-disconnecting means shall be of the enclosed molded-case circuit breaker type with an external handle for manual operation. When service disconnecting means is a part of an assembly, the assembly shall be listed as suitable for service entrance equipment. Enclosures shall be sheet metal with hinged cover, rated NEMA 12, for surface mounting unless otherwise indicated. ### 3.8 PANELBOARDS Circuit breakers and switches used as a motor disconnecting means shall be capable of being locked in the open position. Door locks shall be keyed alike. Nameplates shall be as approved. Directories shall be typed to indicate loads served by each circuit and mounted in a holder behind a clear protective covering. ### 3.9 CONTROL POWER TRANSFORMER/ CONTROL CIRCUIT FUSES Equipment provided under this contract shall be provided with a complete set of properly rated fuses when the equipment manufacturer utilize fuses in the manufacture of the equipment. Fuses shall have a voltage rating of not less than the phase-to-phase circuit voltage, and shall have the time-current characteristics required for effective power system coordination. Time-delay and non-time-delay options shall be as shown. ### 3.10 UNDERGROUND SERVICE Unless otherwise indicated, interior conduit systems shall be stubbed out 5 feet beyond the building wall and 2 feet below finished grade, for interface with the exterior service lateral conduits and exterior communications conduits. Outside conduit ends shall be bushed when used for direct burial service lateral conductors. Outside conduit ends shall be capped or plugged until connected to exterior conduit systems. Underground service lateral conductors will be extended to building service entrance and terminated in accordance with the requirements of Section 16375 ELECTRICAL DISTRIBUTION SYSTEM, UNDERGROUND and NFPA 70. ## 3.11 MOTOR-DISCONNECT MEANS Each motor shall be provided with a disconnecting means when required by NFPA 70 even though not indicated. For single-phase motors, a single or double pole toggle switch, rated only for alternating current, will be acceptable for capacities less than 30 amperes, provided the ampere rating of the switch is at least 125 percent of the motor rating. Switches shall disconnect all ungrounded conductors. ### 3.12 TRANSFORMER INSTALLATION Three-phase transformers shall be connected only in a delta-wye configuration as indicated. #### 3.13 LAMPS AND LIGHTING FIXTURES Ballasted fixtures shall have ballasts which are compatible with the specific type and rating of lamps indicated and shall comply with the applicable provisions of the publications referenced. #### 3.13.1 Lamps Lamps of the type, wattage, and voltage rating indicated shall be delivered to the project in the original cartons and installed in the fixtures just prior to the completion of the project. #### 3.13.1.2 Fluorescent Fluorescent lamps for electronic ballasts shall be as indicated. ## 3.13.1.3 High-Intensity-Discharge High-intensity-discharge lamps shall be as indicated. ## 3.13.2 Fixture Accessories # 3.13.2.1 Accessories Accessories such as straps, mounting plates, nipples, or brackets shall be provided for proper installation. Open type fluorescent fixtures with exposed lamps shall have a wire-basket type guard. ### 3.13.2.2 Suspended Fixtures Suspended fixtures shall be provided with swivel hangers in order to ensure a plumb installation. Pendants, rods, or chains 4 feet or longer excluding fixture, shall be braced to limit swinging. Bracing shall be 3 directional, 120 degrees apart. Single unit suspended fluorescent fixtures shall have twin-stem hangers. Multiple unit or continuous-row fluorescent units shall have a tubing or stem for wiring at one point, and a tubing or rod suspension provided for each length of chassis including one at each end. Maximum distance between adjacent tubing or stems shall be 10 feet. Rods shall be of not less than 3/16 inch diameter. Flexible raceway shall be installed to each fixture from an overhead junction box. Fixture to fixture wiring installation is allowed only when fixtures are installed end to end in a continuous run. #### 3.13.2.3 Ceiling Fixtures Ceiling fixtures shall be coordinated with and suitable for installation in, on, or from the suspended ceiling provided under other sections of these specifications. Installation and support of fixtures shall be in accordance with the NFPA 70 and manufacturer's recommendations. Recessed fixtures shall have adjustable fittings to permit alignment with ceiling panels. Recessed fixtures installed in fire-resistive type of suspended ceiling construction shall have the same fire rating as the ceiling or shall be provided with fireproofing boxes having materials of the same fire rating as the ceiling panels, in conformance with UL Elec Const Dir. Surface-mounted fixtures shall be suitable for fastening to the structural support for ceiling panels. ### 3.14 EQUIPMENT CONNECTIONS Wiring not furnished and installed under other sections of the specifications for the connection of electrical equipment as indicated on the drawings shall be furnished and installed under this section of the specifications. Connections shall comply with the applicable requirements of paragraph WIRING METHODS. Flexible conduits 6 feet or less in length shall be provided to all electrical equipment subject to periodic removal, vibration, or movement and for all motors. All motors shall be provided with separate grounding conductors. Liquid-tight conduits shall be used in damp or wet locations. #### 3.14.1 Motors and Motor Control Motors and motor controls shall be installed in accordance with NFPA 70, the manufacturer's recommendations, and as indicated. Wiring shall be extended to motors and motor controls and terminated. ## 3.14.2 Installation of Government-Furnished Equipment Wiring shall be extended to the equipment and terminated. ### 3.15 CIRCUIT PROTECTIVE DEVICES The Contractor shall calibrate, adjust, set and test each new adjustable circuit protective device to ensure that they will function properly prior to the initial energization of the new power system under actual operating conditions. #### 3.16 PAINTING AND FINISHING Field-applied paint on exposed surfaces shall be provided under Section 09900 PAINTING, GENERAL. ## 3.17 REPAIR OF EXISTING WORK The work shall be carefully laid out in advance, and where cutting, channeling, chasing, or drilling of floors, walls, partitions, ceiling, or other surfaces is necessary for the proper installation, support, or anchorage of the conduit, raceways, or other electrical work, this work shall be carefully done, and any damage to building, piping, or equipment shall be repaired by skilled mechanics of the trades involved at no additional cost to the Government. ### 3.18 FIELD TESTING Field testing shall be performed in the presence of the Contracting Officer. The Contractor shall notify the Contracting Officer 10 days prior to conducting tests. The Contractor shall furnish all materials, labor, and equipment necessary to conduct field tests. The Contractor shall perform all tests and inspection recommended by the manufacturer unless specifically waived by the Contracting Officer. The Contractor shall maintain a written record of all tests which includes date, test performed, personnel involved, devices tested, serial number and name of test equipment, and test results. All field test reports will be signed and dated by the Contractor. ### 3.18.1 Safety The Contractor shall provide and use safety devices such as rubber gloves, protective barriers, and danger signs to protect and warn personnel in the test vicinity. The Contractor shall replace any devices or equipment which are damaged due to improper test procedures or handling. #### 3.18.2 Cable Tests The Contractor shall be responsible for identifying all equipment and devices that could be damaged by application of the test voltage and ensuring that they have been properly disconnected prior to performing insulation resistance testing. An insulation resistance test shall be performed on all low and medium voltage cables after the cables are installed in their final configuration and prior to energization. The test voltage shall be 500 volts DC applied for one minute between each conductor and ground and between all possible combinations of conductors. The minimum value of resistance shall be: R in meg-ohms = (rated voltage in kV + 1) x 1000/(length of cable in feet) Each cable failing this test shall be repaired or replaced. The repaired cable system shall then be re-tested until failures have been eliminated. #### 3.18.2.1 Low Voltage Cable Tests - a. Continuity test. - b. Insulation resistance test. #### 3.18.3 Motor Tests - a. Phase rotation test to ensure proper directions. - b. Operation and sequence of reduced voltage starters. - c. High potential test on each winding to ground. - d. Insulation resistance of each winding to ground. - e.
Vibration test. - f. Dielectric absorption test on motor and starter. ## 3.18.4 Dry-Type Transformer Tests The following field tests shall be performed on all dry-type transformers 15 kVA and above]. - a. Insulation resistance test phase-to-ground, each phase. - b. Turns ratio test. #### 3.18.5 Circuit Breaker Tests The following field tests shall be performed on circuit breakers. ## 3.18.5.1 Circuit Breakers, Molded Case - a. Insulation resistance test phase-to-phase, all combinations. - b. Insulation resistance test phase-to-ground, each phase. - c. Closed breaker contact resistance test. - d. Manual operation of the breaker. ### 3.19 OPERATING TESTS After the installation is completed, and at such time as the Contracting Officer may direct, the Contractor shall conduct operating tests for approval. The equipment shall be demonstrated to operate in accordance with the specified requirements. An operating test report shall be submitted in accordance with paragraph FIELD TEST REPORTS. #### 3.20 FIELD SERVICE # 3.20.1 Onsite Training The Contractor shall conduct a training course for the operating staff as designated by the Contracting Officer. The training period shall consist of a total of 8 hours of normal working time and shall start after the system is functionally completed but prior to final acceptance tests. The course instruction shall cover pertinent points involved in operating, starting, stopping, servicing the equipment, as well as all major elements of the operation and maintenance manuals. Additionally, the course instructions shall demonstrate all routine maintenance operations. A VHS format video tape of the entire training shall be submitted. # 3.20.2 Installation Engineer After delivery of the equipment, the Contractor shall furnish one or more field engineers, regularly employed by the equipment manufacturer to supervise the installation of equipment, assist in the performance of the onsite tests, oversee initial operations, and instruct personnel as to the operational and maintenance features of the equipment. ## 3.21 ACCEPTANCE Final acceptance of the facility will not be given until the Contractor has successfully completed all tests and after all defects in installation, material or operation have been corrected. END OF SECTION